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Abstract—Many network devices such as routers and 

firewalls employ caches to take advantage of temporal locality of 
packet headers in order to speed up packet processing decisions.  
Traditionally, cache designs trade off time and space with the 
goal of balancing the overall cost and performance of the device.  
In this paper, we examine another axis of the design space that 
has not been previously considered: accuracy.  In particular, we 
quantify the benefits of relaxing the accuracy of the cache on the 
cost and performance of packet classification caches. Our cache 
design is based on the popular Bloom filter data structure.  This 
paper provides a model for optimizing Bloom filters for this 
purpose, as well as extensions to the data structure to support 
graceful aging, bounded misclassification rates, and multiple 
binary predicates. Given this, we show that such caches can 
provide nearly an order of magnitude cost savings at the expense 
of misclassifying one billionth of packets for IPv6-based caches. 

Keywords— Bloom filter; packet classification; caches; 
probabilistic algorithms 

I. INTRODUCTION  
Modern network devices such as firewalls, network 

address translators, and edge routers rely on fast packet 
classification in order to perform well. These services require 
that packets be classified based on a set of rules that are 
applied to not only the destination address, but also flow 
identifiers such as source address, layer-4 protocol type, and 
port numbers.  Unfortunately, packet classification is a very 
complex task.  Because of this, there has been a large amount 
of work in developing more efficient classification algorithms 
[2][12][17][22][30][33]. Still, in the context of high-
performance networks, the hardware requirements of 
performing full classification on each packet at line rates can 
be overwhelming[25]. 

To increase the performance of a packet classification 
engine, a cache is often employed to take advantage of 
temporal locality [8].  For example, caching has been shown 
to increase performance significantly with route lookups 
[21][34].  Caches are typically evaluated along two axes: size 
and performance.  As additional storage is added, cache hit 
rates and performance increase.  Unlike route caches that only 
need to store destination address information, packet 

classification caches require the storage of full packet headers.  
Unfortunately, due to the increasing size of packet headers 
(the eventual deployment of IPv6 [18]), storing full header 
information can be prohibitive given the cost of the high-
speed memory that would be used implement such a cache.  
To address this problem, this paper examines a third axis for 
designing packet classification caches: accuracy.  In 
particular, we seek to answer the following question: 

What are the quantifiable benefits that relaxing the 
accuracy of a cache has on the size and performance of packet 
classification caches? 

While there are many ways of exploring this axis, this 
paper examines one approach for doing so through the use of a 
modified Bloom Filter.  In this approach, classified packets 
satisfying a binary predicate are inserted into the filter that 
caches the decision.  Subsequent packets then query the filter 
to quickly test membership before being processed further.  
Packets that hit in the filter are processed immediately, based 
on the predicate, while packets that miss go through the full 
packet classification lookup process. 

In this paper, we briefly describe the Bloom filter and 
analyze its properties.  In particular, we examine the exact 
relationship between the size and dimension of the filter, the 
number of flows that can be supported, and the 
misclassification probability incurred.  While Bloom filters are 
good for storing binary set membership information, realistic 
network devices classify packets into many, possibly disjoint, 
sets.  To address this limitation, we extend the basic approach 
to support multiple binary predicates and analyze its expected 
performance.  Another issue in using Bloom filters in such a 
manner is the highly dynamic nature of the "dictionary" of 
packet headers.  In particular, such a cache must be able to 
evict stale entries and preserve a bounded maximum 
misclassification rate.  To address these issues, we present the 
design and evaluation of extensions for gracefully aging the 
cache over time to minimize misclassification.  We also 
explore the design and implementation of such a cache on a 
modern network processor platform.  

Section II covers related work and Section III introduces 
Bloom filters. Section IV extends the Bloom filters to support 
multiple binary predicates while Section V analyzes 



extensions for gracefully aging the cache. Section VI explores 
the performance impact of running a Bloom filter on a 
network processor, while Section VII discusses the potential 
results of misclassification.  

II. RELATED WORK 
Due to the high processing costs of packet classification, 

network appliance designers have resorted to using caches to 
speed up packet processing time. Early work in network cache 
design borrowed concepts from computer architecture (LRU 
stacks, set-associative multi-level caches) [6][26]. Some 
caching strategies rely on CPU L1 and L2 cache [21] while 
others attempt to map the IP address space to memory address 
space to use the hardware TLB [25]. Another approach is to 
add an explicit timeout to an LRU set-associative cache to 
improve performance by reducing thrashing [34]. More 
recently, in addition to the leveraging the temporal locality 
observed on networks, approaches to improving cache 
performance have applied techniques to compress and cache 
IP ranges to take advantage of the spatial locality in the 
address space of flow identifiers [7][16]. This effectively 
allows multiple flows to be cached to a single cache entry, so 
that the entire cache may be placed into small high-speed 
memory such as a processor's L1/L2 cache. 

Much of this work is not applicable to layer-4 flow 
identification that is the motivation for our work. Additionally, 
all of these bodies of work are fundamentally different from 
the material presented in this paper, because they only 
consider exact caching strategies. Our approach attempts to 
balance performance and resource requirements with an 
allowable error rate. 

III. THEORY 
We use a Bloom-filter to construct our approximate cache. 

A Bloom filter is a space-efficient data structure designed to 
store and query set-membership information [1]. 

Bloom filters were originally invented to store large 
amounts of static data (for example, hyphenation rules on 
English words). In recent years, this data structure has been 
rediscovered by the networking community, and has become a 
key component in many networking systems [3][24][32].  

Applications of Bloom filters in computer networking 
include web caching [11], active queue management [13], IP 
traceback [28][29], and resource routing [4][9]. 

A. The Bloom Filter  
In our implementation, a Bloom filter data structure 

consists of LNM ×= bins. (Each bin consists of one bit.) 
These bins are organized into L levels with N bins in each 
level, to create LN virtual bins (possible permutations). To 
interact with the Bloom filter, we maintain   independent hash 
functions, each associated with one bin level. Each hash 
function maps an element into one of the N bins in that level. 
For each element of the set, { },,, 21 keeeS K= , we compute 
the L hash functions, and set all of the corresponding bins to 
1. To test membership of any element in our Bloom filter, we 
compute the L hash functions, and test if all of the 

corresponding buckets are set to 1. See Figure 1 for an 
example.  

This approach may generate false positives – a Bloom 
filter may incorrectly report that an element is a member of 
the set S – but a Bloom filter will never generate false 
negatives. 

For optimal performance, each of the L hash functions, 
LHHH ,,, 21 K , should be a member of the class of universal 

hash functions [5]. That is, each hash function should 
distribute elements evenly over the hash’s address space, and 
for each hash function ]1[: NeH K→ε , the probability of 2 
distinct elements colliding is N1 . That is to say, ( ) NbabHaHP 1),()( =≠= εε .

In practice, we apply only one hash function, 
]1[: LNeH K→ , for each insertion or query operation, and 

simply use different portions of the resulting hash to 
implement the L hash functions. 

Our definition of a Bloom filter differs slightly from the 
original definition [1], where each of the L hash functions 
can address all of the M bit buckets. This definition of the 
Bloom filter is often used in current designs due to potential 
parallelization gains to be had by artificially partitioning 
memory [13]. It should be noted that this approach yields a 
slightly worse probability of false positives under the same 
conditions, but an equal asymptotic false-positive rate [3]. 
B. Properties of the Bloom Filter 

In order to better design our cache and understand its 
limitations, it is important to understand the behavioural 
properties of a Bloom filter. In particular, we are interested in 
how the misclassification probability, and the size of the 
Bloom filter, will affect the number of elements that it can 
store. 

Let us take the example of a firewall to motivate our 
analysis. The rationale of a firewall is to restrict and censor 
traffic between the internal and external networks. A firewall 
acts as both an entry point into and exit point from the 
network. As such, it must be able to process all traffic 
travelling to and from a network at line speed. This makes it a 
simple example in which to apply our approximate cache.  
Allowed flows are inserted into the cache, while new and 
censored flows are not. 

A Bloom filter with N buckets in each of its L levels, 
storing k elements has a probability of yielding a false 
positive of 

 Level 1                    Level 2                    Level 3 
 

( )eH1 ( )eH2 ( )eH3

Figure 1: An example: A Bloom filter with 5=N bins 
and 3=L hash levels. Suppose we wish to insert an 
element, e .
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For our purposes, we need to know how many elements 
(flows), k , we can store in our bloom filter, without 
exceeding some misclassification probability, p . Solving for 
k , we get 

)11ln(
)1ln( 1

N
pk

L

−
−=

To simplify this equation, we apply the approximation 
NeN 111 −≈− . So, we construct k≈κ ,

From this equation, it is clear that the number of elements, 
κ , a Bloom filter can support scales linearly with the amount 
of memory M . The relative error of this approximation, kκ ,
grows linearly with the number of hash functions L , and 
decreases with increasing M . For the purposes   of   our 
application of this approximation, the relative error is 
negligible1.

Note that solving for p in this equation yields the more 
popular expression [3][11][29], ( )LMLep κ−−= 1

1 For 1024≥M bytes, and 50≤L , the relative error is 
less than 0.35%. 

C. Dimensioning a Bloom Filter 
Bloom-filter design was originally motivated by the need 

to store dictionaries in memory. The underlying design 
assumption is that the data is static. However, this assumption 
no longer holds when dealing with network traffic. Previous 
work has often attempted to dimension a Bloom filter such 
that the misclassification rate is minimized for a fixed number 
of elements [3]. 

To apply Bloom filters to the problem of storing a cache, 
we prefer to maximize the number of elements, k , that a 
Bloom filter can store, without exceeding a fixed maximum 
tolerable misclassification rate, p .

To maximize κ as a function of L , we take the derivative, 
dLdκ , set it to 0, and solve for L to find the local 

maximum. 
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Figure 2: The maximum number of flows that can be stored by a 
512KB cache 
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Figure 3: The trade-off between the misclassification 
probability, p, and the maximum number of elements 

(flows), k , using optimum values of L .
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Since [ ]1,0∈p , then [ ]1,0∈u , so u only has one solution, 
=u ½, which means κ is maximized for 

ppL 2log2ln/ln −=−=
This is an interesting result, because it implies that L is 

invariant with respect to the size of the Bloom filter, M .
Another interesting implication of this equation is that the 

Bloom filter is “optimally full” when half of all the buckets 
are set ( Lp 2

1= ). 
It should be noted that the accuracy of this approximation 

( k≈κ ) increases with M . In our testing, for cache sizes 
greater than 1KB, this approximation yields no error. In all the 
simulations presented in this paper, this approximation and the 
optimal value of L are equal. Even if we choose a slightly 
sub-optimal value of L , the difference in the maximum 
number of flows the Bloom filter can store is negligible 
(Figure 2). For comparison, we will reintroduce the concept of 
an exact cache – the traditional cache that does not yield false 
positives or negatives. 

A less obvious implication of this approximation is the 
relationship between the amount of memory, M, the number of 
elements (flows), k, and the probability of a false positive, p .

Figure 3 graphs the relationship between p and k. We can 
see that the relationship is roughly logarithmic. This 
approximation serves as a good guide for ranges of two orders 
of magnitude or less. 

Since the optimal choice of L is asymptotically invariant 
with respect to M , and κ is proportional to M , we can assert 
that k is linearly related to M . A visual representation of this 
relationship is depicted in Figure 4. Note that a Bloom filter 
cache with a misclassification rate of one in a billion can store 
more than twice as many flows as an exact IPv4 cache, and 
almost 8 times as much as an exact IPv6 cache. (Each entry in 
an exact IPv6 (37 bytes) cache consumes almost 3 times as 
much memory as an IPv4 entry  (13 bytes) [18].) 

It is also important to note that, with our scheme, it is 
possible to store mixed IPv4/IPv6 traffic without making any 
major changes to our design. 

To summarize: 
• The optimal value of L , the number of levels, is invariant 

with respect to the size of the Bloom filter, M .
• The number of elements, k , and the misclassification 

probability, p , are roughly logarithmically related. 
• k is linearly related to M .
• An optimally full Bloom filter has ½ of its bits set. 

IV. MULTIPLE PREDICATES  
Our first extension to the Bloom filter is to extend its 

storage capability to support multiple binary predicates (as 
opposed to the single binary predicate yes/no data storage of a 
traditional Bloom filter). This extension is needed for more 
sophisticated applications, such as routers, which need to 
record forwarding interfaces. 

We propose a modification to our existing algorithm that 
allows us to store multiple binary predicates, while preserving 
the desired original operating characteristics of the Bloom 
filter cache. 

Consider a router with I interfaces. The cache would be 
required to store a routing interface number. To support this, a 
data structure that can record I binary predicates is required. 
To store this information, we will construct a cache composed 
of I Bloom filters. 

Suppose we are caching a flow, e , that should be routed to 
the thi interface. We would simply insert e into the thi
Bloom filter in our cache. This encoding scheme is similar to 
“1-hot” encoding. 

To query the cache for the forwarding interface number of 
flow e , we will simply need to query all I Bloom filters. If 
e is a member of the thi Bloom filter, this implies that flow e
should be forwarded through the thi interface. 

If e is not a member of any Bloom filter, e has not been 
cached. In the unlikely event that more than one Bloom filter 
claims e as a member, we have a confounding result. One 
solution to this problem is to treat the cache lookup as a miss 
by reclassifying e . This approach preserves correctness while 
adding only minimal operating overhead. 

The probability of misclassification, p , with this 
algorithm is 

( )[ ]( )ILkNp ′′′−−−−= 11111
Solving for k ′ , the maximum number of flows this 

approach can store, we find 
( )[ ]( )
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Figure 4: The relationship between the amount of memory, 
M , and the maximum number of elements, k (Bloom 
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Using the same technique discussed earlier in Section 4.2, 
we find that k ′ is maximized when 

( )( )
)2ln(

11ln /1 IpL −−−=′
The proposed extension to the Bloom filter cache requires 

increasing the number of memory accesses by a factor of I .
Additional memory accesses can incur a serious performance 
penalty. Taking advantage of the memory bus width can easily 
mitigate this disadvantage by the following technique: 

Consider a Bloom filter in which each bucket can store a 
pattern of I bits, where bit i represents interface i . When 
adding a packet to the bloom filter, we would only update bit 
i of each bucket. 

When querying the modified Bloom filter for a flow, e ,
we will take the results from each level of the bloom filter, 
and AND the results. An example is depicted in Figure 5. 

Thus, a router, with I Bloom filters, each Bloom filter 
having L hash levels, need only make L memory accesses to 
insert or query the cache. 

A. Non-Uniform Distributions 
The equations presented earlier in Section 5 assume that 

elements are evenly distributed over the multiple binary 
predicates. If the elements are not evenly distributed, our 

modified Bloom filter can become polluted in a short amount 
of time. 

For example, consider a router with 16 interfaces (binary 
predicates), using 1KB of memory and a misclassification 
probability, p , of 1e-9. If flows are distributed evenly over 
the interfaces, this configuration can support 167 elements. 
Conversely, if 90% of flows set the first predicate, it would 
require only 13 elements to “fill” this Bloom filter.  

To compensate for this deficiency, consider a new hashing 
function, ]10[: −→′ IeH K , and let IeHij mod))(( ′+= .
Instead of setting bit i in a Bloom filter, we will set bit j .
(See example in Figure 7.) 

This approach ensures that set bits are uniformly 
distributed throughout the cache, even when the elements are 
not evenly distributed. 
B. Multi-Predicate Comparison 

It is important to examine how the multiple binary-
predicates Bloom cache compares to the single-predicate case 
to understand how our extension affects the behaviour of our 
Bloom filter cache. 

As discussed previously, the single-bit Bloom filter cache 
can store a maximum of )1ln( 1 LpLM −−=κ . For an 
optimized choice of 2ln/ln pL −= , κ becomes 

)1ln()ln(
)2ln( ln/2ln

max
ppp

M −−=κ
The maximum number of flows the modified multi-bit 

Bloom filter can store is 
( )[ ]

( )ML
p

k
LI
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 −−−
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′

1ln
111ln 1/1

Applying the approximation NeN 111 −≈− we find 
( )[ ]( )LIpL

M ′−−−′−=′ 1/1111lnκ
When L′ is optimized, κ ′ becomes 

( )( ) ( )[ ]( )vI
I pp

M /1
/1max 111ln11ln

)2ln( −−−−−=′κ
where 

( )( )Ipv /111ln
)2ln(

−−
−=

Immediately, we can see that the two approaches are still 
linearly related in M . (Note that I and p are constants.) 

 

( )eH1 ( )eH2

Figure 5: An example: A modified Bloom filter with 5 
buckets and 2 hash levels, supporting a router with 8 
interfaces. Suppose we wish to cache a flow e that gets 
routed to interface number 2. 
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Figure 7: As before, suppose flow e is to be forwarded 
to interface 2. Now, let us suppose that 3)( =′ eH . So, 
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This is an important property, because it means that our 
proposed algorithm preserves the behaviour of the single 
binary predicate cache. 

Figure 6 compares the difference in the maximum number 
of flows that can be stored by a multi-bit Bloom filter cache.  

To better determine the relative performance of the 
multiple binary predicate and the single-binary-predicate 
cache approaches, we take the difference in the maximum 
number of flows that each design will accommodate.  

The difference of the two approaches is, 
( ) ( )( ) ( )



 −−−=′− ppM I ln

1
11ln
12ln /1

2
maxmax κκ

For p << 1, ( ) Ipp I −≅− 11 /1 , giving 

 If I is not very big, as is the case when considering the 
number of interfaces of a router (for reference, a Juniper T640 
routing node has 160 interfaces) then pln− >> Iln , we can 
approximate by 

2

22
maxmax )(ln

ln)2(ln
0ln

ln
ln

)2(ln
p

IM
p

I
p

M =



−≅′−κκ

This is an overestimate of the difference. So, we can say 
that, at worst, this approach scales logarithmically with I (for 
M and p constant). 

It is surprising how effective this approach is (Figure 6). 
The algorithm does not pollute the Bloom Filter (setting more 
bits) than the single binary-predicate approach. However, it is 
slightly more susceptible to pollution (each membership query 
examines IL × bits, as opposed to the L bits of the single 
binary predicate Bloom filter). 

 ∏
=

=
L

i
iicationmisclassifP

1
ω

It should be noted that the multi-predicate solution is a 
superset of the single-predicate solution – setting I to 1 yields 
the equations presented in Section 4.1. 

V. BLOOM FILTER AGING 
Our second extension to the Bloom filter is adding the 

ability to evict stale entries from the cache. Bloom filters were 
originally designed to store set membership information of 
unchanging, or expanding sets. We must adapt this algorithm 
to allow graceful eviction of elements to use this data structure 
effectively in a dynamic environment such as the Internet. 

The first step towards developing an algorithm to age a 
Bloom filter is to decide how much information has already 
been stored in the cache. A simple method of deciding when 
the cache is full is to choose a maximum tolerable 
misclassification probability, p . Whenever the instantaneous 
misclassification probability exceeds this constant, 

)( pp ousinstantane > , we consider the Bloom filter to be “full.” 
We can calculate ousinstantanep by using different means. Let 

Lωωω ,,, 21 K be the fractions of buckets in each level of the 
Bloom filter that are set. The probability of misclassification is 
simply the product of iω ’s. 

This method will accurately estimate the misclassification 
probability. The drawback to this approach is that it will 
require counting the exact number of bits we set, complicating 
later parallel access implementations of this algorithm, as well 
as adding several per-packet floating-point operations. 

We can devise a simpler estimate of icationmisclassifP that does 
not involve precise bit counting nor global synchronization, by 
applying knowledge of the properties of the Bloom filter 
discussed earlier. We need simply to count the number of 
flows 'k that we insert into our Bloom filter. So our estimate 
of the misclassification probability becomes 

[ ]LK
icationmisclassif NP ′−−= )/11(1

Reversing this equation, and solving for maxk we get 
( ) ( ) NPk L

maxmax /11log/1log 1 −−=
This estimate also provides the benefit of simplicity of 

calculation – floating-point arithmetic is no longer required 
during runtime, only an integer comparison )( maxkk >′ .
Additionally, it becomes easier to gauge the behaviour of the 
cache - 'k increases proportionally with the number of new 
flows we observe. 

Now, let us turn to the problem of applying this 
information to age the Bloom filter cache. 
A. Cold Cache 

This naïve approach to the problem of Bloom filter aging 
involves simply emptying the cache whenever the Bloom 
filter becomes “full.” 

The main advantage to this solution is that it makes full 
use of all of the memory devoted to the cache, as well as 
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offering a simple implementation while maintaining a fixed 
worst-case misclassification probability. 

The disadvantages, however, are quite drastic when 
considering the context of a high-performance cache: 

• While the cache is being emptied, it cannot be used. 
• Immediately after the cache is emptied, all previously 

cached flows must be re-classified, causing a load spike 
in the classification engine. 

• Zeroing out the cache may cause a high amount of 
memory access. 

This approach mainly serves as a reference point to 
benchmark further algorithm refinement. 

B. Double-Buffering 
If we partition the memory devoted to the cache into two 

Bloom filters, an active cache and a warm-up cache, we can 
more gracefully age our cache. This approach is similar to the 
one applied in Stochastic Fair Blue [13]. The basic algorithm 
is as follows: 

when a new packet arrives 
if the flow id is in the active cache 

if the active cache is more than ½ full 
insert the flow id into the warm-up cache 

allow packet to proceed  
otherwise 

perform a full classification 
if the classifier allows the packet 

insert the flow id into the active cache 
if the active cache is more than ½ full 

insert the flow id into the warm-up cache 
allow packet to proceed  

if the active cache is full 
switch the active cache and warm-up cache 

zero out the old active cache 
The goal of this approach is to avoid the high number of 

cache misses immediately following cache cleaning. By 
switching to a background cache, we can start from a 
“warmed-up” state. This approach can be thought of as an 
extremely rough approximation of LRU. 

However, this approach also has its drawbacks: 
• Double the memory requirement to store the same 

number of concurrent flows, as compared to the cold-
cache case. 

• Zeroing out the expired cache still causes a load spike in 
the use of the memory bus (although it is a smaller spike). 
This can be partially mitigated by slowly zeroing out 
memory. 

• In the simplest implementation, this algorithm can 
potentially double the number of memory accesses 
required to store a new flow. This performance loss can 
be recovered by memory aligning the two bloom filters, 
so that fetching a word of memory will return the bit 
states of both Bloom filters. 

Now, let us turn to the problem of applying this 
information to age the Bloom filter cache. 

C. Evaluation 
For evaluation purposes, we used two datasets, each of one 

hour in length. The first of the datasets was collected by Bell 
Labs research, Murray Hill, NJ, at the end of May 2002. This 
dataset was made available through a joint project between 
NLANR PMA and Internet Traffic Research Group [27]. The 
trace was of a 9 Mb/s Internet link, serving a staff of 400 
people. 

The second trace was a non-anonymized trace collected at 
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Figure 9: Cache hit rates as a function of memory, M



our local university OC-3c link. Our link connects with 
Internet2 in partnership with the Portland Research and 
Education Network (PREN). This trace was collected on the 
afternoon of July 26th, 2002. 

Table 1 presents a summary of the statistics of these two 
datasets. A graph of the number of concurrent flows is shown 
in Figure 8. 

For the purposes of our analysis, a bi-directional flow is 
considered as 2 independent flows. A flow begins when the 
first packet bearing a unique 5-tuple (source IP address, 
destination IP address, protocol, source port, destination port) 
arrives at our node. A flow ends when the last packet is 
observed, or after a 60 second timeout. The timeout is chosen 
in accordance with other measurement studies [15], and 
observations in the field [21][23]. 

As a reference, we introduce the idea of a perfect cache – a 

fully associative cache, with an infinite amount of memory. 
This cache only takes compulsory cache misses (the 
theoretical minimum). The fundamental performance statistics 
are reported in Table 2. 

For a comparison with exact caching schemes, we simulate 
a fully associative cache using an LRU replacement policy. 
The performance of this scheme is presented in Figure 9. LRU 
was chosen because of its near-optimal caching performance 
in networking contexts [21][34].  

This simulation is intended to represent best-case exact 
caching performance, even though it is infeasible to 
implement a fully associative cache on this scale. 

For our simulation, we use the SHA1 hash function [14]. It 
should be noted that the cryptographic strength of the SHA1 
hash does not increase the effectiveness of our 
implementation. It is important to recognize that other, faster 
hashing algorithms exist. Using a hardware-based hashing 
implementation is also possible. In the IXP1200 [20], the 
hardware hash unit can complete a hashing operation every 
nine clock cycles. 

For the purposes of this study, we use a misclassification 
probability of one in a billion. Typically, TCP checksums will 
fail for approximately 1 in 1100 to 1 in 32000 packets, even 
when link-level CRCs should only admit error rates of 1 in 4 
billion errors. On average, between 1 in 16 million to 1 in 10 
billion TCP packets will contain an undetectable error [31]. 
We contend that an imprecision of this magnitude will not 
meaningfully degrade network reliability. 

To support an exact IPv4 cache, a 4-way set associative 
IPv4 cache requires a 52-byte memory read on each cache 
lookup. A 4-way associative IPv6 cache would require a 148-

 

Bell Trace OGI Trace 
Trace Length (seconds)  3600           3600 
Number of Packets 974613 15607297 
UDP Packets 671471 10572965 
TCP Packets 303142   5034332 
Number of Flows  32507     160087 
Number of TCP Flows  30337       82673 
Number of UDP Flows  2170       77414 
Avg. Flow Length (seconds)  3.2654             10.2072 
Avg. TCP Flow Length 
(seconds)  13.8395             11.2555 
Avg. UDP Flow Length 
(seconds)  155.0410               9.0877 
Longest Flow (seconds)  3599.95         3600 
Avg. Packets/Flow  29.9816             97.4926 
Avg. Packets/TCP Flow  9.9925             60.8945 
Avg. Packets/UDP Flow  309.434           136.577 
Max # of Concurrent Flows  268           567 

Table 1: Sample Trace Statistics 
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Figure 10: Comparing cold cache and double-buffered bloom caches using 4 KB of memory (Bell dataset) 
(“Aging intervals” represents transition points in time only, and does not represent any “vertical magnitude”) 

Table 2: The results of a perfect cache Sample trace statistics 

 Bell Trace OGI Trace 
Hit Rate  0.9714     0.9877 
Maximum misses (over 100ms intervals)  6 189 
Variance of misses (over 100 ms 
intervals)  1.35403   17.4375 
Average misses (over 100 ms intervals)  0.7749      5.8434 



byte memory access. To support an approximate cache with an 
error rate of 1 in a billion would require 30 1-bit memory 
fetches. 

D. Cold Cache Performance 
With the Bell dataset, the cold cache performs reasonably, 

using 4 KB of cache memory, and a misclassification 
probability of 1e-9. The optimal dimensions for this Bloom 
filter this size should have 30 hash functions, storing a 
maximum of 611 flows. 

Throughout the 1-hour trace, there were no 
misclassifications and an overall cache hit-rate of 95.15%. 
Aggregated over 100ms intervals, there were a maximum of 8 
cache misses/100ms, with an average of 1.32 and a variance of 
10.33. 

Figure 10 illustrates the cache misses during a portion of 
the trace.  We can see that emptying the cache corresponds to 
a spike in the amount of cache misses that is not present when 
using a perfect cache. This spike is proportional to the number 

of concurrent flows. This type of behaviour will apply undue 
pressure to the classification engine, resulting in overall 
performance degradation. 

E. Double-Buffering Performance 
Using a double-buffered approach can smooth the spikes 

in cache misses associated with suddenly emptying the cache. 
 Double-buffering effectively halves the amount of 

immediately addressable memory, in exchange for a smoother 
aging function. As a result, this bloom filter was only able to 
store 305 flows for a 4096 byte cache, in comparison with the 
611 flows of the cold-cache implementation.  

This implementation had a slightly lower hit rate of 
95.04% with the Bell dataset. However, we succeeded in 
reducing the variance to 5.43 while maintaining an average 
cache miss rate of 1.34/100ms. Viewing Figure 10, we can see 
that the correspondence between cache aging states and miss 
rates does not correspond to performance spikes as prevalently 
as in the cold cache implementation.  
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Figure 11: Average cache misses as a function of memory, M (aggregate over 100ms timescales) 
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This implies that the double-buffered approach is an 
effective approach to smoothing out the performance spikes 
present in the cold cache algorithm. To better quantify the 
“smoothness” of the cache miss rate, we graph the variance, 
and average miss rates (Figure 11 and Figure 12). 

From Figure 9 and Figure 11, we observe that for a 
memory-starved system, the cold-cache approach is more 
effective with respect to cache hit-rates. It is surprising how 
effective this naïve caching strategy is, with respect to overall 
cache performance. Moreover, we note that it performs better 
than both an IPv6, and IPv4 exact cache, with both datasets 
for a memory poor cache, and keeps pace as memory 
improves. As the amount of memory increases, we can see 
that the double-buffered approach is slightly more effective in 
reducing the number of cache misses. 

Looking to Figure 12, we observe that the variance in miss 
rates decreases much faster in the double-buffered case than in 
the cold-cache approach. It is interesting to note that in the 
OGI trace, the variance actually increases, before it decreases. 
Interpreting Figure 11 and Figure 12, we can see that for a 
very memory-starved system, the variance is low because the 
cache miss rate is uniformly terrible. 

Comparing the double-buffered approximate cache 
implementation to exact caching gives comparable 
performance when considering an IPv4 exact cache, even 
though the approximate approach can cache many more flows. 
This is due to the imprecision of the aging algorithm – an 
LRU replacement policy can evict individual flows for 
replacement, whereas a double-buffered approach must evict 
½ of cached flows at a time. However, when considering IPv6 
data structures, this disadvantage is overshadowed by the pure 
amount of storage capacity a Bloom filter can draw upon. 

It is important to note that in all of these graphs, the 
behaviour of each of the systems approaches optimum as 
memory increases. This implies that our algorithm is correct 
and does not suffer fundamental design issues. 

VI. HARDWARE OVERHEAD 
A preliminary implementation on Intel’s IXP1200 

Network Processor [20] was constructed, to estimate the 
amount of processing overhead a Bloom filter would add. 

The hardware tested was an IXP1200 board, with a 200 
MHz StrongARM, 6 packet-processing microengines and 16 
ethernet ports. 

A simple micro-engine level layer-3 forwarder was 
implemented as a baseline measurement. A Bloom filter cache 
implementation was then grafted onto the layer-3 forwarder 
code base. A null-classifier was used, so that we could isolate 
the overhead associated with the Bloom filter lookup function. 
No cache aging strategy was used. The cache was placed into 
SRAM, because scratchpad memory does not have a pipelined 
memory access queue, and the SDRAM interface does not 
support atomic bit-set operations. 

A. IXP Overhead 
The performance of our implementation was evaluated on 

a simulated IXP1200 system, with 16 virtual ports. The 

implementation’s input buffers were kept constantly filled, 
and we monitored the average throughput of the system. 

The Bloom filter cache implementation was constructed in 
a way to ensure that no flow identifier was successfully 
matched, and each packet required an insertion of its flow ID 
into the Bloom filter. This was done so that the worst possible 
performance of a Bloom filter cache could be ascertained. The 
code was structured in a way to disallow any shortcutting or 
early negative membership confirmation. The performance 
results of the IXP implementation are presented in Table 3. 

The IXP is far from an ideal architecture to implement a 
Bloom filter, in large part due to its lack of small, high-speed 
bit-addressable on-chip memory. Since there is no memory 
cache, data must be retained in on-chip registers during 
processing. The small number of available registers limits the 
performance of more complex tasks, which can be seen by the 
sharp drop-off in performance of a 5-level Bloom filter. 
Ideally, a Bloom filter would be implemented in hardware that 
supports parallel access on bit-addressable memory [28]. A 
simple cheap custom ASIC can be constructed to implement a 
Bloom filter, effectively.  

This implementation uses the hardware hash unit. In this 
case, one hash is as difficult to calculate as four, because we 
simply use different portions of the generated hash to 
implement multiple hash functions. 

Next generation IXP2000 hardware will feature 2560 bytes 
of on-chip memory per micro-engine, with up to 16 micro-
engines per board. The memory access time will be 3 cycles, a 
vast improvement over the 16-20 cycles latencies of IXP1200 
SRAM. A 2560 byte Bloom filter can store 467 elements. The 
next-generation micro-engines have a concept of 
“neighbouring” so that micro-engines can easily and quickly 
pass packet-processing execution to the next micro-engine “in 
line”.  This could allow for a high-speed implementation of a 
Bloom filter where each micro-engine performs one or two 
memory look-ups so that the costs of a Bloom filter could be 
distributed across all the micro-engines. 

VII. DEALING WITH MISCLASSIFICATION  
The immediate question that arises when we introduce the 

possibility of a misclassification is to account for the result of 
the misclassifications. Let us first consider the case for a 
firewall. 

 

Table 3: Performance of Bloom Filter cache in worst 
case possible configuration 

Number of 
Hash Levels 

All-Miss Cache 
Throughput 

0 990 Mb/s 
1 868 Mb/s 
2 729 Mb/s 
3 679 Mb/s 
4 652 Mb/s 
5 498 Mb/s 



If qFFF ,,, 21 K unique flows )( Lq ≤ were to set bits in 
the Bloom filter that matched the signature to a new flow, F ′ ,
we will accept F ′ as a previously validated flow. 

In the case that F ′ is a valid flow, no harm is done, even 
though F ′ would never have been analyzed by the packet 
classifier. If F ′ is a flow that would have been rejected by the 
classification engine then there may be more serious 
repercussions - the cache would have instructed the firewall to 
admit a bad flow into the network. 

This case can be rectified for TCP based flows by forcing 
all TCP SYN packets through the classification engine. 

Another solution would be to periodically reclassify 
packets that have previously been marked as cached. If a 
misclassification is detected, all bits corresponding to the 
signature of the flow id could be zeroed. This approach has the 
drawback of initially admitting bad packets into the network, 
as well as causing flows which share similar flow signatures to 
be reclassified. 

If an attacker wanted to craft an attack on the firewall to 
allow a malicious flow, F ′′ , into the network, they could 
theoretically construct flows, LFFF ,,, 21 K , that would match 
the flow signature of F ′′ . If the firewall’s internal hash 
functions were well known, this could effectively open a hole 
in the firewall. 

To prevent this possibility, constants internal hash 
functions should not only be openly advertised, just as it is 
inadvisable to publish private keys. An additional measure 
would be to randomly choose the hash functions that the 
firewall uses. New hash functions can easily be changed as the 
Bloom filter ages. 

In the case of a router, a misclassified flow could mean 
that a flow is potentially misrouted, resulting in an artificially 
terminated connection. In a practical sense, the problem can 
be corrected by an application or user controlled retry. In the 
case of UDP and TCP, a new ephemeral port would be 
chosen, and network connectivity can continue. 

If we randomly force cached flows to be re-classified, we 
can reduce this “fatal” error to a transient one. TCP retransmit, 
and application-level UDP error handlers may make this 
failure transparent to the user. 

The severity of these errors must be taken in into the 
context of the current Internet and TCP. To prevent IP 
spoofing attacks, TCP uses a 16-bit randomized initial 
sequence number. An attacker can already guess an initial 
sequence number of a TCP stream with a success rate of 1 in 
216.

UDP packets are not even required to maintain a data 
checksum. In the Linux implementation of the network stack, 
even corrupt UDP packets are passed to the application. 

VIII. FUTURE WORK  
The aging functions discussed in this paper are inefficient, 

in the sense that it under-utilizes the Bloom filter’s memory 
address. In the case of the cold cache algorithm, the Bloom 
filter is emptied. The Bloom filter is in a constant state of 
being under-utilized. Using the double-buffered algorithm 

introduces redundancy through the duplication of data. As in 
the cold cache algorithm, the Bloom filters are also under-
utilized. It is possible that an algorithm based on randomly 
zeroing bits may prove to be an effective aging function – in 
this manner, we may be able to take advantage of the 
knowledge that a Bloom filter at optimum performance has ½ 
of its bits set. 

Many of the implementation details of our architecture 
share common characteristics with IP traceback. Designing a 
system to support traceback in addition to caching could prove 
successful.  

Using an approximate caching system presents us with a 
unique opportunity to dynamically balance the trade-off 
between accuracy and performance. 

In more traditional caches, during times of high load, 
cache performance decreases due to increasing cache misses. 
Intuitively, this behaviour may be sub-optimal. Ideally, 
performance should increase with workload. Our usage of a 
Bloom filter presents us with the opportunity to increase the 
effective size of the cache without consuming more memory 
by simply increasing the misclassification probability. This 
allows us the opportunity to increase cache performance in 
response to high amounts of traffic.  Although more packets 
are misclassified, even more packets would be correctly 
forwarded.  This may be better than the alternative – dropping 
more packets in response to increasing work. 

The goal of the feedback system should be to balance the 
misclassification probability, p , with an acceptable cache 
performance/hit rate, h . To quantify this balance, we 
construct a “desirability” function, ]1,0[),(: →hpf , where 

1)0,1( =f and 1)1,0( =f . The shape of function f must be 
chosen by the network administrator, to reflect the operator’s 
preference in balancing hit rate and misclassification rate. The 
function f should be a monotonically increasing function for a 
constant p , and monotonically decreasing for a constant h .

Thus, we can view the choice of p as the result of a 
feedback system. A feedback controller would monitor the 
performance of the cache, and tune p , with the explicit goal 
of maximizing f .

IX. CONCLUSION 
Typical packet classification caches trade-off size and 

performance.  In this paper, we have explored the benefits that 
introducing inaccuracy has on packet classification caches.  
Using a modified Bloom filter, we have shown that allowing a 
small amount of misclassification can decrease the size of 
packet classification cache by almost an order of magnitude 
over exact caches without reducing hit rates.  With the 
deployment of IPv6 and the storage required to support 
caching of its headers, such a trade-off will become 
increasingly important. 
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