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CHAPTER 1

INTRODUCTION

The success of the Internet can largely be attributed to the strength of its protocols. By providing

users and developers with robust, interoperable services, the Internet has effectively provided all of

the essential building blocks for constructing applications such as theWWW. As one looks at almost

all of the applications in widespread deployment on the Internet today, it is no coincidence that they

are all built uponTCP/IP. Over the last decade,TCP/IP has consistently met the challenge of new

applications and has been able to provide a solid foundation from which to build them.

With the rapid proliferation of theWWW, the Internet has seen an enormous growth in both the

demand for access from its users and in the demand for new services from its applications. As a

result of these new challenges, weaknesses inTCP/IP have become increasingly apparent. Rising

packet loss rates and decreasing network efficiency have caused significant problems to users. In

addition, the inability to support new services has severely hindered the widespread deployment of

bandwidth-sensitive applications. This thesis focuses on these extremely important challenges to

today’s Internet and describes how current congestion control and queue management techniques

can be modified to solve them.

1.1 Congestion Control in the Internet

At the heart ofTCP/IP’s success over the last decade is its ability to deliver service in times of

extremely high demand. The key reason behind this isTCP’s congestion control mechanisms [34].

The idea behindTCP congestion control is to control network load by having sources adjust their

rates according to the level of congestion in the network. More specifically, if aTCP source detects
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or observes packet loss based on information on the packets which it has sent, it backs off its

sending rate in order to avoid further packet loss and congestion. If aTCP source observes that all of

its packets are being delivered, it slowly increases its sending rate in order to fully utilize network

capacity. In this way,TCP has been able to effectively minimize packet loss while maximizing

network utilization over the last decade.

Recently, as demand for access has outpaced the ability for providers to upgrade network paths,

the ability ofTCPto provide best-effort service efficiently has deteriorated. In particular, an alarming

rise in packet loss rates has been observed across a number of network links [53]. This rise in packet

loss has resulted in the steady decline of network efficiency as sources and routers continually

generate and forward packets which are then dropped. In order to address the steady rise in packet

loss rates in the Internet, the Internet Engineering Task Force (IETF) is considering the deployment

of Explicit Congestion Notification (ECN) [23, 55] and active queue management [4, 26] as a means

to prevent packet loss. The idea behindECN is to give the network the ability to explicitly signal

TCP sources of congestion and to have theTCP sources reduce their transmission rates in response

to the signal. SinceTCP sources currently only reduce their transmission rates upon detecting a

packet loss, withoutECN, the amount of packet loss observed across the Internet will always remain

non-zero. WhileECN provides the network a mechanism for reducing packet loss, it must be used

in conjunction with active queue management in order to be effective. The goal of active queue

management is to detect congestion early and to convey congestion notification to sources before

queue overflow and packet loss occur. By decoupling congestion notification from packet loss and

using active queue management mechanisms, it is the hope of theIETF that packet loss rates in the

Internet can be controlled.

1.2 Quality of Service in the Internet

The service realized byTCP over today’s Internet is commonly known as “best-effort”. Using

simple FIFO queueing in the network combined withTCP congestion control at the end points,

sources maintain approximate fairness between themselves when they are multiplexed over the same

bottleneck link. As the need for new services has grown, the lack of service differentiation in the

network has become problematic. As a result, a growing number of applications such as multimedia
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streaming applications continually circumventTCP and its congestion control mechanisms in favor

of UDP and their own rate control mechanisms.

In an attempt to address the growing needs of applications, theIETF has developed a number of

architectural enhancements to the current Internet infrastructure which allow the network to provide

predictable services to applications on an end-to-end basis. The result of this effort has been the

standardization of the Resource Reservation Setup Protocol (RSVP) [6, 69] and its associated suite

of service classes [59, 68]. In this approach, individual applications signal their resource require-

ments to the network on an end-to-end basis. Given this, intermediate network elements (routers,

switches, etc.) set aside the appropriate amount of resources for the application. When subsequent

packets arrive at each network element, they are then scheduled in a manner which satisfies the

requirements of the application. While this service architecture provides a solid foundation for

providing different classes of service in the Internet, it mandates fairly significant changes to the

network. In addition, support for such services can add a significant amount of overhead in packet

processing within the network. Because of this, theIETF is also considering a more evolutionary

approach to provide service differentiation in the Internet. This approach, as outlined by the Differ-

entiated Services (DIFFSERV) working group, relies on the use of the type-of-service bits (ToS) bits

in theIP header [2, 13, 54, 58] to provide coarse-grained quality of service to applications. The goal

of the DIFFSERV effort is to define a minimal set of building blocks which can be used to construct

a variety of services to emerging applications.

1.3 Structure of Thesis

This thesis presents effective techniques for supporting an explosion in the number of users

and for supporting a myriad of new applications which require more out of the network than the

best-effort service the current Internet infrastructure affords. Chapter 2 surveys related work on

controlling congestion and on providing quality of service in the Internet. Chapter 3 and Chapter 4

address the problem of maximizing network efficiency in times of extremely heavy congestion.

Chapter 3 demonstrates a significant weakness in current active queue management techniques in

that they are not sensitive to the level of congestion in the network. In order to address this short-

coming, an adaptive queue management algorithm which can effectively reduce packet loss over
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a wide range of workloads is developed, implemented and evaluated. While adaptive queue man-

agement provides some benefit, Chapter 3 also shows that high packet loss rates are, in part, an

artifact of TCP congestion control. As a result, a conservative modification toTCP’s congestion

control algorithm is proposed and evaluated. Together, these two modifications can provide anor-

der of magnitudeimprovement in packet loss rates using a significantly smaller amount of buffer

space in the network. Chapter 4 extends this work by addressing several problems with current ac-

tive queue management algorithms. In particular, this chapter demonstrates that the dependence on

queue lengths to perform congestion management is inherently flawed. To address this limitation,

BLUE, a fundamentally different active queue management algorithm is proposed, implemented,

and evaluated. This algorithm outperforms all current active queue management algorithms by a

large margin in terms of packet loss rates and buffer space requirements. In addition, this chapter

also proposes an extension to BLUE which allows the network to scalably enforce fairness between

a large number connections. This extension uses an extremely small amount of buffer space and

state.

Chapter 5 and Chapter 6 address the problem of supporting quality of service across the Inter-

net. In particular, these chapters focus on building scalable, deployable mechanisms for support-

ing bandwidth guarantees across the Internet based on the DIFFSERV approach. Chapter 5 first

demonstrates how DIFFSERV-style mechanisms can be ineffective in providing predictable service

to applications. One of the major problems is that the end-to-end rate control mechanism ofTCP is

disjunct from the rate-based marking being done in the network. In order to address this problem,

this chapter proposes and evaluates several modifications to the congestion control mechanisms at

the end host in order to fully take advantage of DIFFSERV-marking in the network and to deliver

predictable service to applications. Chapter 6 extends this work by developing an architecture for

providing soft bandwidth guarantees in a scalable, easily deployable, manner. In particular, the the

bandwidth sharing and marking behavior of connections using DIFFSERV-style marking is analyzed

and some of the weaknesses of current approaches are shown. This chapter then describes novel

mechanisms for integrating packet marking into end hosts in order to (1) obtain optimal marking

rates between sources, (2) detect heterogeneity and lack of service differentiation in the network,

and (3) allow for incremental deployment. Finally, Chapter 7 concludes with a summary of research

contributions.
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CHAPTER 2

BACKGROUND

This chapter reviews the important features of today’s congestion control and queue manage-

ment algorithms as well as the current state of providing quality of service in the Internet.

2.1 TCP and Active Queue Management

It is important to avoid high packet loss rates in the Internet. When a packet is dropped before

it reaches its destination, all of the resources it has consumed in transit are wasted. In extreme

cases, this situation can lead to congestion collapse [34]. Loss rates are especially high during times

of heavy congestion, when a large number of connections compete for scarce network bandwidth.

With the explosion of theWWW, recent measurements have shown that the growing demand for

network bandwidth has driven loss rates up across a number of congested links in the Internet [53].

When a network is congested, a large number of connections compete for a share of scarce link

bandwidth. Over the last decade,TCP congestion control has been used to effectively regulate the

rates of individual connections sharing network links.TCP congestion control is window-based.

The sender keeps a congestion window (CWND) whose size limits the number of unacknowledged

packets the sender can have outstanding in the network. Upon receiving acknowledgments for

successfully transmitted data, the sender increases its transmission rate by incrementing the size of

its congestion window. At some point in time, the rate at whichTCP sends its packets eventually

exceeds the network’s capacity to deliver them. When this happens, queues build up in the network

routers and overflow, causing packets to be dropped.TCP assumes that all packet loss is due to

congestion and reduces its congestion window upon detecting a loss.TCP’s congestion control
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algorithm is fairly straightforward. When a connection starts up, it attempts to ramp up its sending

rate quickly by exponentially increasing its congestion window until it reaches an implementation-

specific value (SSTHRESH). This stage is calledslow-startand allows the source to double its

congestion window, and thus its sending rate, every round-trip time. In order to prevent excessive

losses due to an exponentially-increasing sending rate,TCP senders typically employ what is known

as the congestion-avoidancealgorithm [34, 61], a modification toTCPfirst deployed in Reno variants

of TCP. In this algorithm,TCP uses theSSTHRESHvalue to approximate the window size which the

network can support. When the window size exceeds this threshold,TCP enters the congestion

avoidance phase. In this phase, the window is increased at a much slower rate of one segment per

round-trip time. When the offered load increases above network capacity, packets are eventually

dropped. One way in whichTCP detects a packet loss is through the receipt of a number of duplicate

cumulative acknowledgments from the receiver [35]. Upon receiving a given number of duplicate

acknowledgments,TCP infers that a packet loss has occurred and immediately reduces its sending

rate in half by halving its congestion window and setsSSTHRESHto the new value of the congestion

window. These mechanisms are calledfast retransmitandfast recovery.

When congestion is severe enough such that packet loss cannot be inferred in such a manner,

TCP relies on a separate, retransmission timeout mechanism to trigger subsequent retransmissions

of lost packets. When a retransmission timeout occurs,TCP reduces its window size to one segment

and retransmits the lost segment. To prevent continual retransmissions in times of severe congestion

and network outages,TCP employs an exponential back-off algorithm. In particular, if the sender

continually sends the same segment, but receives no acknowledgments for it,TCP doubles its re-

transmission timeout interval. Upon receipt of an acknowledgment for subsequent new segment,

TCP resets the timeout interval and resumes its normal sending.

Figure 2.1 shows a graphical picture of howTCP slow-start and congestion avoidance work. As

the figure shows,TCP initially starts with a congestion window of 1. The window is then doubled

every round-trip time. When the congestion window reachesSSTHRESH, TCP slows its rate of

increase. Eventually, when the transmission rate of the connection overwhelms the bottleneck link,

packets are dropped. This loss is detected byTCP which then reacts by halving the congestion

window (assuming the fast-retransmit and fast-recovery mechanisms are triggered). As the figure

shows, upon recovering from congestion, theTCP sender enters the congestion avoidance phase
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Figure 2.1: Example ofTCP congestion window behavior

in which the window is increased linearly at a rate of one segment per round trip time. In steady

state,TCP then oscillates between a window ofW andW
2 whereW depends on the capacity of the

network and the number of connections currently active over the bottleneck link.

Given the importance ofTCP and its congestion control mechanisms to the health of the Inter-

net, there have been a number of proposed modifications to its algorithms. One modification which

has been proposed is selective acknowledgments (SACK) [45]. SACK augmentsTCP’s cumula-

tive acknowledgment mechanism with additional information that allows the receiver to inform the

sender which segments it is missing. By specifying this information, theTCP sender can make more

intelligent decisions in determining when packets have been lost and in identifying which segments

should be retransmitted. This helpsTCP detect congestive loss more quickly and eliminates un-

necessary retransmissions byTCP senders. Another set of proposedTCP modifications focuses on

congestion recovery.TCP is ACK-clocked, often sending only after it has received acknowledg-

ments for previously transmitted packets. When there are insufficient packets or acknowledgments

in flight to triggerTCP sends, a retransmission timeout must occur before theTCP source can resume

sending. Because the Reno variant ofTCP freezes its window while recovering from congestion,

it often induces a subsequent retransmission timeout since the source does not send packets upon

receiving acknowledgments in the recovery phase. To address this problem, a simple observation

is made. When aTCP sender receives any type of acknowledgment, it is a signal that a packet has
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left the network and should thus allow theTCP sender to inject an additional packet without causing

further congestion. This modification allowsTCP to maintain its ACK-clocking and prevents unnec-

essary retransmission timeouts. Both the FACK [44] and NewReno [24, 32] modifications use this

observation to improveTCP performance. Finally, more radical changes toTCP’s congestion control

algorithms have been proposed. In current incarnations ofTCP, the congestion window follows a

sawtooth-likepattern where the congestion window is continually increased until packet loss occurs.

While this allowsTCP to probe for additional bandwidth, such behavior eventually induces packet

loss. The idea behind the Tri-S [66, 67] and Vegas [7] modifications is to change the congestion

avoidance phase so that it only performs its linear increase when the network is not congested. In

both algorithms, if the round-trip times indicate an increase in delay due to queues being built up in

the network, theTCP source either decreases or fixes the size of the congestion window rather than

increasing it. While these mechanisms have the potential for improving loss rates in the Internet, it

is unclear how well each scheme performs when congestion is persistent. In addition, by modifying

the linear-increase/multiplicative-decrease algorithm ofTCP, these modifications cannot ensure that

max-min fair sharing occurs between connections which are multiplexed across the link [8, 38].

With the exception of Tri-S and Vegas, one of the problems with theTCP congestion control

algorithm over current networks is that the sending sources reduce their transmission rates only

8



minth
max th

D
ro

pp
in

g/
M

ar
ki

ng
 P

ro
ba

bi
lit

y

0

Average Queue Length

1

max p

Figure 2.3: The marking/dropping behavior of RED

after detecting packet loss due to queue overflow. This is a problem since a considerable amount

of time may pass between when the packet is dropped at the router and when the source actually

detects the loss. In the meantime, a large number of packets may be dropped as sources continue

to transmit at a rate that the network cannot support. Because of this, theIETF is advocating the

use of explicit congestion notification (ECN) [23, 55] and active queue management as a means to

prevent packet loss. The idea behindECN is to decouple packet loss from congestion notification.

In this proposal,ECN is implemented using two bits of the type-of-service/DS field of theIP header

and two bits of the currently reserved flags field of theTCP header as shown in Figure 2.2. When a

network router experiences congestion, it can explicitly signal the sources instead of dropping their

packets. In order to do so, the router first examines theECN-capable Transport bit (ECT) to see

if the flow is ECN-capable. If it is notECN-capable, the packet is simply dropped. If the flow is

ECN-capable, the congestion experienced bit (CE) is set and used as a signal to theTCP receiver that

congestion has occurred. TheTCP receiver, upon receiving this signal, modifies theTCP header of

the return acknowledgment using a currently unused bit in theTCP flags field. As Figure 2.2 shows,

a bit labeled “ECN-echo” is used by theTCP receiver to indicate the presence of congestion to the

sender. Upon receipt of aTCP segment with theECN-echo bit set, theTCP sender invokes congestion

control mechanisms as if it had detected a packet loss. In addition, it sets the “Congestion Window

Reduced” (CWR) bit of its next packet to the receiver in order to signal the receiver that it has, in

fact, reduced its sending rate.
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In conjunction withECN, the IETF is also advocating the use of active queue management.

The idea behind active queue management is to detect incipient congestionearly and to convey

congestion notification to the end hosts, in order to allow them to reduce their transmission rates

before queue overflow and packet loss occur. One form of active queue management being proposed

by theIETF for deployment in the network is RED (Random Early Detection) [4, 26]. RED maintains

an exponentially weighted moving average (EWMA) of the queue length which it uses to detect

congestion. RED detects increases in the average queue length and uses it to determine whether

or not to drop orECN-mark a packet. More specifically, Figure 2.3 plots the marking/dropping

probability of RED as a function of the average queue length. As the figure shows, when the average

queue length exceeds a minimum threshold (minth), packets are randomly dropped or marked with

a given probability. A connection receiving congestion notification in the form of anECN mark,

cuts its congestion window in half as it would if it had detected a packet loss. The probability

that a packet arriving at the RED queue is either dropped or marked depends on, among other

things, the average queue length and an initial probability parameter (maxp). As Figure 2.3 shows,

the calculated marking/dropping probability is a linear function of the average queue length. The

probability is 0 when the average queue length is less than or equal tominth and linearly increases

to maxp when the average queue length approaches a maximum threshold (maxth). When the

average queue length exceedsmaxth, all packets are dropped or marked.

With the deployment ofECN and RED, it is the hope of theIETF that packet loss rates in the

Internet can be controlled. Unfortunately, as Chapter 3 and Chapter 4 show, there are significant

weaknesses in bothTCP congestion control and in RED queue management which prevent packet

loss from being eliminated. Given these weaknesses, a number of congestion control and queue

management algorithms which effectively prevent packet loss are proposed and evaluated.

2.2 Integrated and Differentiated Services

As the Internet evolves, the number of diverse applications being deployed has increased signif-

icantly. Unfortunately, many of these applications require more stringent performance guarantees in

terms of bandwidth and end-to-end delay than the current Internet infrastructure and its best-effort

service provide [5, 12]. Because the best-effort service model in place today cannot support every
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application, a great deal of effort has been taken to construct additional services in order to meet the

demands of new applications.

In an attempt to enrich and augment the services provided by the network, the Internet Engineer-

ing Task Force (IETF) has developed a number of architectural extensions that permit the allocation

of different levels of service to different users. One of the outcomes of this effort is an architec-

ture that provides service discrimination by explicit allocation and scheduling of resources in the

network. This model, based on the Resource Reservation Setup Protocol (RSVP) [6, 69] and its as-

sociated suite of service classes [59, 68], is the Internet incarnation of the traditional “circuit-based”

quality of service architecture. While this service architecture provides a solid foundation for pro-

viding different classes of service in the Internet, it mandates significant changes to the Internet

infrastructure. Because of this, a more evolutionary approach to provide service differentiation in

the Internet using the type-of-service (ToS) bits in theIP header [2, 13, 54, 58] has recently gained

a lot of momentum. Through the Differentiated Services (DIFFSERV) working group, these bits,

as shown in Figure 2.2, have been renamed as the “DS field” and the functions associated with

them have been redefined. The crux of the DIFFSERV approach is to standardize a simple set of

mechanisms for handling packets with different priorities [3, 11, 19, 50], as encoded in the DS field

of the IP header. Figure 2.4 shows the basic architecture of the DIFFSERV approach. As the figure
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shows, traffic conditioners such as shapers, DS-markers, and droppers are placed at the edges of the

network. Given this functionality at the edge, the interior routers then use the priority markings of

packets in order to deliver differentiated services to various packets. This provides a very basic QoS

architecture in which most of the complexity is pushed to the edges of the network where it is the

most scalable.

Because of the limited amount of bits available for use in the DS field, the DIFFSERV working

group has defined a small set of building blocks which are used by routers to deliver a number of

services. These building blocks, called per-hop behaviors (PHBs), are encoded in the Differentiated

Services Codepoint (DSCP) part of the DS field and specify the forwarding behavior each packet

receives by individual routers in the Internet. When used on an end-to-end basis, it is envisioned that

these building blocks can be used to construct a variety of services which are able to support a range

of emerging applications. Among the initial PHBs being standardized are the Expedited Forward-

ing (EF) [37] and the Assured Forwarding (AF) [31] PHBs. The EF PHB specifies a forwarding

behavior in which packets see a very small amount of loss and a very low queueing delay. In order

to ensure every packet marked with EF receives this service, EF requires every router to allocate

enough forwarding resources so that the rate of incoming EF packets is always less than or equal to

the rate at which the router can forward them. In order to preserve this property on an end-to-end

basis, EF requires that traffic be shaped and reshaped in the network. The AF PHB group, on the

other hand, specifies a forwarding behavior in which packets see a very small amount of loss. The

AF PHB group consists of four, independently forwarded classes. Within each class, two or three

drop preference levels are used to differentiate between flows in the class. The idea behind AF is

to preferentially drop best-effort packets and packets which are outside of their contract when con-

gestion occurs. By limiting the amount of AF traffic in the network and by managing the best-effort

traffic appropriately, routers can then ensure low loss behavior to packets marked with the AF PHB.

While it is relatively clear how to build predictable services using the protocols and mechanisms

provided byRSVP and INTSERV, the ability to construct predictable services using the coarse-

grained mechanisms provided by DIFFSERV is an open issue. Since DIFFSERV specifies only the

local forwarding behavior given to packets at individual routers, one of the biggest challenges is to

be able to concatenate DIFFSERV mechanisms on an end-to-end basis to construct useful services for

applications. Chapter 5 and Chapter 6 address some of the problems in providing predictable end-
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to-end services using DIFFSERV mechanisms based on the AF PHB. Key among these problems

is the complex interaction of current congestion control and queue management algorithms with

the priority marking and handling of packets in the network. As a result of these problems, an

architecture and a number of mechanisms are described which allow applications to effectively take

advantage of DIFFSERV support.
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CHAPTER 3

TECHNIQUES FOR ELIMINATING PACKET LOSS IN

CONGESTED TCP/IP NETWORKS

3.1 Introduction

As described in Chapter 2, one of the reasons for high packet loss rates is the failure of the

network to provide early congestion notification to sources. This has led to proposals for active

queue management such as RED and variations thereof [26, 41]. While RED certainly outperforms

traditional drop-tail queues, this chapter shows that it is difficult to parameterize RED queues to

perform well under different congestion scenarios. The key problem is that congestion notification

does not directly depend on the number of connections multiplexed across the link. In order for early

detection to work, congestion notification must be given at a rate which is high enough to prevent

packet loss due to buffer overflow, while low enough to prevent underutilization of the bottleneck

link.

This chapter demonstrates the ineffectiveness of the current RED queue management algorithm

and shows how RED queues can be self-parameterized depending on traffic load in order to reduce

packet loss and maintain high link utilization. While adaptive queue management techniques can

provide some benefit, high loss rates at heavy loads are, in part, an artifact ofTCP’s congestion

control algorithm. When a large number of smallTCP connections share a common bottleneck,

the traffic generated can cause rapid fluctuations in queue lengths which result in packet loss. This

chapter also investigates several ways of modifyingTCP’s congestion control mechanism in order

to make the aggregate traffic generated by a large number ofTCP connections better-behaved. In
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particular, using a scaled linear increase or a bandwidth-based linear increase in the window size,

instead of the linear increase algorithm used byTCP, is shown to substantially reduce packet losses.

When used together, the adaptive queue management mechanisms and the proposed enhancements

to TCP’s windowing algorithm can effectively eliminate packet loss even in highly-congested net-

works.

3.2 Active Queue Management

One of the inherent weaknesses of RED and some of the other proposed active queue manage-

ment schemes is that congestion notification does not directly depend on the number of connections

multiplexed over the link. In order for early detection to work in congested networks, congestion

notification must be given to enough sources so that the offered load is reduced sufficiently to avoid

packet loss due to buffer overflow. Conversely, the RED queue must also prevent congestion notifi-

cation from being given to too many sources in order to avoid situations where the bottleneck link

becomes underutilized. For example, consider a bottleneck link of capacity10Mbswhich is equally

shared amongst several connections. AssumingTCP windowing, when 100 connections share the

link, sending congestion notification to one connection reduces the offered load to9:95Mbs. On the

other hand, when only 2 connections share the link, sending congestion notification to one of them

reduces the offered load to7:5Mbs. In general, with a bottleneck link that supportsN connections,

giving congestion notification to one connection reduces the offered load by a factor of(1� 1
2N ). As

N becomes large, the impact of individual congestion notifications decreases. Without modifying

the RED algorithm to be more aggressive, the RED queue degenerates into a simple drop-tail queue.

On the other hand, asN becomes small, the impact of individual congestion notifications increases.

In this case, without modifying the RED algorithm to be less aggressive, underutilization can occur

as too many sources back off their transmission rates in response to the observed congestion. This

section examines the impact that traffic load has on active queue management techniques such as

RED and proposes on-line mechanisms for optimizing performance.
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Figure 3.1: Network topology

3.2.1 Traffic load and early detection

To examine the impact that traffic load has on early detection mechanisms, a set of experiments

using thens simulator [46] was performed. Thens simulator has been used extensively in a number

of studies reported in the literature. Whilens does not use productionTCP code, it implements

congestion and error control algorithms used in different implementations ofTCP with remarkable

accuracy. In these experiments, both the aggressiveness of the early detection algorithm and the

total number of connections multiplexed on the bottleneck link were varied. Figure 3.1 shows the

network topology used in the experiments. Each connection originates at one of the leftmost nodes

(n0; n1; n2; n3; n4) and terminates atn8, making the link betweenn5 andn6 the bottleneck. The

performance of of RED usingECN [23] is examined first. By using RED and end hostTCP sources

enabled withECN, all packet losses from the RED queue can be attributed to buffer overflow. In

order to isolate the effects of congestion notification triggered byminth from that triggered by

maxth, themaxth parameter is set to the queue size. This, in effect, disablesmaxth and causes

packet loss to occur whenever early detection does not work. Additional experiments usingmaxth

values which are below the queue size are described in Section 3.2.2. Figure 3.2 shows the queue

length plot of the congested queue located fromn5 to n6 when there are 8 and 32 connections

simultaneously competing for bandwidth over the link. In these experiments, the RED algorithm is

made aggressive by changingmaxp, RED’s initial drop probability. As Figure 3.2(a) shows, when

only 8 connections are active, aggressive early detection sends congestion notification back to the
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Figure 3.2: Aggressive early detection (maxp = 0.250)

sending sources at a rate which is too high, causing the offered load to be significantly smaller

than the bottleneck link bandwidth at certain times. This causes periodic underutilization where the

queue is empty and the bottleneck link has no packets to send. Figure 3.2(b) shows the queue plot

when the number of connections is increased to 32. In contrast, aggressive early detection performs

as desired, sending congestion notification at a rate which can both avoid packet loss and achieve

high link utilization.

Figure 3.3 shows the same set of experiments using conservative early detection. In contrast

to Figure 3.2(a), Figure 3.3(a) shows that by using less aggressive early detection, the RED queue

can maintain high link utilization while avoiding packet loss over smaller numbers of connections.

However, when the number of connections is increased to 32, as Figure 3.3(b) shows, conservative

early detection does not deliver enough congestion notification to the sending sources. Thus, the

queue continually overflows causing the RED queue to behave more like a drop-tail queue. The

figure also shows that the bottleneck queue never drains even though it is dropping a significant

number of packets. This indicates thatTCP is not aggressive enough in backing off its sending

rate in response to congestion and that the packets which are successfully delivered through the

bottleneck queue are enough to trigger subsequent rate increases in the sendingTCP sources. Thus,

the bottleneck queue remains close to fully occupied through the duration of the experiment.

To quantitatively evaluate the impact ofmaxp, the experiments were repeated across a range

of traffic loads and the loss rates and link utilizations observed were plotted. Ineach experiment,

connections are started within the first 10 seconds of simulation. After 100 seconds, both the loss
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Figure 3.3: Conservative early detection (maxp = 0.016)

rates and the link utilization for the bottleneck link are recorded for 100 seconds. The loss rate is

calculated as the number of packets dropped by the queue divided by the total number of packets

which arrive at the queue. Link utilization is calculated as the total number of packets sent divided

by the maximum number of packets the link could send. Figure 3.4(a) shows the loss rates observed

for experiments using 4, 8, 32, and 64 connections. The figure plots the loss rates when a drop-tail

queue is used at the bottleneck link. As the drop-tail results show, loss rates at the bottleneck link

increase proportionally to the number of connections using the link. There are two main reasons

why this is the case. One reason, as described earlier, is that with a large number of connections,

it takes a larger amount of congestion notification (i.e. packet drops), to sufficiently signal the end

hosts to back off their sending rates. The other reason is due to a fundamental problem withTCP

congestion control which is described in Section 3.3. Figure 3.4(a) also shows the loss rates using

RED-ECN over a range ofmaxp values. The corresponding bottleneck link utilization foreach

experiment is shown in Figure 3.4(b). The figures show that for small numbers of connections, loss

rates remain low across all values ofmaxp, while only small values ofmaxp can keep the bottleneck

link at full utilization. Thus, to optimize performance over a small number of connections, early

detection must be made conservative. In contrast, for large numbers of connections, bottleneck link

utilizations remain high across allmaxp values while only large values ofmaxp are able to prevent

packet loss from occurring. In order to optimize performance in this case, early detection must be

made aggressive.
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Figure 3.4: Impact of early detection aggressiveness on RED-ECN

3.2.2 Avoiding deterministic congestion notification

In the previous section,maxth is set equal to the queue size so that whenever the early detection

algorithm fails, packet loss occurs. By settingmaxth sufficiently below the queue size, the RED

algorithm can avoid packet losses when early detection fails by deterministically marking every

incoming packet. Figure 3.5 shows the queue length plot using the same experiment as in Fig-

ure 3.3(b) with a larger bottleneck queue size and a fixedmaxth of 80KB. When the queue size is

120KB, the queue length plot shows that even with a fairly significant amount of additional buffer

space, packet loss is not eliminated. The plot also shows that the combined effect of usingECN

and packet drops for signaling congestion notification leads to periods of time whereTCP is able to

impact the sending rates of the sources. This is in contrast to the behavior seen in Figure 3.3(b). In

that experiment, a connection which was able to send a packet through the bottleneck link always

increased its sending rate even though the bottleneck queue was full. By settingmaxth sufficiently

low and usingECN, all connections receive congestion notification when the queue is full whether

it is from anECN or from a packet loss. Thus, as Figure 3.5(a) shows, after a sustained period of

ECN marking and packet loss, the sources back off enough to allow the queue to drain. One of the

problems with deterministic marking is that it often goes overboard in signaling congestion to the

end hosts. As the queue length plot shows, periods of congestion are immediately followed by fairly

long periods of underutilization where the queue is empty. Furthermore, it takes a large amount of

extra buffer space in order to ensure that no loss occurs. Figure 3.5(b) shows the queue length plot
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Figure 3.5: Impact ofmaxth and queue size

using a queue size of240KB. As the figure shows, even when deterministic marking is done at

average queue lengths of80KB, the actual queue length can more than double before sources have

a chance to back off.

3.2.3 AdaptiveRED

From the previous experiments, it is clear that more aggressive early detection is needed when

a large number of flows are active in order to avoid packet loss and deterministic congestion notifi-

cation. Similarly, less aggressive early detection is needed when a small number of flows are active

in order to prevent underutilization. Because adapting RED parameters can be beneficial to network

performance, this section proposes an on-line mechanism for adaptively changing the parameters

according to the observed traffic. This algorithm, called Adaptive RED, is shown in Figure 3.6. The

idea behind this algorithm is to infer whether or not RED should become more or less aggressive by

examining the average queue length behavior. If the average queue length continually crosses back

and forth overminth, then the early detection mechanism is being too aggressive. If the average

queue length continually crosses back and forth overmaxth, then the early detection mechanism is

not aggressive enough. Given the behavior of the average queue length, the algorithm then adjusts

its value ofmaxp accordingly. For this algorithm,maxp is simply scaled by constant factors of

� and� depending on which threshold it crosses. Figure 3.7 shows how Adaptive RED changes

the marking/dropping behavior of RED. In contrast to the original RED algorithm as shown in Fig-

ure 2.3, Adaptive RED’s marking function changes depending on the setting ofmaxp. In times of
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EveryQ(ave) Update:
if ( minth < Q(ave)< maxth )

status =Between ;
if ( Q(ave)< minth && status !=Below )

status =Below ;
maxp = maxp / �;

if ( Q(ave)> maxth && status !=Above )
status =Above ;
maxp = maxp � �;

Figure 3.6: Adaptive RED algorithm
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Figure 3.7: The marking/dropping behavior of Adaptive RED
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Figure 3.8: Static random early detection
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Figure 3.9: Adaptive RED

light congestion, the marking/dropping probabilities remain quite low until the average queue length

reachesmaxth. In times of heavy congestion, the marking/dropping probabilities increase quickly

as the average queue length exceedsminth.

To show the feasibility of Adaptive RED, another experiment using the same network shown

in Figure 3.1 was run, but with RED queues of size100KB. In this experiment, the number of

active connections is varied between 8 and 32 over 40 second intervals. Figure 3.8 shows the

queue length plots using RED queues statically configured to be either aggressive or conservative.

When aggressive early detection is used, as shown in Figure 3.8(a), the RED queue performs well

whenever 32 connections are active. When only 8 connections are active, however, the RED queue is

too aggressive in its congestion notification, thus causing periodic underutilization where the queue

is empty. When conservative early detection is used, as shown in Figure 3.8(b), the RED queue only

performs well when 8 connections are active. When all 32 connections are active, the RED queue

continually fluctuates between periods of sustained packet loss andECN marking and subsequent

periods of underutilization.

Figure 3.9(a) shows the queue length plot of the same experiment using Adaptive RED with

� and� set to 3 and 2, respectively.maxp is initially set to to 0.020 and then allowed to vary

according to the algorithm. As the plot shows, after brief learning periods when the experiment

starts and when the input traffic changes, the RED queue is able to adapt itself well. Figure 3.9(b)

plots themaxp parameter as the RED queue adapts it to the input traffic. As expected, its value

adapts to reflect the number of active flows. When all 32 connections are active,maxp increases
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significantly, causing the RED algorithm to become more aggressive. When only 8 connections are

active,maxp decreases, causing the RED algorithm to become less aggressive.

3.2.4 Round-trip time sensitivity

In the previous experiments, the round-trip time for all of the connections was kept approxi-

mately the same. While this allows for an initial understanding of the problems with RED and the

effectiveness of Adaptive RED, a more realistic topology with varying round-trip times can provide

slightly different results. In this section, the experimental setup is changed to reflect the presence of

connections with a variety of round-trip times going across the bottleneck link. Figure 3.10 shows

the network evaluated. In this network, the round trip times are varied by increasing and decreasing

the transmission delay across several links. Given this heterogeneity, the round-trip delays between

connections when the network is unloaded ranges from32ms to 230ms.

Using this network, the experiment in the previous section was repeated. Figure 3.11 shows the

queue length traces using both aggressive and conservative early detection. The figure shows similar

results as before with one small difference. When conservative early detection is used with a large

number of sources, deterministic congestion notification does not always cause underutilization of

the bottleneck link. One of the reasons behind this is the fact that the varying round-trip times

cause sources to react to deterministic congestion notification at different times. Thus, they do not

synchronously reduce their transmission rates. Another reason why underutilization is not severe is

that sources with extremely small round-trip times (i.e.32ms) are able to ramp up their transmis-

sion rates quickly after congestion occurs. While this allows such flows to grab a disproportionate

amount of the bottleneck link capacity, it also keeps the bottleneck link more fully utilized across

time.

Figure 3.12 shows the performance of Adaptive RED over the same experiment. As the figure

shows, the ability for Adaptive RED to hit RED’s “sweet spot” is not severely affected by the differ-

ence in round-trip time. Themaxp modification still allows RED to adapt effectively to changes in

network load.
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Figure 3.11: Static random early detection over varying round-trip times
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Figure 3.12: Adaptive RED over varying round-trip times
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Figure 3.13: Testbed

3.2.5 Implementation

To further evaluate Adaptive RED, it has been implemented in FreeBSD 2.2.6 and ALTQ [9]. In

the implementation, calls to the genericIF ENQUEUEandIF DEQUEUEmacros fromif output

andif start are changed to replace theFIFO queueing mechanism typically used in BSD Unix

with the Adaptive RED queueing discipline. Using this implementation, several experiments on a

small testbed of PCs shown in Figure 3.13 were performed. In the figure, each network node and

link is labeled with CPU model and link bandwidth, respectively. Note that all links are shared

Ethernet segments. Hence, the acknowledgments on the reverse path collide and interfere with data

packets on the forward path. As the figure shows, FreeBSD-based routers using Adaptive RED

connect the Ethernet and Fast Ethernet segments.

To generate load on the system,netperf [49] is used.netperf is a well-known, parameter-

izable tool for generating network load in order to evaluate the performance of both end hosts and

network elements. In the experiments shown, a variable number of infinitenetperf sessions are

run from fast to slow , the endpoints of the network. The router queue on the congested inter-

face onrouter2 to the Ethernet segment is sized at50KB using aminth of 10KB amaxth of

40KB. A maxp value of 0.02 is used for the conservative early detection algorithm while amaxp

value of 1.00 is used for the aggressive early detection algorithm. Themaxp value of Adaptive

RED is initially set at 0.02 and allowed to varyaccording to the algorithm in Figure 3.6. In order

to ensure the Adaptive RED modifications did not create bottlenecks in the routers, a number of

experiments were run betweenfast androuter2 using Adaptive RED on router1 to forward

packets between both hosts. In all of the experiments, the sustained throughput ofrouter1 was

always above70Mbs. Thus, experiments run fromfast to slow always bottleneck at the output

interface to the Ethernet segment onrouter2 .
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Figure 3.14: Queue management performance

Figure 3.14 shows the throughput and packet loss rates at the bottleneck link across a range of

workloads. The throughput measures the rate at which packets are forwarded through the congested

interface. This rate slightly overestimates the end-to-end goodput of thenetperf sessions since

retransmissions are counted. The packet loss rate measures the ratio of the number of packets

dropped at the queue and the total number of packets received at the queue. In each experiment,

throughput and packet loss rates were measured over ten 5-second intervals and then averaged. As

Figure 3.14(a) shows, both the conservative and adaptive early detection algorithms maintain high

throughput levels across all workloads while the aggressive early detection algorithm achieves a

lower throughput for smaller numbers of connections. Note that since the Ethernet segments are

shared, acknowledgments on the reverse path collide with data packets on the forward path, thus

limiting throughput. Figure 3.14(b) shows the packet loss rates over the same workloads. As the

figure shows, both the aggressive and the adaptive early detection algorithms maintain low packet

loss rates across all workloads while the conservative early detection algorithm suffers from fairly

large packet loss rates as the number of connections increases. When the number of connections

is large, an interesting observation is that the marking rate of the adaptive and aggressive early

detection algorithms approaches 50%. Because aggregateTCP behavior becomes more aggressive

as the number of connections increases, it becomes more and more difficult for the RED queue to

maintain low loss rates. Fluctuations in queue lengths occur so abruptly that the RED algorithm

oscillates between periods of sustained marking and packet loss and periods of minimal marking
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Figure 3.15: Impact of early detection aggressiveness on RED

and link underutilization. This observation is revisited in Section 3.3 and in Chapter 4.

3.2.6 Using packet loss for congestion notification

The previous experiments examine the use of early detection in its “purest” form where con-

gestion notification is free and causes no packet losses. Without support forECN, however, RED

must resort to dropping a packet in order to signal congestion. This leads to an interesting optimiza-

tion problem where the RED queue must pick amaxp value which minimizes the sum of packet

drops due to early detection and packet drops due to buffer overflow. With extremely largemaxp

values, packet loss rates are dominated by drops due to early detection while with extremely small

maxp values, packet loss is mostly due to queue overflow. To illustrate this, the experiments in

Section 3.2.1 were repeated using a normal RED queue. Figure 3.15 shows the loss rates of RED

with 32 and 64 connections running through the bottleneck link. Again, asmaxp decreases, the per-

formance of RED approaches a drop-tail queue. However, asmaxp increases, the drops contributed

by the early detection algorithm begin to dominate the loss rate. Both graphs show a cusp at the

point which minimizes the sum of the losses contributed by the early detection algorithm and by

buffer overflow. This cusp occurs at different values ofmaxp depending on how many connections

are present. As more connections are added, the optimal value ofmaxp increases.

Note that even with a RED queue parameterized to minimize loss, packet loss rates continue to

increase with traffic load. Using drops as a means for congestion notification fundamentally limits
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the loss rate observed across the Internet. As more connections come on-line, the rate of congestion

notification, and thus, the loss rates increase. Steady state analysis of theTCP congestion avoidance

algorithm [22, 40, 42, 51] gives some insight as to why this is the case. Such analysis has shown

that given random packet loss at constant probabilityp, the upper bound on the bandwidth aTCP

connection sees can be estimated as:

BW <
MSS

RTT

Cp
p

(3.1)

whereMSS is the segment size,RTT is the round-trip time, andC is a constant. Using this

model, packet loss rates over a single bottleneck link ofL Mbs can be approximated for a fixed

number of connectionsN . In this situation, the bandwidth delivered to each individual connection

is approximately the link bandwidth divided by the number of connections (L
N

). By substituting this

into the previous equation and solving forp, the following is obtained

p <

�
N

L

MSS � C
RTT

�2
(3.2)

As the equation shows, when all of the connections are using theTCP congestion avoidance

algorithm, the upper bound on the packet loss rate quadratically increases with the number of con-

nections present. Intuitively, this phenomenon can be shown using an idealized example. Suppose

two identical networks have bandwidth-delay products of64KB from a given pair of end points as

shown in Figure 3.16. In one network, 4 identical connections are active while in another 8 identical

connections are. Given fair sharing amongst the connections, the congestion windows of each con-

nection will approximately be the bandwidth-delay product divided by the number of connections

present. For 4 connections, each connection will have congestion windows which oscillate near

16KB. Assuming normalTCP windowing and a segment size of1KB, an individual connection in

this network will typically build its congestion window up to around 16 packets, receive congestion

notification in the form of a lost packet, back off its window to about 8 packets and then slowly build

its congestion window back up at a rate of one packet per round-trip time. Given this behavior, the

loss rate across all connections in this idealized model would then be approximately 4 packet drops

every 8 round-trip times or0:5 packets
RTT

. Similarly, using the same idealized model, it can be shown

that when 8 connections are present, losses occur at a rate of2 packets
RTT

, a quadratic increase.

Because the derivation of Equation 3.2 is based on idealized scenarios, the actual loss rates
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Figure 3.16: Example network

do not quite vary quadratically with the number of connections. From the drop-tail experiments

in Figure 3.15, the loss rates observed show a dependence on the number of connections which

is somewhere between linear and quadratic. There are several reasons why this is the case. One

reason is that the derivation assumes a fair sharing of bandwidth across the bottleneck link. It has

been shown that as the number ofTCP connections increases, the amount of unfairness between

connections increases considerably [48]. Another reason is that the equation does not model the

occurrence of retransmission timeouts. By using models ofTCP behavior which capture retransmis-

sion timeouts, loss rates can be predicted more accurately [52].

The results from Equation 3.2 are still significant because they show that as networks become

more congested, packet loss rates increase considerably, thus making the probability of congestion

collapse more likely. The equation highlights the need for decoupling packet loss from congestion

notification through the use of explicit congestion notification. In lieu of explicit congestion notifi-

cation, however, the equation also provides some insight on how to improve loss rates given a fixed

number of connections. One way is to alter the congestion avoidance mechanism itself so that it

does not continually increase its sending rate beyond the network’s capacity. For example, schemes

such as Tri-S [66, 67] orTCP Vegas [7] can be used to reduce the amount of packet losses observed.

Another way is to increase the bottleneck link bandwidthL. By increasing the link bandwidth, the

effective congestion windows of individual connections increases, thus decreasing the frequency of

congestion notification in the scenario above. Reducing the segment size used in the congestion

avoidance algorithm can also improve loss rates. The smaller segment size allows the end host to

grow its congestion window more slowly, thus decreasing the rate at which it receives congestion

notification. Finally, loss rates can be improved by increasing the round-trip time. Increasing the
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(1) closecwnd()
if (CWND == 1)

scale = scale * 2;
counter = int( scale�RTT

timer interval
) + 1;

elsenormal tcp closecwnd();
(2) send()

if (CWND == 1)
if (counter � 0)

sendnext segment;
counter = int( scale�RTT

timer interval
) + 1;

return;
elsenormal tcp send();

(3) opencwnd()
if (CWND == 1 && scale > 1)

scale = scale
2 ;

if (scale < 1) scale = 1;
return;

normal tcp opencwnd();
(4) Every timerinterval

counter = counter - 1;

Figure 3.17: SUBTCP algorithm

round-trip time, through the use of additional network buffers [65] increases the bandwidth delay

product which slows the rate of congestion notification.

3.3 End Host Congestion Control

While properly designed active queue management mechanisms like Adaptive RED can help

reduce packet losses, such techniques alone cannot guarantee low loss rates especially when traffic

load fluctuates wildly. Instead, intelligent queue management must be combined with intelligent

end host congestion control in order to obtain high utilization with a minimal amount of packet loss.

If the offered load overwhelms the bottleneck link before congestion notification can be delivered,

buffer overflow and packet loss is inevitable. This section describes several weaknesses inTCP

congestion control and how they can cause high loss rates even in the presence of active queue man-

agement. Given this behavior, a number of possible modifications toTCP’s windowing mechanism

which alleviate this problem are proposed and evaluated.
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3.3.1 Adjusting the minimum transmission rate

One of the limitations ofTCP’s congestion control mechanism is that in normal operation, the

minimum transmission rate of aTCP sender is one segment per round-trip time. When a large

number of connections are multiplexed over a low bandwidth link, the inability ofTCP to transmit

at lower rates causes a significant amount of packet loss and retransmission timeouts [48].TCP,

by exponentially backing off its retransmission timeout interval, does in fact have a mechanism

which allows it to transmit at a rate lower than one segment per round-trip time. However, upon

a single successful transmission,TCP resets this timer and resumes transmitting at a minimum rate

of one segment per round-trip time. From the standpoint of transmission rates, this in effect makes

TCP congestion control an exponentially-increasing algorithm. If a large number of connections

increase their transmission rates in this manner, the network sees substantial bursts which cause

packet loss. One way to fix this problem is to simply decrease the exponential back-off interval

when a packet is successfully transmitted rather than resetting the value. This prevents the source

from automatically ramping up its sending rate as soon as it has received a single acknowledgment

after a retransmission timeout. Figure 3.17 shows a simple algorithm for doing so. In this case,

instead of resettingTCP’s back-off interval, it is halved. In the rest of the chapter, this variation of

TCP is referred to as SUBTCP. TCP’s minimum transmission rate is also directly determined by the

segment size and the minimum window size used [1]. Smaller segment and minimum window sizes

translate into lower minimum sending rates. In addition, from Equation 3.2 in Section 3.2, using a

smaller segment size makes linear increase less aggressive and thus reduces the amount of packet

losses.

To understand the impact that the segment size, the minimum window size, and the SUBTCP

modifications have on packet loss rates in congested networks, a number scenarios in the network

shown in Figure 3.18 are examined. In this network, 100 connections are run from nodesn0–n4

through the bottleneck1:5Mbs link between nodeA and nodeB to nodesn5–n9. For the RED

queues,maxth is used as the measure of buffer size in an attempt to more fairly compare drop-tail

and RED queues. The actual queue size is set at (1.2*maxth) whileminth is set at (0.25*maxth).

For most of the experiments in this section, early detection is made conservative by fixingmaxp to

0.016, in order to isolate the impact end host modifications have on performance. Figure 3.19(a)

shows the packet loss rates observed byTCP and SUBTCP for different segment sizes and initial

31



n4

n3

n2

n1

n0

A B

n5

n6

n7

n9

n8

100Mbs/1ms
1.5Mbs

100Mbs/1ms5ms

Figure 3.18: Network topology

windows. As the Figure 3.19 shows, the use of the smaller segment size of 500 bytes significantly

improves loss rates over the use of the larger 1000 byte segment size. In addition, the figure also

shows that the SUBTCP modifications have a very modest impact on the loss rates. Finally, the

doubling ofTCP’s minimum window leads to a significant increase in the amount of packet loss ob-

served. For a better understandingof the above observations, the queue length plots of the bottleneck

link for the various experiments are examined. Figure 3.19(b) shows the queue length plot of the

experiment usingTCP with RED-ECN queues1. Themaxth used in the experiment was80KB. The

figure shows that the queue quickly fills up soon after congestion notification stops being delivered.

This is due to the fact thatTCP ramps its transmission rate too quickly upon successfully sending its

segments, causing large queue length fluctuations which defeat the early detection mechanism and

induce packet loss.

Figure 3.20(a) shows the queue length plot using the smaller segment size and the SUBTCP

modifications. As the figure shows, the modifications slow the increase in transmission rates of

individual connections and thus help reduce the amount of queue fluctuations and packet loss. Note

that the SUBTCP modifications alone are not enough to allow early detection to work. One of the

reasons why is that while SUBTCP can reduce the minimum sending rates of the sources, it still

allows a multiplicative increase in sending rates. Such traffic easily defeats early detection causing

packet loss to occur. Additional modifications which address this are described in Section 3.3.2.

1The queue length plot of normalTCP over normal RED queues shows results similar to Figure 3.3(b).
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Figure 3.19: Minimum sending rates and the performance ofTCP

Figure 3.20(b) shows the queue length plot of normalTCP over RED-ECN queues using a minimum

window of two segments. As shown in the trace, using the large minimum window defeats the

early detection mechanism of RED as well as the congestion control mechanism ofTCP. Thus,

while a large minimum window may be desirable in unloaded networks where it can reduce transfer

latencies considerably, it must be used carefully or not at all when the network is congested.

3.3.2 Adjusting linear increase

In steady state,TCP uses its congestion-avoidance algorithm to slowly increase its transmission

rate. In this phase, the congestion window of a connection increases linearly by one segment per

round-trip time. During times of congestion when a large number of connections are competing

for bandwidth, the window size of each connection is small. Unfortunately, for small windows,

linear increase is a misnomer since increasing the window size by a segment can have a non-linear

impact on the connection’s transmission rate. For example, when a connection has a congestion

window of 1, it doubles its sending rate when it increments its window by a segment. When a

large number of connections with small windows are aggregated, the network sees traffic which is

multiplicatively increasing and decreasing. This causes rapid fluctuations in queue lengths, periods

of high utilization and packet loss followed by periods of underutilization. Such traffic patterns also

defeat early detection mechanisms such as RED because large queues can accumulate over very

short time periods.
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Figure 3.20: Queue plots for decreased segment size and increased window size

In this section, modifications to the linear increase algorithm are considered in order to enable

TCP to work better under heavy congestion. Two techniques, in particular, are considered: (1) a

scaled linear increase and (2) a bandwidth-based linear increase. The idea behind the scaled increase

is to increase the congestion window by a fixed fractional amount when the congestion window is

small. This is a heuristic much like the current linear increase algorithm. While it can certainly

alleviate some of the problems seen with standard linear increase, fixed increases in general have

the problem of either not being aggressive enough when the network is uncongested or being too

aggressive when the network is congested. Figure 3.21 shows the scaled linear increase algorithm

used. In the experiments, scaled increases are used to slow the increase in transmission rates when

the congestion window is effectively below one. Thus, when the network is not congested, the

source simply behaves as a normalTCP source.

In addition to the scaled linear increase algorithm, an experimental, bandwidth-based linear in-

crease algorithm was also examined. The motivation of the bandwidth-based algorithm is rather

intuitive. Assume that the bottleneck router has enough buffers to absorbX% higher than its bot-

tleneck bandwidth for a duration of about a round-trip time. This is the time it takes for congestion

notification to reflect itself back to the bottleneck link. Then, ifeach source only increases its trans-

mission rate byat mostX% every round-trip time, the network can ensure a minimal amount of

packet loss. Bandwidth-based increases inherently depend on the round-trip times of each of the

connections. This is because it takes at least a round-trip time for congestion notification to have

an impact on the offered load seen by the router. Bandwidth-based increases also inherently de-
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Figure 3.21: Scaled sub-linear SUBTCP algorithm

pend on the amount of buffering at the bottleneck link. If the buffers are increased at the bottleneck

link, the end sources can be more aggressive in ramping up their transmission rates. On the other

hand, increased buffering can also prevent sources from ramping up their transmission rates by in-

creasing the round-trip time and thus the latency in delivering congestion notification. Even with

bandwidth-based increases, there is still a small likelihood of buffer overflow. One reason is that

in the case of RED queues, deterministic congestion notification is triggered only when the average

queue length exceedsmaxth. The actual queue length can often be larger than the average queue

length especially when the offered load is steadily increasing. Another reason is thatTCP traffic

exhibits short-term burstiness which makes its offered load appear to be much larger than it actually

is [70]. Such burstiness can cause buffer overflow even when the overall offered load is below the

bottleneck link capacity. Still, the key advantage of using bandwidth-based linear increases is that

the behavior of its aggregate traffic is mostly independent of the number of connections present.

The router thus sees traffic which increases at a fairly fixed rate regardless of the amount of conges-

tion in the network. Controlling the behavior of aggregate traffic allows active queue management

schemes to work as intended. Figure 3.22 shows the bandwidth-based linear increase algorithm used

in the experiments. As the algorithm shows, the window increase used is calculated as the mini-

mum ofTCP’s current linear increase and a calculated bandwidth-based increase. Note that one of

the disadvantages of the bandwidth-based increase algorithm is that it falls in a class of algorithms

which have been theoretically shown to be unable to provide max-min fair sharing in a responsive

manner [8, 38]. While fairness is a concern, even withTCP’s current congestion control algorithm,

fairness between connections has already been shown to be poor in times of congestion and among

connections with varying round-trip times [25, 48]. In addition, the idealized model used in [8]

assumes that congestion notification is given to all sources when the bottleneck resource becomes

saturated. With more intelligent queueing algorithms such as RED and FRED [26, 41] that deliver
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Figure 3.22: Bandwidth-based SUBTCP algorithm

congestion notification preferentially to higher bandwidth flows, it may be possible for a larger class

of increase/decrease algorithms to quickly converge to max-min fair sharing.

Given these modified increase algorithms, the previous experiments were repeated in order to

evaluate their performance. Figure 3.23 shows the loss rates and the link utilization observed. For

the fixed scaled increases, the graphs show the results using a scaling factor of1
4 . For the bandwidth-

based linear increase algorithm, the percent bandwidth increase was set to 1% in order to prevent

packet loss in the network shown in Figure 3.18 when using a25KB RED queue with aminth of

5KB and amaxth of 20KB. Figure 3.23(a) shows the loss rates observed using the variousTCP

schemes. The graph shows that using the sub-linear increases greatly reduces the amount of packet

loss. In fact, for smaller buffer sizes, the difference in loss rates is as high asseveral orders of

magnitude. The bandwidth-based algorithm, in particular, provides extremely low loss rates under

heavy congestion even when a small amount of buffering is present. Figure 3.23(b) shows the link

utilization observed across all schemes. While the scaled linear increase algorithm provides low

losses, it is unable to sustain full link utilization. The bandwidth-based algorithm, on the other

hand, maintains high link utilization across all buffer sizes.

In order to understand why the scaled linear increase algorithm sees lower link utilization and

sometimes higher packet loss than the bandwidth-based algorithm, the queue length plots of the

bottleneck queue were captured. Figure 3.24(a) plots the queue lengths from the experiment using

amaxth of 80KB. The traces show that the use of sub-linear increases makes aggregateTCP less

aggressive, thus preventing sustained periods of packet loss observed in the previous experiments

shown in Figure 3.20. Figure 3.24(a) also shows, however, that the sources are still aggressive

enough to defeat the early detection mechanism. It takes a sustained period of congestion notifica-
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Figure 3.23: Performance of modified linear-increase algorithms

tion when the average queue length exceedsmaxth for the offered load to be reduced sufficiently

below link capacity. As shown in Section 3.2.2, sustained congestion notification can be detrimental

to link utilization since it inevitably causes too many sources to back off their transmission rates.

As the queue plot shows, whenmaxth is triggered, the bottleneck link can subsequently become

underutilized. There are a couple of ways to fix this problem. One would be to make the scaled

increases even smaller so that static early detection has a chance to signal the end hosts in time to

preventmaxth from being triggered. Another way to improve performance is to simply make the

early detection mechanism more aggressive as described in Section 3.2. Additional experiments

have shown both ways can be effective in improving the performance of scaled increases. In con-

trast to the scaled linear increase, Figure 3.24(b) shows the queue length plot when each source is

using bandwidth-based increases. As the figure shows, the aggregate traffic fluctuates much less,

allowing early detection to perform as intended.

3.4 Tuning for Optimal Performance

The previous two sections have shown how individually, active queue management and end host

mechanisms can be used to significantly reduce loss in the network. When used together, they form

a synergistic combination which can allow the network to achieve extremely high efficiency even

in times of heavy congestion. Figure 3.25 shows the loss rates and bottleneck link utilizations over

a range of workloads using the bandwidth-based SUBTCP algorithm with Adaptive RED queues in
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Figure 3.24: Sub-linear SUBTCP performance

the network. In these experiments, the topology in Figure 3.18 is used and the number of connec-

tions going across the1:5Mbs link is varied from 25 to 300. As the figure shows, the packet loss

rates remain extremely low while the bottleneck link utilizations remain remarkably high across all

experiments.

In order to compare the improvements against other schemes, the packet loss rates using a

traffic load of 100 connections is used. Figure 3.26(a) plots the loss rates for a range of end host

and queue management schemes. The figure shows the performance of normalTCP using both

drop-tail and RED queues as well as the performance of normalTCP usingECN using both a static

RED-ECN queue and an Adaptive RED-ECN queue. In addition, the figure plots the performance

of the bandwidth-based SUBTCP algorithm over both static and adaptive RED-ECN queues. In this

figure, the graph shows that decoupling congestion notification from packet loss through the use

of ECN improves loss rates significantly. The graph also shows that both the Adaptive RED and

SUBTCP modifications provide substantial performance improvement and that, when used together,

they allow the network to achieve optimal performance.

The previous experiments fixed both the round-trip times and the percent bandwidth increase

used (1%). Since the performance of the proposed congestion control mechanisms have an inherent

dependence on both, additional experiments which varied them were performed. Figure 3.26(b)

plots the loss rates using 100 connections when the percent bandwidth increase used is 10%, 30%,

and 50%. The experiments also vary the transmission delay across the bottleneck link from5ms

to 10ms and50ms, thus considerably increasing the round-trip time. As the figure shows, as each
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Figure 3.25: Performance across traffic load

source is allowed to increase its sending rate more quickly, loss rates slowly rise as the burstiness

seen at the router increases. However, even with larger percent increases, loss rates still remain

relatively low compared to other schemes. The figure also shows that an increased round-trip time

has little impact on performance, with loss rates remaining low as well.

3.5 Conclusion and Future Work

This chapter has shown how active queue management and end host congestion control algo-

rithms can be designed to effectively eliminate packet loss in congested networks. In particular,

an adaptive RED mechanism which is cognizant of the number of active connections and the use

of bandwidth-based linear increases can both provide significant benefits in terms of decreasing

packet loss and increasing network utilization. There are several ways in which these mechanisms

can be extended. In particular, several ways for methodically improving the adaptiveness of the

RED algorithm are being examined. This chapter presents one specific algorithm for tailoring RED

parameters to the input traffic. There are many other potential alternatives for doing so. For exam-

ple, the RED queue could actually keep track of the number of active connections and change its

aggressiveness accordingly. Another mechanism would be to have the RED queue infer the number

of connections present by the rate at which the average queue length changes and have it then adapt

its parameters accordingly. It may also be possible to adapt other RED parameters instead ofmaxp
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Figure 3.26: Performance comparisons

to optimize performance. For example, one could adaptively change inter-packet drop probabilities

or the RED threshold values depending on the input traffic. Finally, in extremely congested networks

for which settingmaxp to 1 is not sufficient, it may be possible to make the marking/dropping even

more aggressive by having the marking probability change as a non-linear function of the average

queue length. Figure 3.27 shows an example of how the marking/dropping function can be modi-

fied to further improve the performance of RED. As the figure shows, when amaxp setting of 1 is

insufficient, the marking function can assume a non-linear shape allowing the marking to become

even more aggressive. Changing the marking function in this manner can allow RED to control

congestion even under extremely heavy congestion.

Additional ways for improving end host congestion control algorithms are also being examined.

While bandwidth-based increases provide end hosts with an upper bound on how aggressively they

can ramp up their sending rates, it is often desirable for a source to change its sending rate more

slowly or not at all when nearing the congestion point in order to avoid oscillations inherent in

TCP’s windowing algorithm [7, 66, 67]. Incorporating such techniques into the bandwidth-based

increase algorithm are being explored. Additional mechanisms for improving fairness over short

time scales are being considered. One of the advantages ofTCP congestion avoidance is that it

inherently gives an advantage to low-bandwidth flows. For flows with equivalent round-trip times,

low-bandwidth flows with small congestion windows increase their effective sending rates more

quickly than higher-bandwidth flows with larger windows when usingTCP’s congestion-avoidance
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algorithm. Extensions which address this problem in the context of bandwidth-based increases are

also being considered.
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CHAPTER 4

BLUE: A NEW CLASS OF ACTIVE QUEUE MANAGEMENT

ALGORITHMS

4.1 Introduction

One of the striking results in Chapter 3 is that even withECN, RED queue management is still

unable to eliminate packet loss over a large range of workloads. Packet loss can only be eliminated

when modifications are made toTCP’s congestion control algorithms. This chapter demonstrates a

fundamental weakness with RED and all other known active queue management techniques. This

weakness severely impacts their ability to minimize packet loss. The problem lies in the fact that

all of the algorithms rely on some form of the queue length in order to estimate congestion. While

the presence of a persistent queue indicates congestion, its length gives very little information as to

the severity of congestion, that is, the number of competing connections sharing the link. In a busy

period, a single source transmitting at a rate greater than the bottleneck link capacity can cause a

queue to build up just as easily as a large number of sources can. Since the RED algorithm relies

on queue lengths, it has an inherent problem in determining the severity of congestion. As a result,

RED requires a wide range of parameters to operate correctly under different congestion scenarios.

While RED can achieve an ideal operating point, it can only do so when it has a sufficient amount

of buffer space and is correctly parameterized [15, 65].

In light of the above observation, this chapter proposes a fundamentally different active queue

management algorithm, called BLUE, which uses packet loss and link utilization history to manage

congestion. BLUE maintains a single probability, which it uses to mark (or drop) packets when they
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are queued. If the queue is continually dropping packets due to buffer overflow, BLUE increments

the marking probability, thus increasing the rate at which it sends back congestion notification. Con-

versely, if the queue becomes empty or if the link is idle, BLUE decreases its marking probability.

Using simulation and experimentation, this chapter demonstrates the superiority of BLUE to RED in

reducing packet losses even when operating with a smaller buffer. BLUE maintains low packet loss

rates over a wide-range of workloadswithout requiring modifications toTCP’s congestion control

algorithm. Finally, using mechanisms based on BLUE, this chapter proposes and evaluates Stochas-

tic Fair BLUE (SFB), a novel mechanism for effectively and scalably enforcing fairness amongst a

large number of flows.

4.2 The Inadequacy ofRED

As described in Chapter 2, one of the biggest problems withTCP’s congestion control algorithm

over drop-tail queues is that the sources reduce their transmission rates only after detecting packet

loss due to queue overflow. Since considerable amount of time may elapse between the packet

drop at the router and its detection at the source, a large number of packets may be dropped as

the senders continue transmission at a rate that the network cannot support. RED alleviates this

problem by detecting incipient congestionearly and delivering congestion notification to the end

hosts, allowing them to reduce their transmission rates before queue overflow occurs. In order to be

effective, a RED queue must be configured with a sufficient amount of buffer space to accommodate

an applied load greater than the link capacity from the instant in time that congestion is detected

using the queue length trigger to the instant in time that the applied load decreases at the bottleneck

link in response to congestion notification. RED must also ensure that congestion notification is

given at a rate which sufficiently suppresses the transmitting sources without underutilizing the

link. Unfortunately, when a large number ofTCP sources are active, the aggregate traffic generated

is extremely bursty [18, 21]. Bursty traffic often defeats the active queue management techniques

used by RED since queue lengths grow and shrink rapidly, well before RED can react. Figure 4.1

shows a simplified pictorial example of how RED functions under this congestion scenario.

The congestion scenario presented in Figure 4.1 occurs when a large number ofTCP sources

are active and when a small amount of buffer space is used at the bottleneck link. As the figure
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Figure 4.1: RED example

shows, att = 1, a sufficient change in aggregateTCP load (due toTCP opening its congestion

window) causes the transmission rates of theTCP sources to exceed the capacity of the bottleneck

link. At t = 2, the mismatch between load and capacity causes a queue to build up at the bottleneck.

At t = 3, the average queue length exceedsminth and the congestion-control mechanisms are

triggered. At this point, congestion notification is sent back to the end hosts at a rate dependent on

the queue length and marking probabilitymaxp. At t = 4, theTCP receivers either detect packet

loss or observe packets with theirECN bits set. In response, duplicate acknowledgments and/or

TCP-basedECN signals are sent back to the sources. Att = 5, the duplicate acknowledgments

and/orECN signals make their way back to the sources to signal congestion. Att = 6, the sources

finally detect congestion and adjust their transmission rates. Finally, att = 7, a decrease in offered

load at the bottleneck link is observed. Note that it has taken fromt = 1 until t = 7 before

the offered load becomes less than the link’s capacity. Depending upon the aggressiveness of the

aggregateTCP sources [18, 21] and the amount of buffer space available in the bottleneck link, a
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large amount of packet loss and/or deterministicECN marking may occur. Such behavior leads to

eventual underutilization of the bottleneck link.

One way to solve this problem is to use a large amount of buffer space for the RED queue. For

example, it has been suggested that in order for RED to work well, an intermediate router requires

buffer space that amounts to twice the bandwidth-delay product [65]. This approach, in fact, has

been taken by an increasingly large number of router vendors. Unfortunately, in networks with

large bandwidth-delay products, the use of a large amount of buffer adds considerable end-to-end

delay and delay jitter. This severely impacts the ability to run interactive applications. In addi-

tion, the abundance of deployed routers which have limited memory resources makes this solution

undesirable.

Figure 4.2 shows how an ideal queue management algorithm works. In this figure, the congested

gateway delivers congestion notification at a rate which keeps the aggregate transmission rates of the

TCP sources at or just below the clearing rate. While RED can achieve this ideal operating point, it

can do so only when it has a sufficiently large amount of buffer space and is correctly parameterized.

4.3 BLUE

In order to remedy the shortcomings of RED, this section proposes and evaluates a fundamen-

tally different queue management algorithm called BLUE. Using both simulation and experimen-

tation, BLUE is shown to overcome many of RED’s shortcomings. RED has been designed with

the objective to (1) minimize packet loss and queueing delay, (2) avoid global synchronization of

sources, (3) maintain high link utilization, and (4) remove biases against bursty sources. This sec-
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Upon packet loss event:

if ( (now - last update) > freezetime) then

pm = pm + delta

last update = now

Upon link idle event:

if ( (now - last update) > freezetime) then

pm = pm - delta

last update = now

Figure 4.3: The BLUE algorithm

tion shows how BLUE either improves or matches RED’s performance in all of these aspects. The

results also show that BLUE converges to the ideal operating point shown in Figure 4.2 in almost all

scenarios, even when used with very small buffers.

4.3.1 The algorithm

The key idea behind BLUE is to perform queue management based directly on packet loss and

link utilization rather than on the instantaneous or average queue lengths. This is in contrast to

all known active queue management schemes which use some form of queue occupancy in their

congestion management. BLUE maintains a single probability,pm, which it uses to mark (or drop)

packets when they are enqueued. If the queue is continually dropping packets due to buffer over-

flow, BLUE incrementspm, thus increasing the rate at which it sends back congestion notification.

Conversely, if the queue becomes empty or if the link is idle, BLUE decreases its marking probabil-

ity. Figure 4.3 shows the BLUE algorithm. Note that besides the marking probability, BLUE uses

two other parameters which control how quickly the marking probability changes over time. The

first is freezetime. This parameter determines the minimum time interval between two successive

updates ofpm. This allows the changes in the marking probability to take effect before the value is

updated again. While the experiments in this chapter fixfreezetimeas a constant, this value should

be randomized in order to avoid global synchronization [25]. The other parameter used,delta, de-

termines the amount by whichpm is incremented when the queue overflows, or decremented when
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the link is idle. Note that there are a myriad of ways in whichpm can be managed. Experiments

using a wide range of parameter settings and algorithm variations have also been performed with

the only difference being how quickly the queue management algorithm adapts to the offered load.

While BLUE seems extremely simple, it provides a significant performance improvement even when

compared to a RED queue which has been optimally parameterized.

4.3.2 Packet loss rates usingRED and BLUE

In order to evaluate the performance of BLUE, a number of experiments were run usingns [46]

over a small network shown in Figure 4.4. Using this network, Pareto on/off sources with mean

on-times of 2 seconds and mean off-times of 3 seconds were run from one of the leftmost nodes

(n0; n1; n2; n3; n4) to one of the rightmost nodes (n5; n6; n7; n8; n9). In addition, all sources were

enabled withECN support and were randomly started within the first second of simulation. Packet

loss statistics were then measured after 10 seconds of simulation for 100 seconds. Loss statistics

were also measured for RED using the same network and under identical conditions. For the RED

queue,minth andmaxth were set to 30% and 90% of the queue size, respectively. RED’s conges-

tion notification mechanism was made as aggressive as possible by settingmaxp to 1. For these

experiments, this is the ideal setting ofmaxp since it minimizes both the queueing delay and packet

loss rates for RED [21]. For the BLUE experiments,deltawas set to0:01 andfreezetimewas set

to 10ms. Again, simulations using a range ofdelta and freezetime values were also performed
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Figure 4.5: Packet loss rates of RED and BLUE

and showed similar results with the only difference being how quicklypm converges to the correct

value.

Figure 4.5 shows the loss rates observed over different queue sizes using both BLUE and RED

with 1000 and 4000 connections present. In these experiments, the queue at the bottleneck link

betweenA andB is sized from100KB to 1000KB. This corresponds to queueing delays which

range from17:8ms and178ms as shown in the figure. In all experiments, the link remains over

99:9% utilized. As Figure 4.5(a) shows, with 1000 connections, BLUE maintains zero loss rates over

all queue sizes even those which are below the bandwidth-delay product of the network [65]. This

is in contrast to RED which suffers double-digit loss rates as the amount of buffer space decreases.

An interesting point in the RED loss graph shown in Figure 4.5(a) is that it shows a significant dip

in loss rates at a buffering delay of around80ms. This occurs because of a special operating point

of RED when the average queue length stays abovemaxth all the time. At several points during this

particular experiment, the buffering delay and offered load match up perfectly to cause the average

queue length to stay at or abovemaxth. In this operating region, the RED queue marks every

packet, but the offered load is aggressive enough to keep the queue full. This essentially allows

RED to behave at times like BLUE with a marking probability of 1 and a queueing delay equivalent

to maxth. This unique state of operation is immediately disrupted by any changes in the load or

round-trip times, however. When the buffering delay is increased, the corresponding round-trip

times increase and cause the aggregateTCP behavior to be less aggressive. Deterministic marking

on this less aggressive load causes fluctuations in queue length which can increase packet loss rates
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since RED undermarks packets at times. When the buffering delay is decreased, the corresponding

round-trip times decrease and cause the aggregateTCP behavior to be more aggressive. As a result,

packet loss is often accompanied with deterministic marking. When combined, this leads again to

fluctuations in queue length. At a load which is perfectly selected, the average queue length of RED

can remain atmaxth and the queue can avoid packet loss and prevent queue fluctuations by marking

every packet.

As Figure 4.5(b) shows, when the number of connections is increased to 4000, BLUE still sig-

nificantly outperforms RED. Even with an order of magnitude more buffer space, RED still cannot

match BLUE’s loss rates using17:8ms of buffering at the bottleneck link. It is interesting to note

that BLUE’s marking probability remains at 1 throughout the duration of all of these experiments.

Thus, even though every packet is being marked, the offered load can still cause a significant amount

of packet loss. The reason why this is the case is that theTCP sources being used do not invoke a

retransmission timeout upon receiving anECN signal with a congestion window of 1. Section 4.3.4

shows how this can significantly influence the performance of both RED and BLUE.

The most important consequence of using BLUE is that congestion control can be performed

with a minimal amount of buffer space. This reduces the end-to-end delay over the network, which

in turn, improves the effectiveness of the congestion control algorithm. In addition, smaller buffer-

ing requirements allow more memory to be allocated to high priority packets [10, 30], and frees up

memory for other router functions such as storing large routing tables. Finally, BLUE allows legacy

routers to perform well even with limited memory resources.

4.3.3 UnderstandingBLUE

To fully understand the difference between the RED and BLUE algorithms, Figure 4.6 compares

their queue length plots in an additional experiment. In this experiment, a workload of infinite

sources is changed by increasing the number of connections by 200 every 20 seconds. As Fig-

ure 4.6(a) shows, RED sustains continual packet loss throughout the experiment. In addition, at

lower loads, periods of packet loss are often followed by periods of underutilization as determinis-

tic packet marking and dropping eventually causes too many sources to reduce their transmission

rates. In contrast, as Figure 4.6(b) shows, since BLUE manages its marking rate more intelligently,

the queue length plot is more stable. Congestion notification is given at a rate which neither causes
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Figure 4.6: Queue length plots of RED and BLUE

periods of sustained packet loss nor periods of continual underutilization. Only when the offered

load rises to 800 connections, does BLUE sustain a significant amount of packet loss.

Figure 4.7 plots the average queue length (Qave) and the marking probability ( pb
1�count�pb

) of

RED throughout the experiment. The average queue length of RED contributes directly to its mark-

ing probability sincepb is a linear function ofQave (pb = maxp � Qave�minth
maxth�minth

). As shown in

Figure 4.7(a), the average queue length of RED fluctuates considerably as it follows the fluctuations

of the instantaneous queue length. Because of this, the marking probability of R ED, as shown in

Figure 4.7(b), fluctuates considerably as well. In contrast, Figure 4.8 shows the marking probability

of BLUE. As the figure shows, the marking probability converges to a value that results in a rate

of congestion notification which prevents packet loss and keeps link utilization high throughout the

experiment. In fact, the only situation where BLUE cannot prevent sustained packet loss is when ev-

ery packet is being marked, but the offered load still overwhelms the bottleneck link. As described

earlier, this occurs att = 60s when the number of sources is increased to 800. The reason why

packet loss still occurs when every packet isECN-marked is that for these sets of experiments, the

TCP implementation used does not invoke an RTO when anECN signal is received with a congestion

window of 1. This adversely affects the performance of both RED and BLUE in this experiment.

Note that the comparison of marking probabilities between RED and BLUE gives some insight as to

how to make RED perform better. By placing a low pass filter on the calculated marking probability

of RED, it may be possible for RED’s marking mechanism to behave in a manner similar to BLUE’s.
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Figure 4.7: Marking behavior of RED

While low packet loss rates, low queueing delays, and high link utilization are extremely impor-

tant, the queue length and marking probability plots allow us to explore the effectiveness of RED

and BLUE in preventing global synchronization and in removing biases against bursty sources. RED

attempts to avoid global synchronization by randomizing its marking decision and by spacing out

its marking. Unfortunately, when aggregateTCP load changes dramatically as it does when a large

amount of connections are present, it becomes impossible for RED to achieve this goal. As Fig-

ure 4.7(b) shows, the marking probability of RED changes considerably over very short periods of

time. Thus, RED fails to mark packets evenly over time and hence cannot remove synchronization

among sources. As Figure 4.8 shows, the marking probability of BLUE remains steady. As a result,

BLUE marks packets randomly and evenly over time. Consequently, it does a better job in avoiding

global synchronization.

Another goal of RED is to eliminate biases against bursty sources in the network. This is done

by limiting the queue occupancy so that there is always room left in the queue to buffer transient

bursts. In addition, the marking function of RED takes into account the last packet marking time

in its calculations in order to reduce the probability that consecutive packets belonging to the same

burst are marked. Using a single marking probability, BLUE achieves the same goal equally well.

As the queue length plot of BLUE shows (Figure 4.6), the queue occupancy remains below the

actual capacity, thus allowing room for a burst of packets. In addition, since the marking probability

remains smooth over large time scales, the probability that two consecutive packets from a smoothly
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Figure 4.8: Marking behavior of BLUE (pm)

transmitting source are marked is the same as with two consecutive packets from a bursty source.

4.3.4 The effect ofECN timeouts

All of the previous experiments useTCP sources which supportECN, but do not perform a re-

transmission timeout upon receipt of anECN signal with a congestion window of 1. This has a

significant, negative impact on the packet loss rates observed for both RED and BLUE especially at

high loads. Figure 4.9 shows the queue length plot of RED and BLUE using the same experiment as

above withTCP sources enabled withECN timeouts. Figure 4.9(a) shows that by deterministically

marking packets atmaxth, RED oscillates between periods of packet loss and periods of underuti-

lization as described in Section 4.2. Note that this is in contrast to Figure 4.6(a) where withoutECN

timeouts,TCP is aggressive enough to keep the queue occupied at all times. An interesting point

to make is that RED can effectively prevent packet loss by setting itsmaxth value sufficiently far

below the size of the queue. In this experiment, a small amount of loss occurs since deterministic

ECN marking does not happen in time to prevent packet loss. While the use ofECN timeouts allows

RED to avoid packet loss, the deterministic marking eventually causes underutilization at the bottle-

neck link. Figure 4.9(b) shows the queue length plot of BLUE over the same experiment. In contrast

to RED, BLUE avoids deterministic marking and maintains a marking probability that allows it to

achieve high link utilization while avoiding sustained packet loss over all workloads.

Figure 4.10 shows the corresponding marking behavior of both RED and BLUE in the experi-

ment. As the figure shows, BLUE maintains a steady marking rate which changes as the workload is
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Figure 4.9: Queue length plots of RED and BLUE with ECN timeouts

changed. On the other hand, RED’s calculated marking probability fluctuates from 0 to 1 through-

out the experiment. When the queue is fully occupied, RED overmarks and drops packets causing

a subsequent period of underutilization as described in Section 4.2. Conversely, when the queue is

empty, RED undermarks packets causing a subsequent period of high packet loss as the offered load

increases well beyond the link’s capacity.

Figure 4.11 shows howECN timeouts impact the performance of RED and BLUE. The figure

shows the loss rates and link utilization using the 4000 connection experiments in Section 4.3.2. As

the figure shows, the use ofECN timeouts allows RED to effectively prevent packet loss. However,

because it often deterministically marks packets, it suffers from poor utilization. BLUE, on the other

hand, maintains low packet loss rates and high link utilization across all experiments.

4.3.5 Implementation

In order to evaluate BLUE in a more realistic setting, it has been implemented in FreeBSD 2.2.7

and ALTQ [9]. The implementation was done in a manner similar to that of Adaptive RED, as de-

scribed in Section 3.2.5. Using this implementation, several experiments were run on the testbed

shown in Figure 4.12. Each network node and link is labeled with the CPU model and link band-

width, respectively. Note that all links are shared Ethernet segments. Hence, the acknowledgments

on the reverse path collide and interfere with data packets on the forward path. As the figure shows,

FreeBSD-based routers using the BLUE queue management algorithm connect the Ethernet and Fast
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Figure 4.10: Marking behavior withECN timeouts

Ethernet segments. In order to generate load on the system, a variable number ofnetperf [49]

sessions are run from theIBM PC 360and theWinbook XLto theIBM PC 365and theThinkpad

770. The router queue on the congested Ethernet interface of theIntellistation Zpro is sized at

50KB which corresponds to a queueing delay of about40ms. To ensure that the BLUE modifica-

tions did not create a bottleneck in the router, the testbed was reconfigured exclusively with Fast

Ethernet segments and a number of experiments between network endpoints were run using the

BLUE modifications on the intermediate routers. In all of the experiments, the sustained throughput

was always above80Mbs.

Figures 4.13(a) and (b) show the throughput and packet loss rates at the bottleneck link across a

range of workloads. The throughput measures the rate at which packets are forwarded through the

congested interface while the packet loss rate measures the ratio of the number of packets dropped

at the queue and the total number of packets received at the queue. In each experiment, throughput

and packet loss rates were measured over five 10-second intervals and then averaged. Note that

theTCP sources used in the experiment do not implementECN timeouts. As Figure 4.13(a) shows,

both the BLUE queue and the optimally configured RED queue maintain relatively high levels of

throughput across all loads. However, since RED periodically allows the link to become underuti-

lized, its throughput remains slightly below that of BLUE. As Figure 4.13(b) shows, RED sustains

increasingly high packet loss as the number of connections is increased. Since aggregateTCP traffic

becomes more aggressive as the number of connections increases, it becomes difficult for RED to

maintain low loss rates. Fluctuations in queue lengths occur so abruptly that the RED algorithm

54



0.0 40.0 80.0 120.0 160.0 200.0
Buffer Size (in ms of delay)

0.0

1.0

2.0

3.0

4.0

5.0

P
er

ce
nt

 P
ac

ke
t L

os
s

Blue
RED

0.0 50.0 100.0 150.0 200.0
Number of Connections

80.0

85.0

90.0

95.0

100.0

P
er

ce
nt

 L
in

k 
U

til
iz

at
io

n

Blue
RED

(a) Loss rates (b) Link utilization

Figure 4.11: Performance of RED and BLUE with ECN timeouts

oscillates between periods of sustained marking and packet loss to periods of minimal marking and

link underutilization. In contrast, BLUE maintains relatively small packet loss rates across all loads.

At higher loads, when packet loss is observed, BLUE maintains a marking probability which is

approximately 1, causing it to mark every packet it forwards.

4.4 Stochastic FairBLUE

Up until recently, the Internet has mainly relied on the cooperative nature ofTCP congestion

control in order to limit packet loss and fairly share network resources. Increasingly, however, new

applications are being deployed which do not useTCP congestion control and are not responsive to

the congestion signals given by the network. Such applications are potentially dangerous because

they drive up the packet loss rates in the network and can eventually cause congestion collapse [34,

53]. In order to address the problem of non-responsive flows, a lot of work has been done to provide

routers with mechanisms for protecting against them [16, 41]. The idea behind these approaches is

to detect non-responsive flows and to limit their rates so that they do not impact the performance

of responsive flows. This section describes and evaluatesStochastic FairBLUE (SFB), a novel

technique for protectingTCP flows against non-responsive flows using the BLUE algorithm.SFB is

highly scalable and enforces fairness using an extremely small amount of state and a small amount

of buffer space.
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Figure 4.12: Experimental testbed

4.4.1 The algorithm

Figure 4.14 shows the basicSFB algorithm.SFB is aFIFO queueing algorithm that identifies and

rate-limits non-responsive flows based on accounting mechanisms similar to those used with BLUE.

SFB maintainsN�L accounting bins. The bins are organized inL levels withN bins in each level.

In addition,SFB maintains (L) independent hash functions, each associated with one level of the

accounting bins. Each hash function maps a flow into one of theN accounting bins in that level.

The accounting bins are used to keep track of queue occupancy statistics of packets belonging to a

particular bin. This is in contrast to Stochastic Fair Queueing [47] (SFQ) where the hash function

maps flows into separate queues. Each bin inSFB keeps a marking/dropping probabilitypm as in

BLUE, which is updated based on bin occupancy. As a packet arrives at the queue, it is hashed into

one of theN bins in each of theL levels. If the number of packets mapped to a bin goes above

a certain threshold (i.e., the size of the bin),pm for the bin is increased. If the number of packets

drops to zero,pm is decreased.

The observation which drivesSFB is that a non-responsive flow quickly drivespm to 1 in all of

theL bins it is hashed into. Responsive flows may share one or two bins with non-responsive flows,

however, unless the number of non-responsive flows is extremely large compared to the number of

bins, a responsive flow is likely to be hashed into at least one bin that is not polluted with non-

responsive flows and thus has a normalpm value. The decision to mark a packet is based onpmin,

the minimumpm value of all bins to which the flow is mapped into. Ifpmin is 1, the packet is
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Figure 4.13: Queue management performance

identified as belonging to a non-responsive flow and is then rate-limited. At this point, a number

of options are available to limit the transmission rate of the flow. In this work, flows identified as

being non-responsive are simply limited to a fixed amount of bandwidth. This policy is enforced by

limiting the rate of packet enqueues for flows withpmin values of 1. Figure 4.15 shows an example

of how SFB works. As the figure shows, a non-responsive flow drives up the marking probabilities

of all of the bins it is mapped into. While theTCP flow shown in the figure may map into the

same bin as the non-responsive flow at a particular level, it maps into normal bins at other levels.

Because of this, the minimum marking probability of the TCP flow is below 1.0 and thus, it is not

identified as being non-responsive. On the other hand, since the minimum marking probability of

the non-responsive flow is 1.0, it is identified as being non-responsive and rate-limited.

Note that just as BLUE’s marking probability can be used inSFB to provide protection against

non-responsive flows, it is also possible to apply Adaptive RED’s maxp parameter to do the same.

In this case, a per-binmaxp value is kept and updated according to the behavior of flows which map

into the bin. As with RED, however, there are two problems which make this approach ineffective.

The first is the fact that a large amount of buffer space is required in order to get RED to perform well.

The second is that the performance of a RED-based scheme is limited since even a moderate amount

of congestion requires amaxp setting of 1. Thus, RED, used in this manner, has an extremely

difficult time distinguishing between a non-responsive flow and moderate levels of congestion.
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B[l][n]: L x N array of bins (L levels, N bins per level)

enque()

Calculate hash function valuesh0, h1, ...,hL�1;

Update bins at each level

for i = 0 toL� 1

if (B[i][hi]:qlen > bin size)

B[i][hi]:pm += delta;

Drop packet;

else if (B[i][hi]:qlen == 0)

B[i][hi]:pm -= delta;

pmin = min(B[0][h0]:pm .. B[L][hL]:pm);

if (pmin == 1)

ratelimit()

else

Mark/drop with probabilitypmin;

Figure 4.14:SFB algorithm

4.4.2 Evaluation

Usingns , theSFB algorithm was simulated in the same network as in Figure 4.4 with transmis-

sion delays of10ms on all links. TheSFB queue is configured with200KB of buffer space and

maintains two hash functions each mapping to 23 bins. The size of each bin is set to 13, approxi-

mately 50% more than123
rd

of the available buffer space. Note that by allocating more than1
23
rd

the

buffer space to each bin,SFB effectively “overbooks” the buffer in an attempt to improve statistical

multiplexing. Notice that even with overbooking, the size ofeach bin is quite small. Since BLUE

performs extremely well under constrained memory resources,SFB can still effectively maximize

network efficiency. The queue is also configured to rate-limit non-responsive flows to0:16Mbs.

In the experiments, 400TCP sources and one non-responsive, constant rate source are run for

100 seconds from randomly selected nodes in (n0; n1; n2; n3; n4) to randomly selected nodes in

(n5; n6; n7; n8; n9). In one experiment, the non-responsive flow transmits at a rate of2Mbs while
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Figure 4.15: Example ofSFB

in the other, it transmits at a rate of45Mbs. Table 4.1 shows the packet loss observed in both

experiments forSFB. As the table shows, for both experiments,SFB performs extremely well. The

non-responsive flow sees almost all of the packet loss as it is rate-limited to a fixed amount of the

link bandwidth. In addition, the table shows that in both cases, a very small amount of packets from

TCPflows are lost. Table 4.1 also shows the performance of RED. In contrast toSFB, RED allows the

non-responsive flow to maintain a throughput relatively close to its original sending rate. As a result,

the remainingTCP sources see a considerable amount of packet loss which causes their performance

to deteriorate. Finally, the experiments were repeated usingSFQ with an equivalent number of bins

(i.e., 46 distinct queues) and a buffer more than twice the size (414KB), making each queue equally

sized at9KB. For each bin in theSFQ, the RED algorithm was applied withminth andmaxth

values set at2KB and8KB, respectively. As the table shows,SFQ with RED does an adequate job

of protectingTCP flows from the non-responsive flow. However, in this case, partitioning the buffers

into such small sizes causes a significant amount of packet loss to occur. Additional experiments

show that as the amount of buffer space is decreased even further, the problem is exacerbated and

the amount of packet loss increases considerably.

To qualitatively examine the impact that the non-responsive flow has onTCP performance, Fig-

ure 4.16 plots the throughput of all 400TCP flows usingSFB when the non-responsive flow sends

at a45Mbs rate. As the figure shows,SFB allows eachTCP flow to maintain close to a fair share

of the bottleneck link’s bandwidth while the non-responsive flow is rate-limited to well below its
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2Mbs non-responsive flow 45Mbs non-responsive flow

Packet Loss (Mbs) SFB RED SFQ+RED SFB RED SFQ+RED

Total 1.856 1.787 3.599 44.850 13.393 46.467

Non-responsive flow 1.846 0.034 1.034 44.841 10.324 43.940

All TCP flows 0.010 1.753 0.966 0.009 3.069 2.527

Table 4.1:SFB loss rates inMbs (one non-responsive flow)

transmission rate. In contrast, Figure 4.17(a) shows the same experiment using normal RED queue

management. The figure shows that the throughput of allTCP flows suffers considerably as the

non-responsive flow is allowed to grab a large fraction of the bottleneck link bandwidth. Finally,

Figure 4.17(b) shows that whileSFQ with RED can effectively rate-limit the non-responsive flows,

the partitioning of buffer space causes the fairness between flows to deteriorate as well. The large

amount of packet loss induces a large number of retransmission timeouts across a subset of flows

which causes significant amounts of unfairness [48]. Thus, through the course of the experiment, a

few TCP flows are able to grab a disproportionate amount of the bandwidth while many of the flows

receive significantly less than a fair share of the bandwidth across the link. In addition to this,SFQ

with RED allows 1
46
th

of the 400 flows to be mapped into the same queue as the non-responsive

flow. Flows that are unlucky enough to map into this bin receive an extremely small amount of the

link bandwidth.SFB, in contrast, is able to protect all of theTCP flows in this experiment.

4.4.3 Limitations of SFB

While it is clear that the basicSFB algorithm can protectTCP-friendly flows from non-responsive

flows without maintaining per-flow state, it is important to understand how it works and its lim-

itations. SFB effectively usesL levels withN bins in each level to createNL virtual buckets.

This allowsSFB to effectively identify a single non-responsive flow in anNL flow aggregate using

O(L �N) amount of state. For example, in the previous section, using two levels with 23 bins per

level effectively creates 529 buckets. Since there are only 400 flows in the experiment,SFB is able to

accurately identify and rate-limit a single non-responsive flow without impacting the performance

of any of the individualTCP flows. As the number of non-responsive flows increases, the number
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Figure 4.16: Bandwidth ofTCP flows usingSFB (45Mbs flow)

of bins which become “polluted” or havepm values of 1 increases. Consequently, the probability

that a responsive flow gets hashed into bins which are all polluted, and thus becomes misclassified,

increases. Clearly, misclassification limits the ability ofSFB to protect well behavedTCP flows.

Using simple probabilistic analysis, Equation (4.1) gives a closed-form expression of the prob-

ability that a well-behavedTCP flow gets misclassified as being non-responsive as a function of

number of levels (L), the number of bins per level (B), and the number of non-responsive/malicious

flows (M), respectively.

p = [1� (1� 1

B
)M ]L (4.1)

In this expression, whenL is 1, SFB behaves much likeSFQ. The key difference is thatSFB using

one level is still aFIFO queueing discipline with a shared buffer whileSFQ has separate per-bin

queues and partitions the available buffer space amongst them.

Using the result from Equation (4.1), it is possible to optimize the performance ofSFB givena

priori information about its operating environment. Suppose the number of simultaneously active

non-responsive flows can be estimated (M ) and the amount of memory available for use in the

SFB algorithm is fixed (C). Then, by minimizing the probability function in Equation (4.1) with

the additional boundary condition thatL � N = C, SFB can be tuned for optimal performance.

To demonstrate this, the probability for misclassification across a variety of settings is evaluated.

Figure 4.18(a) shows the probability of misclassifying a flow when the total number of bins is fixed

at 90. Figure 4.18(b) shows the same probability function when the total number of bins is fixed at

900. In these figures, the number of levels used inSFB along with the number of non-responsive
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Figure 4.17: Bandwidth ofTCP flows using RED andSFQ (45Mbs flow)

flows are varied. As the figures show, when the number of non-responsive flows is small compared

to the number of bins, the use of multiple levels keeps the probability of misclassification extremely

low. However, as the number of non-responsive flows increases past half the number of bins present,

the single levelSFBqueue affords the smallest probability of misclassification. This is due to the fact

that when the bins are distributed across multiple levels,each non-responsive flow pollutes a larger

number of bins. For example, using a single levelSFB queue with 90 bins, a single non-responsive

flow pollutes only one bin. Using a two-levelSFB queue with each level containing 45 bins, the

number of effective bins is 45�45 (2025). However, a single non-responsive flow pollutes two bins

(one per level). Thus, the advantage gained by the two-levelSFB queue is lost when additional non-

responsive flows are added, as a larger fraction of bins become polluted compared to the single-level

situation.

In order to evaluate the performance degradation ofSFB as the number of non-responsive flows

increases, Figure 4.19 shows the bandwidth plot of the 400TCP flows when 4 and 8 non-responsive

flows are present. In these experiments, each non-responsive flow transmits at a rate of5Mbs. As

Equation (4.1) predicts, in anSFB configuration that contains two levels of 23 bins,2:65% of the

TCP flows (11) are misclassified when 4 non-responsive flows are present. Similarly, when 8 non-

responsive flows are present,8:96% (36) of theTCP flows are misclassified. When the number of

non-responsive flows approachesN , the performance ofSFB deteriorates quickly as an increasing

number of bins at each level becomes polluted. In the case of 8 non-responsive flows, approxi-
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Figure 4.18: Probability of misclassification

mately 6 bins or one-fourth of the bins in each level are polluted. As the figure shows, the number

of misclassified flows matches the model quite closely. Note that even though a larger number of

flows are misclassified as the number of non-responsive flows increases, the probability of misclas-

sification in a two-levelSFB still remains below that ofSFQ or a single-levelSFB. Using the same

number of bins (46), the equation predicts thatSFQand a single-levelSFB misclassify8:42% of the

TCP flows (34) when 4 non-responsive flows are present and16:12% of theTCP flows (64) when 8

non-responsive are present.

4.4.4 SFB with moving hash functions

In this section, two basic problems with theSFB algorithm are addressed. The first, as described

above, is to mitigate the effects of misclassification. The second is to be able to detect when non-

responsive flows become responsive and to reclassify them when they do.

The idea behindSFB with moving hash functions is to periodically or randomly reset the bins

and change the hash functions. A non-responsive flow will continually be identified and rate-limited

regardless of the hash function used. However, by changing the hash function, responsiveTCP flows

that happen to map into polluted bins will potentially be remapped into at least one unpolluted

bin. In many ways the effect of using moving hash functions is analogous to channel hopping in

CDMA [33, 64] systems. It essentially reduces the likelihood of a responsive connection being

continually penalized due to erroneous assignment into polluted bins.
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(a) 4 non-responsive flows (b) 8 non-responsive flows

Figure 4.19: Bandwidth ofTCP flows usingSFB

To show the effectiveness of this approach, the idea of moving hash functions was applied to the

experiment in Figure 4.19(b). In this experiment, 8 non-responsive flows along with 400 responsive

flows share the bottleneck link. To protect against continual misclassification, the hash function is

changed every two seconds. Figure 4.20(a) shows the bandwidth plot of the experiment. As the

figure shows,SFB performs fairly well. While flows are sometimes misclassified causing a degra-

dation in performance, none of theTCP-friendly flows are shut out due to misclassification. This is

in contrast to Figure 4.19 where a significant number ofTCP flows receive verylittle bandwidth.

While the moving hash functions improve fairness across flows in the experiment, it is interest-

ing to note that every time the hash function is changed and the bins are reset, non-responsive flows

are temporarily placed on “parole”. That is, non-responsive flows are given the benefit of the doubt

and are no longer rate-limited. Only after these flows cause sustained packet loss, are they identified

and rate-limited again. Unfortunately, this can potentially allow such flows to grab much more than

their fair share of bandwidth over time. For example, as Figure 4.20(a) shows, non-responsive flows

are allowed to consume3:85Mbs of the bottleneck link. One way to solve this problem is to use

two sets of bins. As one set of bins is being used for queue management, a other set of bins using

the next set of hash functions can be warmed up. In this case, any time a flow is classified as non-

responsive, it is hashed using the second set of hash functions and the marking probabilities of the

corresponding bins in the warmup set are updated. When the hash functions are switched, the bins

which have been warmed up are then used. Consequently, non-responsive flows are rate-limited
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Figure 4.20: Bandwidth ofTCP flows using modifiedSFB algorithms

right from the beginning. Figure 4.20(b) shows the performance of this approach. As the figure

shows, the double buffered moving hash effectively controls the bandwidth of the non-responsive

flows and affords theTCP flows a very high level of protection.

One of the advantages of the moving hash function is that it can quickly react to non-responsive

flows which becomeTCP-friendly. In this case, changing the hash bins places the newly reformed

flow out on parole for good behavior. Only after the flow resumes transmitting at a high rate, is

it again rate-limited. To show this, an additional experiment was run using the same experimental

setup as above. In this experiment, one non-responsive flow with a transmission rate of5Mbs and

one oscillating flow is run between network endpoints. The oscillating flow transmits at5Mbs

from t = 10s to t = 30s and fromt = 50s to t = 70s. At all other times, the flow transmits at

0:10Mbs, approximately a fair share of the bottleneck link. Table 4.2 shows the packet loss rates in

the experiment. As the table shows, the first non-responsive flow sees a sustained packet loss rate

throughout the experiment which effectively limits its throughput to well below its transmission

rate. The table also shows that when the second flow transmits at5Mbs, it observes a sustained

packet loss rate as a large fraction of its packets are dropped by the queue. When the second flow

cuts its transmission rate to a fair share of the link’s bandwidth, it is reclassified and a very small

fraction of its packets are dropped. Finally, the table shows that all 400TCP flows see a minimal

amount of packet loss throughout the experiment. Figure 4.21 shows the bandwidth plot for theTCP

flows in the experiment. As shown in the figure,SFB protects theTCP flows from the non-responsive
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Loss Rates (inMbs)

10s-30s 30s-50s 50s-70s 70s-100s

Non-responsive Flow 4.866 4.849 4.898 4.863

Oscillating Flow 4.871 0.025 4.845 0.017

TCP Flows 0.402 0.358 0.260 0.324

Total 10.139 5.232 10.003 5.204

Table 4.2:SFB loss rates (one non-responsive, one oscillating flow)

flows, thus allowing them to maintain close to a fair share of the bottleneck link.

4.4.5 Round-trip time sensitivity

The previous experiments withSFB use a network topology in which all of the connections have

approximately the same round-trip time. When a large number of connections with varying round-

trip times are used withSFB, fairness between flows can deteriorate. It has been shown thatTCP

connections with smaller round-trip times can dominate the bandwidth on the bottleneck link since

their window increases are clocked more frequently. When a small number of such connections are

present,SFB can mitigate this problem somewhat. Similar to the non-responsive flow cases above,

TCP connections with small round-trips slowly drive the marking probability of their bins higher.

Thus, whenpmin is calculated, they receive a larger fraction of congestion notification. However,

when a large number ofTCP flows with varying round-trip times are present, this mechanism breaks

down just asSFB breaks down with a large number of non-responsive flows.

Figure 4.22 shows the performance of RED and SFB using the network shown in Figure 4.4.

Using this network, 400 sources are randomly started between network end points. As the figure

shows, both RED andSFB show biases towards connections with smaller round-trip times. However,

since all of the flows still useTCP, the amount of unfairness between flows is limited.
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Figure 4.21: Bandwidth ofTCP flows (one non-responsive, one oscillating flow)

4.5 Comparisons to Other Approaches

SFB provides one particular solution for identifying and rate-limiting non-responsive flows,

thereby enforcing fairness. This section comparesSFB to other related approaches.

4.5.1 RED with penalty box

The RED with penalty box approach takes advantage of the fact that high bandwidth flows see

proportionally larger amounts of packet loss. By keeping a finite log of recent packet loss events,

this algorithm identifies flows which are non-responsive based on the log [46]. Flows which are

identified as being non-responsive are then rate-limited using a mechanism such as class-based

queueing [27]. While this approach may be viable under certain circumstances, it is unclear how

the algorithm performs in the face of a large number of non-responsive flows. Unless the packet

loss log is large, a single set of high bandwidth flows can potentially dominate the loss log and

allow other, non-responsive flows to go through without rate-limitation. In addition, flows which

are classified as non-responsive remain in the “penalty box” even if they subsequently become

responsive to congestion. A periodic and explicit check is thus required to move flows out of the

penalty box. Finally, the algorithm relies on aTCP-friendliness check in order to determine whether

or not a flow is non-responsive. Withouta priori knowledge of the round-trip time of every flow

being multiplexed across the link, it is difficult toaccurately determine whether or not a connection

is TCP-friendly.
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Figure 4.22: Bandwidth ofTCP flows over varying round-trip times.

4.5.2 FRED

Another proposal for using RED mechanisms to provide fairness is Flow-RED (FRED) [41].

The idea behind FRED is to keep state based on instantaneous queue occupancy of a given flow. If a

flow continually occupies a large amount of the queue’s buffer space, it is detected and limited to a

smaller amount of the buffer space. While this scheme provides rough fairness in many situations,

since the algorithm only keeps state for flows which have packets queued at the bottleneck link, it

requires a large amount of buffers to work well. Without sufficient buffer space, it becomes hard for

FRED to detect non-responsive flows since they may not have enough packets continually queued

to trigger the detection mechanism. In addition, non-responsive flows are immediately re-classified

as being responsive as soon as they clear their packets from the congested queue. For small queue

sizes, it is quite easy to construct a transmission pattern which exploits this property of FRED in

order to circumvent its protection mechanisms. Note thatSFB does not directly rely on queue

occupancy statistics, but rather long-term packet loss and link utilization behavior. Because of this,

SFB is better suited for protectingTCP flows against non-responsive flows using a minimal amount

of buffer space. Finally, as with the packet loss log approach, FRED also has a problem when dealing

with a large number of non-responsive flows. In this situation, the ability to distinguish these flows

from normalTCP flows deteriorates considerably since the queue occupancy statistics used in the

algorithm become polluted. By not using packet loss as a means for identifying non-responsive

flows, FRED cannot make the distinction betweenN TCP flows multiplexed across a link versusN
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non-responsive flows multiplexed across a link.

4.5.3 RED with per-flow queueing

A RED-based, per-active flow approach has been proposed for providing fairness between

flows [63]. The idea behind this approach is to do per-flow accounting and queueing only for

flows which are active. The approach argues that since keeping a large amount of state is feasible,

per-flow queueing and accounting is possible even in the core of the network. The drawbacks of this

approach is that it provides no savings in the amount of state required. IfN flows are active,O(N)

amount of state must be kept to isolate the flows from each other. In addition, this approach does

not address the large amount of legacy hardware which exists in the network. For such hardware, it

may be infeasible to provide per-flow queueing and accounting. BecauseSFB provides considerable

savings in the amount of state and buffers required, it is a viable alternative for providing fairness

efficiently.

4.5.4 Stochastic Fair Queueing

Stochastic Fair Queueing (SFQ) is similar to anSFB queue with only one level of bins. The

biggest difference is that instead of having separate queues,SFB uses the hash function for account-

ing purposes. Thus,SFB has two fundamental advantages overSFQ. The first is that it can make

better use of its buffers.SFB gets some statistical multiplexing of buffer space as it is possible for

the algorithm to overbook buffer space to individual bins in order to keep the buffer space fully

utilized. As described in Section 4.4.2, partitioning the available buffer space adversely impacts

the packet loss rates and the fairness amongstTCP flows. The other key advantage is thatSFB is a

FIFO queueing discipline. As a result, it is possible to change the hash function on the fly without

having to worry about packet re-ordering caused by mapping of flows into a different set of bins.

Without additional tagging and book-keeping, applying the moving hash functions toSFQcan cause

significant packet re-ordering.

4.5.5 Core-Stateless Fair Queueing

Core-Stateless Fair Queueing [62] (CSFQ) is a highly scalable approach for enforcing fairness

between flows without keeping any state in the core of the network. The approach relies on per-flow
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accounting and marking at the edge of the network in conjunction with a probabilistic dropping

mechanism in the core of the network. The idea behindCSFQ is to estimate the rate of the flow

at the ingress of the network or network cloud and to attach an estimate of the flow’s sending rate

to everypacket that the flow sends. Given this label, intermediate routers at congested links in the

network calculate a dropping probability which is derived from an estimate of a fair share of the

bottleneck link capacity and the rate of the flow as identified in the label.

While CSFQ provides an elegant and efficient solution to providing fairness, it relies on the

use of additional information that is carried in every packet of the flow. Thus, the scheme trades

off overhead in the packet header at every network link for resource management overhead at the

bottleneck router. In addition, it requires that both intermediate routers and edge devices adhere to

the same labeling and dropping algorithm. A misconfigured or poorly implemented edge device can

significantly impact the fairness of the scheme.SFB, on the other hand, does not rely on coordination

between intermediate routers and edge markers and can peform well without placing additional

overhead in packet headers.

4.6 Conclusion and Future Work

This chapter has demonstrated the inherent weakness of current active queue management al-

gorithms which use queue occupancy in their algorithms. In order to address this problem, a fun-

damentally different queue management algorithm called BLUE has been designed and evaluated.

BLUE uses the packet loss and link utilization history of the congested queue, instead of queue

lengths, to manage congestion. In addition to BLUE, this chapter has proposed and evaluatedSFB,

a novel algorithm for scalably and accurately enforcing fairness amongst flows in a large aggregate.

Using SFB, non-responsive flows can be identified and rate-limited using a very small amount of

state.

As part of on-going work, several extensions to BLUE andSFB are being considered. In order

to improve the adaptiveness and accuracy of BLUE, a range of real, Internet, traffic traces is being

studied. By understanding how quickly and how often traffic changes across bottleneck links, the

BLUE algorithm and its parameters can be optimally parameterized. To improve the effectiveness of

SFB, additional mechanisms for managing non-responsive flows are being examined. In this chapter,
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non-responsive flows were rate-limited to a fixed amount of bandwidth across the bottleneck link.

However, it is possible to rate-limit non-responsive flows to a fair share of the link’s capacity. One

way to do this is to estimate both the number of non-responsive flows and the total number of

flows going through the bottleneck. Using this information, the rate-limiting mechanism can be set

accordingly. Another possible mechanism to find the number of “polluted” bins and use it to derive

the fraction of flows which are non-responsive. Assuming perfect hash functions, this can be directly

derived from simple analytical models ofSFB as described in Section 4.4. Finally, the development

of an “enhanced” BLUE queue management algorithm which is similar to “enhanced” RED [19,

20] is being considered. By using BLUE, the buffer requirements needed to support differentiated

services can be greatly reduced.
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CHAPTER 5

UNDERSTANDING TCP DYNAMICS IN A DIFFERENTIATED

SERVICES INTERNET

5.1 Introduction

The previous two chapters have addressed how to improve the efficiency of delivering best-

effort service in today’s Internet. While this is important to the future success of the Internet,

another important problem facing the Internet today is supporting additional services for emerging

applications. As described in Chapter 2, theIETF is considering a more evolutionary approach to

provide service differentiation in the Internet using the type-of-service (ToS) bits in theIP header.

Through the Differentiated Services (DIFFSERV) working group, a small set of building blocks are

being defined which allow routers to scalably provide service differentiation. While it is relatively

clear how to build predictable services using the protocols and mechanisms provided byRSVP and

INTSERV, the ability to construct predictable services using the coarse-grained mechanisms pro-

vided by DIFFSERV is an open issue.

This chapter presents an implementation of a controlled-load service variant using the simple

priority mechanisms provided by DIFFSERV, and in particular, the AF PHB. Controlled-load ser-

vice [68] is one of the services which has been standardized by the INTSERV working group for

deployment in the network. One of the salient features of this service is that it provides predictable,

end-to-end bandwidth assurances to applications. However, because of the implicit need to pro-

cess and forward packets from sources on a per-flow basis, the controlled-load service, along with

many of the other INTSERV services has not seen widespread deployment in the Internet due to the
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amount of overhead involved in supporting it.

By eliminating the per-flow forwarding aspects associated with INTSERV-style services, this

chapter describes a more scalable implementation of controlled-load service. This implementation

uses a simple extension to the queueing mechanisms in today’s routers coupled with modifications

to TCP’s congestion control mechanisms. These modifications enable the network to guarantee a

minimal level of end-to-end throughput to different network sessions. In addition, any residual

network capacity is shared in a socially cooperative fashion, in a manner similar to the one in use

in the Internet today by applications usingTCP. In this scheme, each reserved session is associated

with a traffic envelope. Traffic is policed at the source and packets conforming to the envelope

are marked (with the AF PHB). Non-conformant traffic and best-effort traffic is injected into the

network unmarked. At the routers an enhanced RED (ERED) [26] algorithm is used. In ERED, both

marked and unmarked packets share the sameFIFO queue. When the queue length at the router

exceeds a certain threshold, packets are dropped randomly as done in RED gateways. However,

unlike standard RED gateways where all packets have the same drop probability, in the enhanced

RED (ERED) gateway, marked packets have a lower drop probability than the unmarked packets.

The service realized by the mechanism described above is an interpretation of the controlled-

load service. By definition, traffic belonging to a controlled-load session and conforming to the

associated traffic envelope sees very little loss and very little queueing delay through the network.

Non-conformant controlled-load traffic is treated as best-effort traffic. By using a common queue for

best-effort and conformant controlled-load traffic, the recommended delay targets for conformant

controlled-load traffic is relaxed. This laxity not only simplifies the implementation and reduces

packet handling overheads at the routers, but also helps maintain packet ordering. Note that ERED

only ensures a low loss rate to conformant controlled-load traffic. Because many elastic and tolerant

playback applications can withstanda reasonable amount of queueing delay, the use of a sharedFIFO

to service both marked and unmarked packets is feasible.

There are many ways to potentially implement controlled-load service using a variety of trans-

port protocols other thanTCP and a variety of queueing mechanisms other than ERED. While other

approaches may perform equally well,TCP is the only one considered since its use is ubiquitous.

In addition, ERED queueing is used because (1) it does not require per-flow queueing which may

not scale well and (2) it maintainsFIFO ordering of packets which is important toTCP’s congestion
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control mechanisms.

Although controlled-load service can be used in conjunction with any transport protocol, the

focus in this chapter is onTCP. TCP is examined since (1) an overwhelming number of applications

useTCP as the transport protocol of choice, and (2)TCP has a well-developed congestion and flow

control mechanism that makes it an interesting case study. While some of the tolerant playback ap-

plications may not useTCP, the mechanisms described here can easily be applied to other transport

protocols, such asRTP. The objective of this chapter is to understand and to improve the end-to-end

control mechanisms used inTCP in a network which supports both best-effort and priority-based

mechanisms. The analysis of the behavior of unmodifiedTCP over a network which does priority

marking has particular relevance for current DIFFSERV proposals based on AF.

5.2 Integrated Services

TheRSVPand the INTSERV working groups in theIETF have defined several protocols and stan-

dards to support controlled-load and other integrated services in the Internet. This section reviews

these standards and shows how the proposed enhancements fit into theIETF-defined framework.

5.2.1 Policing and marking

To avail itself of a reservation, a connection has to specify a traffic envelope, calledTspec.

The Tspec includes a long-term average rate (rm), a short-term peak rate (rp), and the maximum

size (b) of a burst of data generated by the application. For example, for an application generating

MPEG-encoded video, the average rate could be the long-term data rate, the peak rate could be the

link bandwidth at the source, and the burst size could be the maximum size of a frame. The Tspec

also specifies the maximum and minimum packet sizes to be used by the application. Connections

are monitored and policed at the network entry points. This could be either at the source, or at

the boundary between the corporate or campus intranet and the Internet. Packet classification and

service differentiation also takes place at the routers. The service priority given to a packet is

a function of the Tspec, and in the case of some service classes, a separate service specification

known asRspec. For controlled-load service, no Rspec is specified.

In order to police traffic at the source, token buckets are used [56]. The token generation process

74



follows the Tspec advertised by the source. That is, the long-term average rate of token generation

is tm, the short-term peak rate of token generation istp, and the depth of the token bucket isb. Each

time a packet is injected into the network, if sufficient tokens are available, an equivalent number

of tokens are considered consumed. If tokens are not present at the time of transmission, the packet

is treated as non-conformant. In the presence of an AF-style marking facility, classification is only

required at the network entry point and not at interior routers. Conformant controlled-load traffic

is AF-marked at network entry points before being injected into the network while non-conformant

controlled-load traffic and best-effort traffic is injected into the network unmarked. In the absence of

a marking facility,IP datagrams have to be passed through a classifier at the source, as well as at the

routers, to determine which flows they belong to and to determine whether they are in violation of,

or in conformance with, the advertised Tspecs of the flows. In the rest of the chapter, it is assumed

that AF-marking is available in the network.

5.2.2 Packet handling

The routers perform admission control for controlled-load connections. Admission control al-

gorithms are not discussed in this chapter, but, for the purpose of the experiments, it is assumed that

the aggregate reservation levels at the routers are within their capacities. In addition to performing

admission control, the routers also need to support service differentiation between marked (con-

formant controlled-load) and unmarked (non-conformant controlled-load and best-effort) packets.

One obvious approach to providing different services to marked and unmarked packets is to main-

tain separate queues for each class and serving them according to their scheduling priority. Another

approach is to use a commonFIFO queue for both compliant and non-compliant traffic. A com-

monFIFO queue not only simplifies the scheduling functionality at the router, it also helps maintain

packet ordering in controlled-load connections. Although maintaining packet ordering is not a re-

quirement, failure to do so may have serious performance impacts on transport protocols such as

TCP.

In order to provide service differentiation between marked and unmarked packets, a selective

packet discard mechanism based on an enhanced version of the RED is used. Enhanced Random

Early Detection (ERED) is a minor modification to the original RED algorithm. In ERED, the thresh-

olds only apply to unmarked packets. Unmarked packets are randomly dropped when the average

75



queue length exceedsminth(unmark) and are all dropped when the average queue length exceeds

maxth(unmark). Marked packets are only dropped when the queue is full. In order to ensure low

loss of marked packets,minth andmaxth values need to be set appropriately. For example, in a

system withn controlled-load sessions with peak rates ofrip; i = 1; 2; : : : ; n, a service rate ofL,

and a buffer of lengthB, the thresholds must be set so that they can roughly ensure that no marked

packets are dropped1. In particular, the following equation should hold:

 
nX
i=1

rip � L

!
� maxth(unmark)

L
< B �maxth(unmark)

Note that the maximum number of unmarked packets that can be in the queue at any time is

around (maxth(unmark)). It takes at mostmaxth(unmark)
L

to completely drain the queue of un-

marked packets. Given the maximum aggregate arrival rate of marked packets
P
rip and the service

rateL, the rate of increase of the queue occupancy is
P
rip � L since transmission of an unmarked

packet makes room for an incoming marked packet. Hence, the amount of excess buffer space

needed to ensure no marked packets are dropped is the product of (
P
rip � L), the rate of increase

in queue occupancy andmaxth(unmark)
L

, the time needed to drain the unmarked packets. Unfortu-

nately, since the thresholds such asmaxth are triggered by an average queue length calculation,

these settings can still lead to unnecessary losses in compliant packets. For example, additional

queueing work has shown the use of absolute thresholds for limiting unmarked packets can effec-

tively prevent loss of marked packets [10, 30]. While ERED works well for the experiments in this

study, a queue management algorithm which reserves a portion of the queue for marked packets

while performing RED on the remaining portion might be ideal for controlling congestion while

effectively supporting the priority marking.

An appropriately parameterized ERED queue can still be used to guarantee low loss rate to con-

formant controlled-load traffic. Since it uses a commonFIFO queue, though, the delay experienced

by the conformant controlled-load traffic and best-effort traffic is the same. It is possible to param-

eterize ERED queues to control the queue size, and hence, the queueing delay. However, a small

queue size may lead to high loss rates for unmarked packets. An alternative approach is to main-

tain separate queues for controlled-load and best-effort traffic. Separation of traffic classes is likely

to improve the delay performance of controlled-load traffic. However, it complicates bandwidth

1It is assumed that the duration of bursts is the same for all sources. This assumption can be relaxed for more precise
admission control.
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Figure 5.1: Network topology

sharing between non-conformant controlled-load and best-effort traffic. The router would have

to use weighted fair queueing to ensure equal-fair share of excess bandwidth to non-conformant

controlled-load and best-effort traffic. Consequently, it has to monitor the number of active con-

nections in the controlled-load and best-effort classes and has to adjust the weights dynamically

depending on the number of connections in each class.

Finally, there are many other ways of realizing controlled-load service. Some of these mecha-

nisms, such as class-based queueing [27] and weighted fair queueing [5, 12, 14, 28, 29, 57, 60], can

be used to accurately implement controlled-load and other service classes defined by the INTSERV

working group. Section 5.8 describes how ERED and services based on priority handling of pack-

ets can be embedded in a more fully evolved integrated and differentiated services Internet. In

particular, the ability to effectively embed ERED in a class-based queueing framework is shown.

5.3 UnderstandingTCP Dynamics

This section is devoted to the study ofTCP dynamics in a differentiated services environment.

For the purpose of the experiments, thens simulator was modified [46]. For most of the experiments

reported here, the NewReno variant ofTCP [32] is used. The simulator was then modified by adding

policing and extending the RED queueing discipline. For the experiments in this section, a simple

network topology shown in Figure 5.1 is considered. The capacity of each bi-directional link is

labeled and has a transmission delay of10ms. Connections requesting a reservation specify a

peak and a mean rate of service, and the maximum size of a burst. At the source, tokens are

generated at the service rate and are accumulated in a token bucket. The depth of the token bucket
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Figure 5.2: Effect of reservation on end-to-end throughput.

is the same as the maximum burst size specified by the source. Throughout this chapter, the token

bucket size is measured in units of time. In units of tokens, it is equivalent to token generation rate

multiplied by the bucket size in units of time. The peak rate is set to the link speed by default.TCP

segments belonging to the reserved connections are transmitted as marked datagrams if there are

sufficient tokens available in the token bucket at the time of transmission. Otherwise, they are sent

as unmarked datagrams.TCP segments belonging to best-effort connections are sent as unmarked

datagrams. It is assumed that sources are greedy, that is, they always have data to send.

5.3.1 Effect of service rate

In order to investigate the effect of service rate on end-to-end throughput, three connections

with reservations of1Mbs, 2Mbs, and4Mbs, and three best-effort connections from noden0 to

n5 were run. Each controlled-load source used a token bucket of depth50ms and each node has a

100KB ERED queue withmaxth of 80KB andminth of 20KB. The maximum drop probability

of the unmarked packets for this experiment was0:02. This probability is chosen in order to make

early detection aggressive enough to control the length of the queue. Note that a drop probability

which is too small makes the early detection mechanism ineffective while a drop probability which

is too large can lead to underutilization of the link as described in Chapter 3.
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Figure 5.2(a) shows the throughput seen by each connection. Throughput is computed by mea-

suring the data received at the receiver over an observation period and dividing it by the observation

interval. Figure 5.2(b) plots the compliant throughput seen by connections with reservations. This is

the portion of the throughput that is contributed by marked packets. Ideally, it should be equal to the

reserved rate of service. From Figure 5.2(a), it is evident that connections with higher reservations

generally see better throughput than connections with lower or no reservations. However, as shown

in Figure 5.2(b), the compliant portions of the bandwidth received by all reserved connections are

less than their respective service rates.

The explanation for the observations from Figure 5.2 lies in the flow and congestion control

mechanisms used byTCP. The TCP sessions with reservations exercise their flow and congestion

control mechanisms in the same way as best-effort connections. However, they have a lower prob-

ability of losing a packet at the routers since their marked packets have lower (in this case close

to zero) probability of getting dropped. Because connections with higher reservations mark their

packets at a higher rate, they have a decreased probability of having a packet dropped. This is

why connections with higher reservations see higher throughput than connections with lower or no

reservations. However, as observed from Figure 5.2(b),TCP fails to fully exploit the benefits of the

reservation. The compliant part of the throughput is less than the reservation levels in all cases.

Since marked packets are not dropped by the network it is apparent that the source is not generating

a sufficient number of marked packets to keep the reserved pipe full. Since the sender is a greedy

source, it is theTCP congestion control mechanism that is responsible for throttling the source. The

tokens, however, are generated at a rate commensurate with the reservation. If the source does not

have enough or is unable to transmit packets, the token bucket fills up and ultimately overflows

causing token loss.

Figure 5.3 shows the packet trace of the connection with4Mbs reservation over a five-second

interval. The plot shows the sequence number (modulo 200)2, the congestion window of the sender,

and the number of lost tokens (given in packets modulo 200) for the connection. A positive slope

of the lost token curve indicates a non-zero token loss rate throughout the observation period. The

windowing mechanism used byTCP is partly responsible for this phenomenon.

TCP uses two windows for the purpose of flow and congestion control. The receiver maintains

2Segments of size1KB are used. The sequence number is the sender’s packet sequence number.
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Figure 5.3: Packet trace of4Mbs connection.

and enforces an advertised window (AWND) as a measure of its buffering capacity. The sender

enforces a congestion window (CWND) as a measure of the capacity of the network. The sender is

prohibited from sending more than the minimum ofAWND andCWND worth of unacknowledged

data. As described in Chapter 2, when the loss of a segment is detected,TCP cuts its congestion

window in half or sets its congestion to 1 depending on whether its fast recovery or its retransmission

timeout mechanism is used. For connections with reservations, both actions are overly conservative

behavior since they are insensitive to the reservation that a particular connection may have. Thus,

even when tokens are present and the sender is eligible to transmit a new segment, it may be throttled

by the congestion window. As shown in Figure 5.3, the rate of token loss increases (as indicated

by the change in slope in the lost token curve) when a packet loss is detected (as indicated by the

decrease in congestion window), and slowly decreases as the congestion window opens up.

Another cause for token loss is the presence of persistent gaps in the acknowledgment stream.

Such gaps are part of a phenomenon commonly referred to as ACK-compression [70]. SinceTCP

uses acknowledgments to trigger transmissions, any significant time gap between the receipt of

successive acknowledgments causes the token bucket to overflow and results in a loss of transmis-

sion credits. The effects of these gaps can be seen in many places in the trace where the sequence

80



0.0 40.0 80.0 120.0 160.0 200.0 240.0
Time (s)

0.0

1.0

2.0

3.0

4.0

5.0

B
an

dw
id

th
 (

M
bs

)

50ms
100ms
200ms
400ms
800ms

0.0 40.0 80.0 120.0 160.0 200.0 240.0
Time (s)

0.0

1.0

2.0

3.0

4.0

5.0

B
an

dw
id

th
 (

M
bs

)

50ms
100ms
200ms
400ms
800ms

(a) One-way traffic. (b) Two-way traffic.
minth = 20KB;maxth = 80KB;Qsize = 100KB

Figure 5.4: Compliant throughput of4Mbs connection over various token buckets.

number is frozen. There are several ways in which these gaps can develop. One is through the

recovery process after a loss is detected usingTCP’s fast recovery and fast retransmit mechanisms.

After detecting a loss (by the receipt of a given number of duplicate acknowledgments),TCP cuts

its congestion window in half by halting additional transmissions until one half of the original win-

dow’s packets have cleared the network. Freezing the sender for this period of time causes the token

bucket to overflow, but more importantly, puts a gap in the data stream which results in a gap in the

acknowledgment stream during the next round-trip interval. Gaps in the acknowledgments cause

the token bucket to overflow and cause gaps in the data stream once again. Another way they can

form is through the normal dynamics of network traffic. Congestion on the forward and/or reverse

path, as well as additional queueing delays and jitter experienced as new connections come on-line,

can also create significant gaps in the stream.

5.3.2 Effect of token bucket depth

One way to alleviate the problem of token loss is to use a deeper token bucket. To investigate

the impact of the token bucket depth on compliant throughput, the experiment described in the

last section was repeated across a range of token bucket depths. Figure 5.4(a) shows the compliant

throughput seen by the connection with a4Mbs reservation for token bucket sizes of50ms, 100ms,

200ms, 400ms, and800ms using the same network topology and traffic. Increasing the token
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bucket depth improves the compliant throughput seen by a connection. However, it is only when

the token buckets are very large (400ms and800ms in this case) that the compliant throughput

seen by a connection remains at the reserved rate. Unfortunately, for a4Mbs connection, this

bucket depth corresponds to a maximum burst of compliant packets of up to200KB. In order for

the network to ensure that compliant packets are not dropped, it must have the capacity to buffer

such bursts. Without sufficient buffer space, a significant amount of burst losses can occur, causing

the performance of theTCP connection to deteriorate. To see the effect of this, the traffic going

through the network is increased by adding identical traffic going in the reverse direction. That is,

all connections are bidirectional. Adding traffic has several effects. One effect is that it spaces out

acknowledgments even further. Another, more problematic effect, is that it adds more congestion

to the network which causes queues to be fully occupied. Without sufficient buffer space to handle

large token buckets worth of priority packets, reserved connections experience a substantial amount

of burst losses. This causes the connection to eventually freeze since recovering from multiple

losses using RenoTCP, in particular, requires multiple round-trip times. Because of this, the source

is eventually throttled until the lost packets are successfully retransmitted [17]. Note that as the

bandwidth-delay is increased, the advertised window becomes a limiting factor in the performance

of the source. If the advertised window is not large enough, whenever a single packet is lost, the

source must freeze until the packet is successfully retransmitted. Figure 5.4(b) shows the result

of this experiment. In contrast to Figure 5.4(a), large token buckets do not give any additional

performance improvement. The connection never receives a compliant throughput more than half

of its 4Mbs reservation.

The use of large token buckets allows large bursts of marked packets into the network which

can result in loss of marked packets, thus defeating the service differentiation mechanism provided

by ERED. In a WFQ implementation of controlled-load service, this is akin to overflowing a flow’s

queue by allowing it to burst at a rate greater than the queue length. As with any service differ-

entiation, in order to ensure correct behavior, admission control must be done with the sources to

guarantee performance. For ERED queues, this essentially means that theminth andmaxth values

must be set appropriately so that marked packets are not dropped due to an over-occupation of un-

marked packets. For a given queue size there is some flexibility in terms of setting the thresholds

depending on the traffic load. As the load due to controlled-load traffic increases, themaxth and
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minth values can be lowered to ensure low or no loss of conformant controlled-load traffic. As the

controlled-load traffic load decreases, themaxth andminth values can be set higher to improve the

throughput of best-effort traffic. However, the extent to which this flexibility in setting the queue

thresholds can be used to ensure correct behavior is limited. As discussed in Section 5.2, for a given

queue size and link speed, the aggregate controlled load traffic that can be admitted into the system

is limited by

 
nX
i=1

rip � L

!
� maxth(unmark)

L
� B �maxth(unmark):

The above condition guarantees zero loss of conformant controlled-load traffic in the worst

case scenario where all controlled-load sources burst traffic at the highest rate at the same time.

In the rest of this chapter, it is assumed that the above condition is satisfied at every node and

that marked packets are never dropped. Note that the scenario captured in the above inequality is

very pessimistic. It is extremely unlikely for all controlled-load sources to burst at the same time.

Also, guaranteeing zero loss of conformant traffic is not a requirement for controlled-load service.

Consequently, it is possible to relax this condition and admit more controlled-load sessions than

deemed possible by the above inequality. Empirical and statistical admission control mechanisms,

such as measurement based admission control [39], can easily be used to operate the network at a

high utilization while maintaining low loss rates for conformant controlled-load traffic.

5.4 TCP Adaptations

In this section, a number of modifications toTCP’s control mechanisms are proposed and eval-

uated. These refinements helpTCP adapt better in an integrated services environment.

5.4.1 Timed transmissions

Since deeper token buckets require larger buffers in routers and allow less flows to be admitted,

it is desirable to keep the size of the token buckets small. To alleviate the effects of persistent gaps

in acknowledgment without increasing the token bucket depth significantly, two different schemes

are considered:delayedandtimedtransmissions. These schemes better adapt the acknowledgment-

based transmit triggers to the rate-based marking mechanisms. In the delayed transmission scheme,
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(1) After every acknowledgment
if (room under congestion and advertised windows)

if (tokens available> packet size)
send packet as marked

else
send packet as unmarked

(2) After everyTIMER expiry
if (room under advertised window)

if (tokens available> packet size)
send packet as marked

resetTIMER

Figure 5.5: Timed transmission algorithm.

a segment is held back for a random amount of time when there are insufficient tokens present to

transmit it as a marked packet. This, in effect, adds randomization to the data stream of the con-

nection which can potentially eliminate persistent gaps in the acknowledgment stream. In addition,

this scheme reduces the probability of the packets getting dropped inside the network since holding

back packets increases the probability that they are sent as marked packets. While the delayed trans-

missions work reasonably well when the reverse path is lightly-loaded [17], additional experiments

have shown that it is not very effective in the presence of reverse path congestion.

The second mechanism examined involves the use of a periodic timer. In this scheme,TCP’s

acknowledgment-triggered transmissions are augmented with a timer-triggered transmission mech-

anism. This timer-based triggering ensures that transmission opportunities are not lost while the

connection is waiting for an acknowledgment. In the timed transmission mechanism,each reserved

connection uses at most one timer which can have an interval which is customized. Connections

can also share a single timer depending on the overhead on the end host. In the timed transmission

scheme, the acknowledgment-clocked transmission algorithm is left unmodified. However, when-

ever a periodic timer expires, the connection examines the tokens in the token bucket. If there are

sufficient tokens available in the token bucket and there is room under the advertised window of the

receiver, the sender transmits the packet as marked, temporarily ignoring the value of the conges-

tion window. The timer is then reset to wake up another timer interval later. Figure 5.5 presents the

algorithm formally.

The intuition behind timed transmission is very simple. If there are enough tokens in the bucket,
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Figure 5.6: Throughput with timer-triggered transmissions.

as per contract with the network, the sender is eligible to inject new data in the network. Hence,

the congestion window is temporarily disregarded. Note that it is also possible to disregard the

congestion window for conformant sends triggered with an acknowledgment. However, the use of

the timers helps prevent sending back-to-back packets, making the resulting traffic stream slightly

smoother and more network-friendly. Regardless of how compliant sends are triggered, the connec-

tion still adheres to the advertised window constraint to avoid overflowing the receiver’s buffers. In

case of network disruption, the sendingTCP freezes when the number of unacknowledged packets

reaches the advertised window. Thus, the timer-triggered sends do not continue to occur in the pres-

ence of network failure. Having a timer trigger transmissions alleviates the problem of lost tokens

caused by gaps in the acknowledgments. In order to guarantee zero token loss, the timer interval

should be equal to[BucketSize�(PacketSize�1)]
BucketRate

. This takes care of the worst case where there are

PacketSize� 1 tokens in the bucket when a timer interrupt occurs.

Using this timer mechanism, the experiment in Section 5.3 was repeated. For the experiment,

token buckets of depth50ms were used along with a timer granularity of20ms. Figure 5.6(a)

plots the total bandwidth received by all connections and the compliant bandwidth received by the

connections with reservations. As shown in the figure, each connection gets its reserved rate and a

share of the excess bandwidth.
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While the timed transmissions allow for temporary violations of the congestion window to oc-

cur, non-compliant packets are sent only when there is room under the congestion window. Thus,

this mechanism does not alter the wayTCP’s congestion window is calculated. UsingTCP’s win-

dowing algorithm can be a problem since upon detection of a loss, the congestion window is cut

in half or reduced to 1 regardless of a connection’s reservation. Thus, although the timed trans-

mission mechanism allows the connection to receive its reserved rate,TCP’s windowing mechanism

can restrict the controlled-load connections from competing for the excess bandwidth in the net-

work3. Figure 5.6(b) plots the throughput seen by a best-effort connection and the non-compliant

throughput seen by each of the reserved connections using timed transmissions. The plots show that

connections with reservations receive a smaller share of the residual capacity when compared to the

best-effort connection. The connections with larger reservations are penalized to a greater extent

since halving the congestion window of a connection with4Mbs reservation has a more drastic

impact than halving the congestion window of a1Mbs connection.

5.4.2 Rate adaptive windowing

For reserved connections, the swings in the congestion window should always be above the

window guaranteed by the reserved rate. To account for and exploit the reservation,TCP’s window-

ing algorithm is modified. The key idea behind this modification is that for reserved connections,

CWND consists of two parts: a reserved part equal to the product of the reserved rate and the es-

timated round-trip time, and a variable part that tries to estimate the residual capacity and share it

with other active connections. Note that the reserved part ofCWND is a function of the round-trip

time. While the algorithm currently uses the commonTCP round-trip measurements to estimate this,

measurements using theTCP timestamps option (RTTM) [36] can provide a more accurate estimate.

Assuming that the size of the reservation window isRWND, the size of the variable window is

CWND�RWND. In the modified scheme, the size of the variable window is adjusted using the tradi-

tional TCP windowing mechanism and simply added to the calculated value ofRWND. Specifically,

the sender, instead of reducingCWND by half at the beginning of the fast recovery, sets it toRWND

+ CWND�RWND
2 . At the beginning of a slow start after detection of a lost segment through the

3Non-conformant controlled-load traffic is treated as best-effort traffic. Hence, residual network capacity should be
fairly shared between best-effort traffic and non-conformant controlled-load traffic.
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(1) After every new acknowledgment

if (CWND < SSTHRESH)

CWND = CWND + CWND�RWND
CWND

else

CWND = CWND + 1
CWND

(2) WhenNDUP exceeds a threshold

CWND = RWND + CWND�RWND
2 + NDUP

SSTHRESH= RWND + CWND�RWND
2

(3) Upon RTO

CWND = RWND + 1

SSTHRESH= RWND + CWND�RWND
2

Figure 5.7: Rate adaptive windowing algorithm.

retransmission timeout, it setsCWND to RWND+1 instead of 1. In both cases,SSTHRESHis set to

the minimum ofRWND+CWND�RWND
2 andAWND instead of the minimum ofCWND

2 andAWND.

Finally, because packets sent underRWND should not clock congestion window increases, window

increases are scaled byCWND�RWND
CWND . Note that even with these modifications to the windowing

algorithm, the sender must still adhere to theAWND restriction. That is, it is prohibited from sending

more than the minimum ofAWND andCWND worth of unacknowledged data. Because of this, the

size of the receiver’s buffer must be at least the size of the reservation window in order to sustain

the reserved rate usingTCP. This control algorithm is summarized in Figure 5.7.

The experiments described in the previous section were repeated with the windowing modifica-

tions in place. Figure 5.8(a) shows the aggregate and compliant throughput seen by each reserved

connection using the modifications to the windowing algorithm. It also shows throughput seen by

a best-effort connection between the same source and destination. As seen in the figure, all con-

nections perform as expected. Figure 5.8(b) plots the amount of excess bandwidth received by

each reserved connection, as well as the bandwidth received by the best-effort connection. When
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Figure 5.8: Throughput with timer and windowing modifications.

compared to Figure 5.6(b), the reserved connections obtain a fairer share of the excess bandwidth.

A common concern with any modification toTCP’s windowing mechanism is that the change

may be too aggressive and thus, cause unnecessary congestion. The experiments which have con-

ducted so far, including the ones reported in this chapter, show no bias towards connections using

the modified windowing mechanism. A number of different flavors of the windowing algorithm

have also been examined. They differ in the wayRWND is computed andCWND is clocked.RWND

is computed by multiplying the reserved rate with the estimated round-trip time. Depending on

how conservative the windowing mechanism needs to be, different estimates of round-trip time

can be used. Experiments using both the best and average estimates of round-trip times were also

performed and showed similar results. Note that in times of congestion, the estimated round-trip

time tends to be large and thus, the rate-based window can also grow large during a period of time

when the network needs a respite. Using the best observed round-trip time in this case, allows the

connection to be on the conservative side in calculating its rate-based window.

Another concern in deploying the modifications is that it may potentially lead to congestion

collapse since sources maintain a minimum sending rate which they do not back off from. In order

for such modifications to be deployed, the use of proper signaling, admission control, and resource

reservation must be required in order to prevent congestion collapse. Even when such mechanisms
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CPU Type 133MHz PowerPC 33MHz POWER

Timer setting 7.4�s 14.0�s

Timer handling 7.1�s 30.1�s

Timer canceling 6.5�s 9.6�s

Table 5.1: Timer overheads (AIX 4.2 kernel).

exist, it still may be necessary to add some mechanism to back off the timer and windowing mod-

ifications. For example, misconfiguration and/or the presence of legacy equipment may make it

impossible to guarantee an end-to-end minimum sending rate. In order to prevent congestion col-

lapse in these scenarios, the end host should be modified to respond to a large amount of packet

loss. One simple alternative is for the source to simply turn off both the timer and windowing

modifications whenever it detects any loss of marked (compliant) packets.

5.5 Fine-Grained Timers

This section explores the cost associated with deploying fine-grained timers intoTCP as well as

the benefits of using such a timer for sending data.

5.5.1 Timer overheads

In the description of the timed transmission algorithm, the existence of connection-specific

timers is assumed. However, it is possible, and desirable, to use a common timer shared amongst

all reserved connections. Such optimizations can be easily incorporated using techniques such as

the protocol timer services in theBSD-style TCP/IP stack. One of the common criticisms against

the use of timers is the overhead associated with handling timer interrupts. For that reason,TCP

uses coarse-grained (typically200ms and500ms) timers. However, the state of the art in processor

technology and operating systems has advanced considerably since the first design and implemen-

tation of TCP. Processors and timer implementations today are much faster, and consequently, the

overheads of handling timer interrupts are much lower.

Table 5.1 shows the overheads of setting, canceling, and handling timers in twoIBM RS/6000
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Figure 5.9: Throughput of4Mbs connection over various timer intervals.

machines runningAIX 4.2, one equipped with a33MHz POWER CPUand the other with a133MHz

PowerPC CPU. The table shows that the overheads of timer operations in modern systems (133MHz

PowerPC) are quite small. Even when older systems, such as the33MHz RS/6000, are considered

in this study, the overheads are well within acceptable limits. Note that these measurements were

taken without any optimization to the timer data structures in theAIX kernel. In AIX 4.2 timer

blocks are arranged in a linear array. The overhead of timer operations are expected to be even

lower if the timer blocks are stored as a hash table. However, at this point such an optimization is

not deemed necessary.

5.5.2 Buffer requirements

While there are concrete costs associated with using fine-grained timers, there are also signifi-

cant benefits. One benefit in using these timers is that it reduces the size of the token buckets used

for each application. From the calculations in Section 5.4, given a certain timer interval, the token

bucket depth should be at least(TimerInterval�BucketRate) + (PacketSize� 1) to prevent

token loss. Because the token bucket size grows linearly with the timer interval, using fine-grained

timers allows applications to request smaller token buckets. Since each router must be able to buffer

a burst the size of the entire token bucket for each application, the size of these buckets has a direct
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Figure 5.10: Dynamics of unmodifiedTCP.

impact on the amount of buffer space required in network routers.

Figure 5.9 shows the impact that the timer-interval has on the throughput of the4Mbs connec-

tion using the same multi-hop network setup. The simulations were run using both the timer and

windowing modifications as described in Section 5.4. As Figure 5.9(a) shows, as the timer interrupt

interval increases, the throughput of this connection drops considerably. The reason why this drop

is so dramatic is that the lack of buffer space in the network causes a significant amount of burst

losses. Burst losses severely limit the throughput of RenoTCP-variants since it takes one round-trip

time to recover from each loss. This causes the sendingTCP to degenerate into a stop-and-wait pro-

tocol. Figure 5.9(b) shows the results of the same experiment using buffers which are twice the size

(160KB). With significantly larger buffers, the connection is able to get its share of the bandwidth

over a larger range of timer interrupt intervals.

5.6 Transient Behavior

To take a closer look at the transient behavior, a controlled-load connection’s reservation is

changed in the presence of several best-effort connections. In particular, a controlled-load con-

nection which has a reservation that is toggled from0:5Mbs to 6Mbs every 20 seconds was run

betweenn0 andn5. Four pairs of best-effort connections were also run between these two nodes.
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Figure 5.11:TCP with timer and windowing modifications.

Figure 5.10(a) plots the total throughput of the controlled-load connection using unmodifiedTCP.

This connection uses a token bucket depth of800ms in order to prevent a large amount of to-

ken loss4. The plot also shows the reservation that the connection has over time. As shown in

the figure, the bandwidth received by the connection reacts slowly to increases in the reservation

while it reacts quickly to the decrease in reservation. This is directly attributed to the additive in-

crease/multiplicative decrease property ofTCP’s windowing algorithm [34]. Figure 5.10(b) shows

the congestion window trace for the normalTCP source. The graph shows the congestion window

linearly increasing in response to an increase in reservation level at timest = 0s, t = 40s, and

t = 80s. Thus, by the time the window size reaches a size which can support the size of the reser-

vation, almost the entire 20 second interval has elapsed. This is why the total throughput of this

connection lags behind the reservation change.

Figure 5.11(a) shows the same experiment, but with the reserved connection using the timer and

windowing modifications described earlier. Note that the throughput of the connection immediately

reacts to both the increase and decrease in reservation levels. Figure 5.11(b) shows the congestion

window trace of the connection over the same time period. The window size in this case reacts more

quickly to the change and thus allows the connection to get its reserved rate. One advantage of rate-

based windowing is that the congestion window immediately reflects any changes in reservation

4Note that the size of the buffers on each interface is100KB, which is enough to absorb the large bursts that are
caused by the deep token bucket.

92



0.0 40.0 80.0 120.0 160.0 200.0 240.0
Time (s)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

B
an

dw
id

th
 (

M
bs

)

1 Mbs
4 Mbs
Best−Effort

0.0 40.0 80.0 120.0 160.0 200.0 240.0
Time (s)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

B
an

dw
id

th
 (

M
bs

)

1 Mbs
4 Mbs
Best−Effort

(a) Reserved connections using Reno (b) Reserved connections using SACK
Qsize = 100KB

Figure 5.12: All nodes using drop-tail queues.

level, especially when the level is increased. ForTCP-variants which use fast retransmit and fast-

recovery, the connection is often in a state where it is increasing its congestion window additively in

order to find a congestion window that indicates the amount of available bandwidth in the network.

With a large change in reservation, this can take a fairly long time, especially for connections with

large round-trip times.

5.7 Path of Evolution

For the experiments reported in previous sections, it is assumed that all routers on the path

of a connection employ support for AF such as ERED. While this is desirable, modifications to

the Internet infrastructure will be incremental and evolutionary. To understand the impact of this

heterogeneity in the network, a number of scenarios are considered where none or only a selective

subset of routers are ERED-capable.

The purpose of the first experiment is to examine the impact of non-ERED gateways on reserved

connections. In this experiment, twoTCP connections with reservations of1Mbs and4Mbs as well

as a single best-effort connection are run between nodesn0 andn5. Pairs of best-effort connections

are also run between nodesn6 andn7 and betweenn8 andn9. Figure 5.12(a) plots the throughput

seen by these connections when all the routers are drop-tail routers which do not distinguish be-

tween marked and unmarked packets. The connections with reservations use the timed transmission
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Figure 5.13: Effect of selective reservation.

mechanism and the modified windowing scheme. Note that while no service differentiation is being

done on the links, it is assumed that adequate admission control and provisioning is being done

in order to ensure that the offered load does not overwhelm network links and cause congestion

collapse.

As shown in Figure 5.12(a), the reserved connections indeed see higher throughput than the best-

effort connection between the same nodes. However, the absence of ERED mechanisms in routers

adversely impacts the performance of connections with reservations. This situation worsens with

the increase in the reservation level. This is because a connection with a higher reservation transmits

a larger amount of data and thus, the number of packet drops it experiences is proportionally higher.

In addition, the connection with a larger reservation transmits data in larger bursts and is susceptible

to burst losses in the drop-tail queues. This is reflected in the oscillation in the bandwidth curve

for the connection with a4Mbs reservation. Burst losses, as described earlier, interact poorly

with Reno sources since it takes a full round-trip time to recover from each loss. This freezes the

sender and prevents it from getting its reserved rate. A packet trace of this connection verifies this

behavior. Figure 5.12(b) shows the same experiment with the reserved connections usingSACK

TCP. As shown in the figure, despite the absence of ERED queueing, all connections manage to

achieve aggregate throughputs close to their respective desired levels.

From the results of these experiments, it is fair to conclude that even without sophisticated

94



scheduling mechanisms it may be possible to extend the paradigm of equal sharing of network

capacity to one where it is shared in accordance with allocations. Note, however, that in the experi-

ments here, the aggregate reservation is lower than the network capacity. Cooperation among differ-

ent TCP connections is also assumed. This means that admission control and voluntary adherence

to the socially cooperative congestion control is still required. The ERED mechanism simply pro-

vides additional protection to compliant controlled-load traffic against best-effort and non-compliant

controlled-load traffic.

To examine the impact of ERED-capable routers at selected places, the experiments described

above were repeated using Reno sources with only a few selected routers employing ERED. Fig-

ure 5.13(a) shows the throughput of the same set of connections when interfaces only at the bottle-

neck links betweenn1 andn2 and betweenn3 andn4 employ ERED queues while the rest of the

interfaces use drop-tail queues. As the graph shows, placing ERED queues at bottleneck points in

the network is sufficient to provide connections their allocated share of the bandwidth. However, as

shown in the figure, the connection sometimes dips below its reservation level due to burst losses

which can occur in the presence of drop-tail queues. Figure 5.13(b) shows the throughput of the

connections when the ERED queues are placed on non-bottleneck links betweenn0 andn1 and be-

tweenn4 andn5. As with the drop-tail experiments in Figure 5.12(a), the performance of the high

bandwidth connection suffers throughout.

The results from these experiments demonstrate that there is an effective path of evolution of in-

tegrated services in the Internet. For the integrated services to be useful, it is not required to upgrade

the entire infrastructure at the same time. There is substantial value in following an evolutionary

path where at first the control mechanisms at the end hosts are modified and routers support admis-

sion control. Enhanced queueing mechanisms, such as ERED, can then be deployed at observed

bottlenecks and then gradually throughout the network.

5.8 CBQ and ERED

The experiments in this chapter have shown how to effectively provide minimum bandwidth

guarantees in the network using ERED gateways. While this service may be useful to a large class

of applications, in a fully-evolved integrated services Internet, such a mechanism must coexist with
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Figure 5.14:CBQ experiment.

other mechanisms for providing a range of alternative services. This allows applications written

using such a service, to continue to work as the Internet infrastructure is upgraded and more sophis-

ticated packet and link scheduling support is put into place.

The ERED mechanism can be easily embedded into more sophisticated scheduling disciplines

such as class-based queueing (CBQ) [27]. CBQ is one of the more popular mechanisms proposed

for packet and link scheduling in an integrated services Internet. InCBQ, datagrams belonging to

different classes are put in different queues in the routers. The queues are serviced in different

priority order based on the allocation given to the associated traffic class. Embedded as a class in

CBQ, ERED can be used to provide weighted bandwidth sharing between connections of a class.

By aggregating connections with varying bandwidth requirements in one class, the total number of

classes in a class-based queue is reduced and thus, the overhead in link scheduling. To examine this

possibility, the ERED queue was embedded into theCBQ implementation ofns . Its performance in

the network shown in Figure 5.14(a) was then examined. This network consists of two agencies,A

andB, who share a common link (between nodesC andD) to a provider’s network. In this setup,

agencyA is entitled to 20% of the link’s bandwidth while agencyB is entitled to the remaining

80% of it. NodeC usesCBQ with 20% of the link share allocated to traffic from agencyA, and 80%

allocated to traffic from agencyB. Note that while either one of the two agencies is idle, the other,

active agency, is entitled to use the entire link for itself. In addition, since the allocation is relative,

admission control must assume the worst case scenario in admitting flows to a class. That is, it must
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assume all other classes are using their share of the link. Both queues within theCBQ system use

the ERED mechanism to share bandwidth between individual connections.

Figure 5.14(b) shows the throughput seen by connections originating fromA andB and travers-

ing the link betweenC andD. ConnectionsA1 andA2 originate from agencyA and have reserved

rates of0:5Mbs and1Mbs, respectively. They start at timest = 0s andt = 100s. ConnectionsB1

andB2 originate from agencyB and have reserved rates of1Mbs and2Mbs. These connections

start at timest = 200s and t = 300s, respectively. As the graph shows, betweent = 0s and

t = 100s, connectionA1 gets all of the bandwidth since it is the only active connection. Between

t = 100s andt = 200s (after connectionA2 starts) the link’s bandwidth is shared between connec-

tionsA1 andA2. However, sinceA2 has a1Mbs reservation, it gets slightly more total bandwidth

thanA1. WhenB1 starts att = 200s, it is the only active connection from agencyB. Hence,

it receives the entire 80% of the link’s bandwidth (8Mbs). The two connections from agencyA

then share the remaining bandwidth (2Mbs) according to their reservations. Finally, att = 300s,

connectionB2 starts and the8Mbs allocated to agencyB is split between connectionB1 andB2

in accordance with their reservations. That is,B2 gets approximately1Mbs more thanB1. What

happens throughout the course of this experiment is that when the class is allowed to be overlimited,

the ERED queue is drained at a sufficient rate so as to support higher rates of input data. As soon as

the class becomes regulated, the queue builds up, the ERED queue drops unmarked packets and the

connections in the class resumes sending at a lower rate.

5.9 Conclusions

This chapter has examined a way of providing a large class of bandwidth-sensitive Internet ap-

plications with a useful service using minimal enhancements to the network infrastructure. Towards

this end, a simple extension to the packet queueing algorithms at the routers has been proposed and

analyzed. Assuming a network which supports minimum rate guarantees, a number of modifica-

tions toTCP’s congestion control algorithm have been proposed and evaluated. These modifications

take advantage of the network support provided and can allow connections with reservations to ob-

tain their reserved rates and share excess bandwidth in the network. It is important to note that

these modifications require the presence of end-to-end signaling, admission control, and resource
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reservation. Without such support, it is necessary for sources to turn off the modifications in order

to prevent possible congestion collapse in networks which do not support minimum rate guarantees.

The study reported in this chapter can be extended in many ways. In particular, applying this

work in the context of other transport protocols is being considered especially withRTP andUDP.

Many multimedia applications do not require the reliable delivery thatTCP provides. While this

study focuses onTCP, implementing a similar scheme usingRTP andUDP fitted with TCP’s flow-

control mechanism is possible. Another extension being considered is the use of BLUE-based mech-

anisms in place of ERED to do service differentiation. As shown in Chapter 4, BLUE can manage

congestion with a minimal amount of buffer space. Enhancing BLUE with additional priority-based

mechanisms is relatively easy and can provide significant improvement in performance. Another

key area of future work is the admission control policies for such a service. While this chapter has

not addressed admission control, the observations made on token bucket depths, router buffer sizes,

source burstiness, and ERED-parameterization will be instrumental in developing admission control

policies for this service.

On a final note, any allocation-based sharing of network capacity has to be associated with a

policy and/or pricing scheme. The proposal for prioritizing a part of a traffic stream with marking

and competing with best-effort traffic for sharing the residual capacity fits in very well with pricing

schemes which are currently being considered for the Internet. Users paying for a certain level of

marking see incrementally better performance over those who do not. During times of light loads,

when the incremental costs of congestion are low, the user can decrease his/her level of bandwidth

reservation and costs until an acceptable level of aggregate throughput is observed.
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CHAPTER 6

ADAPTIVE PACKET MARKING FOR PROVIDING

DIFFERENTIATED SERVICES IN THE INTERNET

6.1 Introduction

The DIFFSERV architecture does away with the problem of maintaining and managing flow

states in the core of the network. However, in order to provide firm service assurances, one still

needs to provision the network to handle the offered load. As described in Chapter 5, one way

to keep the offered load from exceeding the provisioned capacity is to assign traffic profiles to

users and networks and then monitor and enforce them [11, 19, 31, 37] at the user-network and

network-network interfaces. Such approaches that provide firm guarantees on performance require

end-to-end signaling in order to communicate the traffic profiles throughout the network. They also

require policing and shaping to enforce the traffic profiles at the network boundaries. This chapter

describes an alternative approach to service differentiation that provides soft bandwidth guarantees,

but eliminates the need for end-to-end signaling and enforcement of traffic profiles.

This chapter considers a network service model which uses DIFFSERV mechanisms to deliver

soft bandwidth guarantees to applications using a modest enhancement to the congestion control

and queue management algorithms provided by today’s Internet. As in Chapter 5, the network

is assumed to support a one-bit priority scheme with lower loss rates for higher priority traffic as

in AF. In this model, traffic is monitored at both user-network and network-network interfaces.

However, instead of strictly allocating and enforcing traffic profiles on an end-to-end basis, a more

flexible model that relies on adaptive traffic control at the host and at the edges of the network is
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used. In this model, the user or network administrator specifies a desired minimum service rate

for a connection or connection group and communicates this to a control engine located at or near

the host-network interface. The objective of the control engine, which is called apacket marking

engine (PME), is to monitor and sustain the requested level of service by setting the DS field in

the packet headers appropriately. By default, all packets are generated as low priority packets. If

the observed service rate at the low priority level either meets or exceeds the requested service rate,

the PME assumes the role of a passive monitor. If however, the observed throughput falls below

the minimum target rate, thePME starts prioritizing packets until the desired target rate is reached.

Once the target is reached, it strives to reduce the number of priority packets without falling below

the minimum requested rate. In this architecture, traffic needs to be monitored and marked only at

the host-network interface. However, the end host and network edge mechanisms described in this

chapter are intelligent enough to adapt appropriately in network environments where packets are

re-marked and/or dropped at the network-network interfaces for the purpose of enforcing bi-lateral

service level agreements between providers.

As with any type of differentiated service mechanism, it is assumed that the network pro-

vides incentives that would prevent users from continually requesting the highest level of service.

Usage-based pricing is an example of one such incentive mechanism. Many ISPs (Internet Service

Providers), such as UUNet, PSINet, and MCI, already provide services wherein users are charged

based on link utilization measured over fixed time intervals. It is rather simple to extend this pricing

model to levy higher prices for the high priority traffic. Such a pricing mechanism would encour-

age judicious use of priority service based on application requirements and usage policies. While

pricing is not the focus of this study, one of the key advantages of the proposed architecture is that it

can provide simple mechanisms for calculating near-optimal prices based on congestion costs [43].

In the following sections, the efficacy and the robustness of the proposed framework is demon-

strated. Using extensive simulations, the proposed architecture is shown to adapt with the traffic

dynamics in the Internet and can thus eliminate the risk of congestion collapse. When used in con-

junction with intelligent queue management, it can also identify and penalize non-adaptive and/or

malicious flows and hence provides sufficient incentives for applications to be well-behaved. Fi-

nally, a number of deployment issues are discussed.
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6.2 Service Model

This section presents a brief overview of the service architecture used. As mentioned earlier, the

objective of this work, in contrast to the work in Chapter 5, is to develop a differentiated services

framework without using end-to-end signaling and without enforcing explicit profiles on individual

traffic flows at the network boundaries. Towards this end, it is assumed that the network is able to

support two traffic types: priority and best-effort as embodied by the AF proposal in theIETF. In this

proposal, priority information is carried in the DS field (DSCP) of theIP header and that by default,

all packets are initially sent with their DS field cleared (best-effort). For reasons of simplicity, these

packets are referred to as unmarked packets. Consequently, priority traffic is referred to as marked

traffic. While there is no guaranteed service level associated with an AF setting, it is assumed that

the higher priority generally translates into a better quality of service. In line with the Internet design

philosophy and the DIFFSERV architecture, most of the intelligence in this architecture is at the

edges of the network. The routers and gateways provide only modest functionality to support service

discrimination, namely support for the AF PHB. Figure 6.1 shows a picture of this architecture.

Given this service model, the goal is to develop packet marking schemes which can be deployed

at the host-network interface that will allow an individual connection or a connection group to

achieve a target throughput specified by the user or network administrator. For example, a user
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may request a specific target rate for a particular connection or an aggregate rate for a group of

connections. The objective of the packet marking scheme is to monitor the throughput received

by the connection or connection group and appropriately adjust the packet marking so that the

sustained rate is maintained satisfying all the policy constraints. Due to the particular nature of

the service model, at times it may not be possible to sustain the requested target rate due to over-

commitment of resources. Such lapses may also be caused by partial deployment of DIFFSERV

mechanisms or oversubscription. A significant part of the effort goes into detecting such cases and

taking appropriate actions whenever required.

In this service architecture, traffic flows are monitored and packets are marked at the host-

network interface. However, the service architecture allows for packets to be re-marked at multiple

points along the path in order to enforce different policies and service contracts. Consider for

example, a campus or enterprise environment where applications running at different hosts may

mark packets at certain rates to achieve their respective target throughputs. Packets may be re-

marked at the boundary between the internal network and external network to enforce the service

agreement with the network service provider. Similar re-marking may also occur in order to enforce

a bi-lateral agreement between service providers when traffic crosses provider boundaries. While

this scheme can adapt in an environment where packets are marked at multiple points, this chapter

considers scenarios where packets are marked only once. The impact of packet re-marking is under

investigation and will be addressed in future work.

Marking mechanisms of two different flavors are considered: (1) where the marking engine is

transparent and potentially external to the host, and (2) where the marking engine is integrated with

the host. In either case, the packet marking engine (PME) maintains local state that includes the

target throughput requested for a connection or a group of connections. It passively monitors the

throughput of a connection or the aggregate throughput of a group of connections and adjusts packet

marking in order to achieve the target throughput requested by the user. Placing thePME external to

the host has significant deployment benefits since it can be deployed transparently to the hosts. On

the other hand, integrating thePME with the host protocol engine can provide a solution that adapts

better with the flow and congestion control mechanisms used at the transport layer. In particular,

the integration of thePME and theTCP control mechanisms is considered. The rest of this chapter

focuses onTCP as the transport protocol of choice. However, the proposed schemes can be easily
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generalized to any transport protocol that is responsive to congestion in the network.

6.3 Source Transparent Marking

A PME snoops on connections passing through it and measures their observed throughputs.

If the measured throughput is sufficiently close to the requested target rate, it takes the role of a

passive monitor. However, if the observed throughput of a connection is lower than its requested

target, thePME takes a more active role and starts marking packets belonging to the connection or

connection group. The fraction of marked packets varies from 0 to 1 depending upon the measured

and target throughputs. Selective marking essentially upgrades a fraction of the packets belonging

to the connection to the higher priority level. ThePME continually adjusts the fraction of packets

to be marked in order to sustain a bandwidth close to the requested target rate, while keeping the

number of marked packets as low as possible.

One of the important tasks performed by aPME is measuring the throughput seen by connections

passing through it. This is fed into the packet marking process that has to adapt to the changes in

observed throughput caused by variations in network load. While the overall measure of network

performance from an application’s point of view is goodput, thePME used in the experiments in

this chapter only measures the local bandwidth consumed by a connection. It counts bandwidth

against a connection or connection group when it receives a packet from it, even though the packet

may be dropped later on in the transit path. One of the reasons for measuring local throughput,

instead of end-to-end goodput, is simplicity. ThePME does not have to understand the transport

layer protocol semantics in order to determine whether or not the application’s data was actually

delivered. In some cases, even if thePME is well aware of the transport layer semantics, it may not

have access to the stream of acknowledgments from the receiver to compute goodput. This may be

the case when the forward and the return paths of connections are different. The most important

reason for counting local throughput is to give incentive for end hosts to send packets which have a

good chance of being delivered. Thus, a malicious or non-responsive source has its packets counted

against itself regardless of whether they have been delivered.

The local throughput seen by a connection can be measured in several ways. One simple tech-

nique is to measure the amount of data transferred with a sliding window and to use the average

103



Every update interval:
scale =j 1� Bo

Bt
j

if (Bo < Bt)
Pmark = Pmark + scale� increment

else
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Figure 6.2:TCP independent algorithm

bandwidth received over this window as a measure of the observed bandwidth. If the window is

small, the measured throughput is biased towards the more recent observations. If window is large,

the computed throughput converges to the long-term average bandwidth seen by the connection.

While this is a fairly accurate and tunable measure of the observed throughput, it requires a win-

dow’s worth of information stored for each connection. For the experiments reported in this study, a

lightweight alternative mechanism is used. The throughput seen by a connection over a small time

window is first measured and the observed bandwidth is then computed as a weighted average of

this measured throughput and the current value of observed bandwidth.

6.3.1 TCP-independent marking

The most important task of aPME is to adaptively adjust the packet marking rate based on

the measured throughput. In this chapter, a probabilistic marking scheme where the packets are

marked randomly as they pass through thePME is considered. The marking probability (Pmark)

is periodically updated depending on the observed bandwidth (Bo) and the corresponding target

bandwidth (Bt). Figure 6.2 shows a simple algorithm designed for this purpose. As seen from the

algorithm, when the observed bandwidth is less than the target bandwidth,Pmark is incremented in

steps. Similarly,Pmark is decremented in steps if the observed throughput exceeds the target rate.

Note that both increments and decrements inPmark are scaled by the difference between observed

and target throughputs. That is, the changes inPmark get smaller as the observed bandwidth nears

the target bandwidth. This scaling damps the amplitude of oscillations of the marking probability.

In order to understand the effect of packet marking, a simple scenario is evaluated usingns [46].

As shown in Figure 6.3, the simulated network consists of six nodes,n0 throughn5, and five links

connecting them. Each link is labeled with its respective link bandwidth and has a transmission

delay of10ms. In order to support AF-style priority marking, ERED queues are used withminth of
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Figure 6.3: Network topology.

10KB, maxth of 80KB, and an initial drop probability of 0.05 for unmarked packets. Three con-

nections are then simulated between nodesn0 andn5: an infinite best-effortTCP connection (C1),

a second infiniteTCP connection (C2) with a 4Mbs target bandwidth, and a thirdTCP connection

(C3) that toggles on and off every 50 seconds and has a throughput requirement of4Mbs when it is

on. The observed throughputs and marking probabilities are updated every100ms.

In this network configuration, when onlyC1andC2are active, the bottleneck link bandwidth of

10Mbs is shared evenly between them and thus, no packet marking is required forC2 to achieve its

target of4Mbs. However, whenC3 is active, an even share of the bottleneck bandwidth (3:33Mbs)

does not satisfy the target throughput requested byC2 and C3. The PME has to mark packets

belonging toC2 andC3 in order for them to obtain the higher throughput. Figure 6.4(a) shows

the throughputs received byC2 andC3 over time. In this experiment,Pmark is adjusted in steps

of 0.01. As the figure shows,C2 is slow in reacting to changes in the network. When all of the

sources are on, it is consistently below its4Mbs target bandwidth. It takes a significant amount of

time to build upPmark in response to the changes in the network load. Figure 6.4(a) also shows

the marking rate for connectionC2. As expected, the marking rate lags behind the changes in the

network load, slowly rising in response to an increased traffic load and slowly falling in response

to a decreased traffic load. To examine the other end of the spectrum, the experiment was repeated

while allowingPmark to be updated in steps of 1.0. That is, when more bandwidth is needed, all

packets are marked. Otherwise, packet marking is turned off. Figure 6.4(b) shows the results from

this experiment. As expected, in this experiment,Pmark adapts very quickly to the changes in the

network load, thus allowingC2 to achieve its target rate during periods of increased traffic load.

This rapid response also allows thePME to turn off packet marking quickly when it detects that

the available bandwidth is sufficient to satisfy the target rate. While adapting quickly to changes

in network conditions has its benefits, it can also cause significant burstiness in both marked and

unmarked packet streams. For example, if packet marking is turned on for a connection with a

relatively high target throughput, it may cause large spikes in the number of marked packets in the
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Figure 6.4: Effect of external packet marking.

network. Similarly, when packet marking is turned off, a spike of unmarked packets may be injected

into the the network.

Figure 6.5(a) shows a sample packet trace of a connection using this algorithm. The figure plots

the number of marked and unmarked packets sent. As the figure shows, as soon as the connection

reaches its target, thePME quickly cuts down the number of marked packets sent and starts sending

a large amount of unmarked packets. In the simulations performed, the impact from the bursts of

marked and unmarked packets was relatively minor. This is due to the fact that theTCP congestion

control algorithm controls the combined stream of marked and unmarked packets in a very network-

friendly fashion. The use of a common queue for marked and unmarked packets also adds to the

stability. Even when thePME changesPmark in large steps, the overall impact is a mere replacement

of marked packets by an equal number of unmarked packets or vice versa. However, in situations

where not all of the sources useTCP or where not all queues are ERED queues, large swings in the

number of marked and unmarked packets can potentially lead to network instability.

6.3.2 TCP-friendly marking

In order to minimize the chances of triggering such instability in the network, thePME should

update marking probabilities in a manner that is more network-friendly, while maintaining the abil-

ity to react to the changes in network load. To address the potential shortcoming of the algorithm
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Figure 6.5: Burstiness of packet marking schemes

presented in Figure 6.2, Figure 6.6 shows an algorithm that updatesPmark in a more network-

friendly manner. This algorithm draws on the windowing mechanisms used inTCP and tries to

ensure that the number of marked (or unmarked) packets in the network increases by no more than

1 per round-trip time. This is in some sense similar to the linear increase algorithm for congestion

avoidance used byTCP [34]. As shown in Figure 6.6, an estimated number of marked packets in

flight (PWND) is computed by taking the estimated congestion window given as the product of the

observed bandwidth and the estimated round-trip time (RTT ) and multiplying it by the marking

probability. At every update epoch, if the observed bandwidth is less than the target rate,PWND

is incremented linearly ( 1
CWND). This ensures that the number of marked packets increases by no

more than one in every round-trip time. Similarly, when the observed bandwidth is higher than

the target rate, the decrease in the number of marked packets (and hence increase in the number

of unmarked packets) is limited to one every round-trip time. Figure 6.5(b) shows the packet trace

of the modified scheme. Unlike the previous trace, this time the connection slowly increases and

decreases the number of marked and unmarked packets sent. Figure 6.7(a) shows the result from the

same experiment with thePME implementing the packet marking algorithm presented in Figure 6.6.

As seen from the graph, the marking algorithm is very reactive to changes in the network load and

hence observed throughput. Consequently, connectionC2 maintains an average throughput at or

above its4Mbs target most of the time. However, it changesPmark in a more network-friendly

fashion and reduces the risk of network instability.
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Every acknowledgment:
PWND = Pmark � Bo � RTT )
if (Bo < Bt)

PWND = PWND + 1
CWND

else
PWND = PWND� 1

CWND
Pmark = PWND

Bo�RTT

Figure 6.6:TCP-friendly algorithm for changingPmark

6.3.3 Marking aggregates

While the previous experiments show how per-connection target throughputs can be achieved,

PME can also meet the throughput target of an aggregation of connections. As in the case of individ-

ual connections, it simply monitors the throughput of the connection group and adjusts the marking

rate based on the observed throughput and requested target. Figure 6.7(b) shows the results of an

experiment where aPME controls two sets of connections sharing a10Mbs bottleneck link. The

first set of connections requires at least6Mbs of bandwidth at all times while the other set is simply

treated as best-effort. In this simulation, there are 3 identical connections in the first set and 4 iden-

tical connections in the second set. Initially, only the three connections of the first set are active.

Thus, the aggregate bandwidth seen is the entire link bandwidth with each source receiving a third

of the bandwidth. Note that the marking rate for the connection group is zero as there is enough

bandwidth available to meet the target service level. Att = 100s, one best-effort connection is

started. Since an even split of the bandwidth gives each connection approximately2:5Mbs, the

three connections in the first set get a total of7:5Mbs without any packet marking. Att = 200s,

the other three best-effort connections are started. In this case, an even split of the bandwidth across

all connections is not sufficient to sustain the target rate of6Mbs for the first set. Thus, thePME

begins to mark packets in order to sustain the target rate of6Mbs. As the figure shows, the mark-

ing increases to a level sufficient to maintain the target rate. The best-effort connections then get an

equal share of the leftover4Mbs. Finally, att = 300s, all connections of the first set are terminated.

As the figure shows, the best-effort connections get the entire10Mbs with each getting a fair share

of it.
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Figure 6.7: Performance ofTCP-friendly algorithm.

6.4 Source Integrated Marking

One of the problems with having thePME external and transparent to the source is that it has

little control on the flow and congestion control mechanisms exercised by the source. This lack

of control can have detrimental impact on performance. For example, while a source-transparent

PME is fairly effective in maintaining the observed throughput close to the target bandwidth, it often

marks more packets than required. In an ideal scenario, a connection that stripes its packets across

two priorities should receive a fair share of the best-effort bandwidth in addition to the bandwidth

received due to priority packets. ATCP source oblivious of the packet marking fails to compete

fairly with best-effort connections for its share of best-effort bandwidth. Consequently, thePME

marks more packets than it should have, had the connection received its fair share of the best-effort

bandwidth.

Figure 6.8(a) presents results from an experiment that demonstrates this. In this experiment, a

connectionC1 with a target bandwidth of3Mbs, and 5 best-effort connections (C2, C3, C4, C5,

C6) between nodesn0 andn5 are simulated. Figure 6.8 shows the marking rate, the best-effort

bandwidth, and the total bandwidth received byC1 along with the total bandwidth received byC2,

one of the 5 identical best-effort connections. As shown in the figure,C1gets a much smaller share

of the best-effort bandwidth thanC2. Thus, it must mark a larger portion of its packets than it should

in order to maintain the desired level of performance. This phenomenon can be easily explained if
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Figure 6.8: Bandwidth sharing using source-transparent marking

the window trace of the3Mbs connection is examined. Figure 6.8(b) plots both the priority and best-

effort portions of the connection’s congestion window. As the figure shows, when the application

requires additional bandwidth it must send priority packetsin placeof best-effort packets. Thus,

when the connection sends priority packets, it cannot compete fairly for the available best-effort

bandwidth.

In order to address this problem, aPME which is integrated with theTCP sender is considered.

Figures 6.9 and 6.10 show the new algorithm. In this scheme, the congestion window (CWND)

maintained by aTCP source is split into two parts: (1) a priority window (PWND) which is a measure

of the number of marked packets that are in the network, and (2) a best-effort window (BWND) that

reflects the number of unmarked packets that are outstanding. Upon a loss, the sender determines

whether the lost packet was sent as a marked or an unmarked packet. The loss of a marked packet

is an indication of severe congestion in the network. Consequently, both the priority and best-effort

windows are reduced. However, the loss of an unmarked packet is an indication of congestion

potentially only in the best-effort service class and hence only the best-effort window is reduced.

The procedure for opening the congestion window is also modified. The connection keeps track of

two additional thresholds values, namelyPSSTHRESHandBSSTHRESHwhich are updated whenever

the connection experiences a priority and a best-effort loss, respectively. When a connection is

below its target bandwidth, it opens up both the priority and best-effort windows. If either one

of the windows is below its respective threshold (PSSTHRESHandBSSTHRESH), it is in the slow
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After every acknowledgment (opencwnd)
PWND = Pmark � CWND
BWND = (1-Pmark) � CWND
if (Bo < Bt)

if (PWND < PSSTHRESH)
PWND = PWND + PWND

CWND
else

PWND = PWND + 1
CWND

if (BWND < BSSTHRESH)
BWND = BWND + BWND

CWND
else

BWND = BWND + 1
CWND

else
if (PWND > 0)

if (BWND < BSSTHRESH)
PWND = PWND� BWND

CWND
else

PWND = PWND� 1
CWND

else
if (BWND < BSSTHRESH)

BWND = BWND + BWND
CWND

else
BWND = BWND + 1

CWND
if ( PWND < 0) PWND = 0
CWND = PWND + BWND

Pmark = PWND
CWND

Figure 6.9: CustomizedTCP congestion window opening.

start mode. Note that the increases are scaled so that the overall congestion window does not grow

any faster than that in an unmodifiedTCP. Scaling these increases is slightly conservative, since

it temporarily hinders the source from growing its best-effort window as quickly as other best-

effort sources. However, the conservative behavior aids in avoiding congestion collapse scenarios.

When either window is above its threshold, it increases linearly (i.e., one segment per round-trip

time). Note that whileCWND grows by two segments every round-trip time, the best-effort part of

the window (BWND) only grows as quickly as theCWND of a best-effort connection. While this

modified windowing algorithm is essential in obtaining a fair share of the best-effort bandwidth in

a network that supports service differentiation, it essentially behaves like two fairly independent

connections. In a network that does not support end-to-end service differentiation, aTCP source

modified in this manner may receive twice as much bandwidth as compared to unmodifiedTCP

sources. Additional modifications to address this aspect are discussed in Section 6.5. Figure 6.11

111



After every segment loss from dupack (closecwnd)
PWND = Pmark � CWND
BWND = (1-Pmark) � CWND
if (priority loss)

CWND = CWND
2

PSSTHRESH=Pmark � CWND
BSSTHRESH=(1-Pmark) � CWND

else
BWND = BWND

2
BSSTHRESH= BWND
CWND = PWND + BWND

Pmark = PWND
CWND

Figure 6.10: CustomizedTCP congestion window closing.

shows results from the experiment presented in Figure 6.8 using the algorithm described above. In

contrast to Figure 6.8(a), the amount of best-effort bandwidth received by the3Mbs source closely

matches the bandwidth received by the best-effort sources. Figure 6.11(b) shows the priority and

best-effort windows of the3Mbs connection. In contrast to Figure 6.8(b), the connection is able to

compete for best-effort bandwidth independent of the priority marking.

By taking a closer look at the packet marking rate and its deviation from the theoretically com-

puted optimal marking rate, the issue of fair bandwidth sharing can be further examined1. The

computation of ideal marking rates is quite straightforward. For example, consider a network with a

bottleneck link of bandwidthB. Assume thatn connections with target rates ofRi, i = 1; 2; : : : ; n,

are passing through it. Letri be the optimal marking rate of the connection with a target rate of

Ri, and letb be share of best-effort bandwidth received by all connections. A connectionj with

Rj < b, is essentially a best-effort connection withrj = 0. The following set of equations capture

the system constraints:

ri + b = RiPn
i=1 ri+ nb = B

Figure 6.12 shows the results of an experiment with two connectionsC1 andC2 with target

rates of3Mbs and2Mbs, respectively, and six best-effort connections sharing a bottleneck link of

10Mbs. The connectionsC1 andC2 start at timet = 0s, followed by two best-effort connections

1Note that when optimal marking is achieved, accurate congestion-based pricing can be done using the marking rate
of a connection.
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Figure 6.11: Bandwidth sharing using source-integrated marking

at t = 100s, another two att = 200s, and the last two att = 300s. Figure 6.12(a) shows the

bandwidth received byC1 andC2 and three of the best-effort connections. Figure 6.12(b) shows

the marking rate of bothC1andC2, as well as their calculated ideal marking rates. At timet = 0s,

when only two connections are on-line, a fair split of the bandwidth satisfies target rates of bothC1

andC2. Thus, neither source marks any of their packets and each gets approximately half of the

bottleneck bandwidth. Att = 100s, two best-effort connections are added. At this point,C1 needs

to mark at a0:67Mbs rate and each of the sources should get2:33Mbs of the excess best-effort

bandwidth. SinceC2’s share of best-effort bandwidth is more than its target rate, it need not mark

any of its packets. As Figure 6.12 shows, the marking rate and total bandwidth graphs reflect the

change. Att = 200s, two more best-effort connections are added. Now,C1 has to mark at a rate

of 1:75Mbs while C2 needs to mark at at a rate of0:75Mbs. This leaves each source1:25Mbs of

the excess bandwidth. As the total bandwidth graph shows, the best-effort connections get about

1:25Mbs while C1 andC2 get their respective target bandwidths. The marking rates ofC1 andC2

also adapt to this change, increasing to the optimal marking rates. Finally, att = 300s, the last two

best-effort sources are added. This time,C1 needs to mark at2:17Mbs while C2 needs to mark at

1:17Mbs. Each connection now gets0:83Mbs of the excess bandwidth. Again, as the graphs show,

both the priority and best-effort connections perform as expected.

To examine the impact that the windowing modifications have, the same set of experiments with

a source-transparentPME was performed. Figure 6.13 shows the total bandwidth and marking rate
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Figure 6.12:TCP with integrated packet marking

for different connections. SinceTCP windowing restricts connectionsC1 andC2 from competing

for the excess bandwidth, thePME consistently overmarks its packets as shown in Figure 6.13(b).

Increased marking can potentially fill the ERED queue with marked packets, making it behave more

like a regular RED queue. As Figure 6.13(a) shows, loss of priority packets causes periods of time

where throughputs of connectionsC1 andC2drop significantly below their target rates.

6.5 Deployment Issues

The Internet is a conglomeration of a large number of heterogeneous devices. Because of this,

deployment of any proposed architecture is difficult. In this section, a number of important de-

ployment issues are addressed. In particular, the performance of the proposed architecture in over-

subscribed situations, in the presence of non-responsive flows, and in a network of heterogeneous

routers and sources is considered.

6.5.1 Handling oversubscription

One of the key advantages of using an adaptive packet marking scheme is that it obviates the

need for a signaling protocol. However, since there is no resource reservation, the service guarantees

it provides are necessarily soft. In anRSVP-based architecture, when demand for service continually

exceeds the capacity, admission control is used to deny additional connections access to the network
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Figure 6.13:TCP with transparent packet marking

in order to maintain the service levels of the current set of connections. In networks where no

reservations or admission control is in place, the network must instead offer degraded service at

times of overload. In both cases, pricing and access policies in conjunction with capacity planning

must be used to balance the supply and the demand of network resources. This section describes

how oversubscription is handled in the proposed service model.

When aggregate demand exceeds capacity, all connections with non-zero target rates carry only

marked packets. Consequently, they only compete for priority bandwidth and the ERED queue at

the bottleneck degenerates into to RED queue serving only priority traffic. In the case of a source-

transparentPME, since the underlyingTCPwindowing algorithm is not changed, the requested target

bandwidth does not influence the throughput a source receives. Consequently, each source receives

an equal fair share of the bottleneck bandwidth.

Oversubscription results in the same outcome when thePME is integrated within the source. In

this case, since the algorithms for growing and shrinking the priority window are independent of

the bandwidth demand, the windowing algorithm simply behaves as normalTCP. This adaptation

in presence of overload prevents possible congestion collapse. Figure 6.14(a) shows an example

scenario with four connectionsC1, C2, C3, andC4 spanning the network. The connectionsC1 and

C2have a target rate of5Mbs each while connectionsC3andC4aim at a target rate of10Mbs. As

the figure shows, by using the integrated marking scheme, each connection gets a fair share of the

bottleneck bandwidth when the demand exceeds the capacity.
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Figure 6.14: Oversubscription

Another approach to handle oversubscribscription is to provide weighted bandwidth sharing de-

pending on the target rates or the importance of the connections or connection groups. Since the pro-

posed scheme uses only a single priority bit, it cannot itself be used to provide weighted bandwidth

sharing in times of oversubscription. However, it is possible to implement weighted bandwidth

sharing by using additional priority levels which give the network an indication of the connection’s

target rate and/or importance. For example, consider a more elaborate service architecture where

additional priority bits are used to direct traffic into different ERED queues. These queues are then

served using any one of various proposed queueing disciplines, such as weighted-fair queueing,

class-based queueing, or even strict priority queueing. Figure 6.15(a) shows an example scenario

in which an additional bit is used to select separate queues in a class-based queue [27]. In this

example, the class-based queue is configured to provide applications and/or hosts in one class (A)

with at least 70 percent of the allocated bandwidth. The remaining 30 percent of the bandwidth is

allocated to the other class (B). When the applications in class A (A1 and A2) and class B (B1 and

B2) request more bandwidth than is available, the additional priority encoding allows the network

to maintain weighted bandwidth sharing between the two classes as shown in Figure 6.15(b).

6.5.2 Dealing with non-responsive flows

One of the potential risks in an adaptive approach to service differentiation is that proliferation of

applications which do not adapt to network dynamics can lead to severe performance degradation
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Figure 6.15: Oversubscription and multiple priorities

and even congestion collapse. Thus, an important issue in deploying the proposed scheme is the

protection of the network against non-responsive flows [16, 41]. A salient feature of this scheme is

that it provides performance incentives for applications to adapt to network dynamics and help avoid

congestion collapse. When used in conjunction with intelligent queue management mechanisms, it

can also penalize non-responsive flows.

Figure 6.16 shows a network configuration which consists of fourTCP connections (T1, T2,

T3, andT4) which are competing for bandwidth with a non-responsive flow (M1) across a10Mbs

link. The aggregate target rate for theTCP connections is7Mbs. The target rate for the non-

responsive flow is3Mbs. Initially, only theTCP sources are active and each competes fairly for the

link bandwidth. The non-responsive flow starts transmitting at1Mbs at t = 100s, and at3Mbs at

t = 200s. As shown in the figure, the aggregate throughput of theTCP connections drops when the

non-responsive flow becomes active, but remains at a rate close to7Mbs. At t = 300s, the non-

responsive flow increases its transmission rate to5Mbs, thus exceeding its allocated rate of3Mbs.

As shown in the figure, the marking rate of this flow immediately drops to zero and the loss rate

increases to approximately the difference between the transmission rate and the allocated rate. The

reason why this happens is that thePME observes that the non-responsive flow is sending packets

at a rate which is higher than its given rate. In order to encourage sources to send packets which

are deliverable, thePME counts every packet it receives for a particular flow against its allocation.

The non-responsive flow further increases its transmission rate to7Mbs at t = 400s. Again, the
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throughput observed by the flow remains fairly constant near its allocated rate of3Mbs, while the

amount of packets which are dropped increases at the same rate as the transmission rate. Thus, the

non-responsive flow gains little by transmitting any amount above its allocated rate.

In the previous experiment, the non-responsive flow does, in fact, have a negative impact on the

TCP connections. As Figure 6.17(a) shows, the aggregate marking rate of theTCP connections ap-

proaches the aggregate transmission rate, since the unmarked packets from the non-responsive flow

dominates any of the excess bandwidth available. In effect, the non-responsive flow obtains all of

the available best-effort bandwidth while shutting out all other well-behaved connections. In order

to provide better fairness between connections competing for best-effort bandwidth, the bottleneck

ERED queue is enhanced with additional fairness mechanisms based on FRED [41]. Figure 6.17(b)

shows the results of the experiment. As the figure shows, when the non-responsive flow begins

transmitting at a rate higher than3Mbs, the PME reduces its marking to zero as described earlier.

Since the flow does not respond to congestion signals given by the bottleneck queue and continues

to send an inordinate amount of unmarked packets, the fair ERED queue detects the flow and limits
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Figure 6.17: Non-responsive flows

its throughput to a fair share of the best-effort bandwidth. In this case, a fair share of the bandwidth

is 2Mbs. Thus, by sending over its target rate of3Mbs without regard to congestion in the net-

work, the non-responsive flow reduces its own observed throughput to2Mbs. Note that given a fair

share of the best-effort bandwidth, theTCP flows can now maintain their7Mbs aggregate target rate

without marking any packets. This is in contrast to Figure 6.17(a), where theTCP flows are forced

to have all of their packets marked in order to maintain their target rate. Thus, the non-responsive

flow hurts itself while helping other flows as it sends over its target rate without regard to network

congestion.

6.5.3 Handling heterogeneity

The Internet is a highly heterogeneous and slowly evolving networking environment. It is im-

practical to assume that all routers in the Internet will handle priority packets in the same way. As

a matter of fact, it is quite likely that only a fraction of them will support service differentiation

between packets of different priorities. In order to be successful in this environment, it is impor-

tant that any packet marking scheme proposed is capable of handling heterogeneity in the network.

More specifically, it should be able to operate in an environment where all routers do not support

service differentiation between priority and best-effort packets.

One of the salient features of the proposed scheme is its ability to operate in a network that

does not provide service differentiation. When thePME is transparent to the source,TCP transmis-
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Figure 6.18: Performance over an all drop-tail network

sion control mechanisms are not affected as a result of packet marking. Thus, the lack of service

differentiation simply makes the packet marking ineffective and theTCP sources behave as if they

are operating in a best-effort network. When thePME is integrated with the source, the situation is

little different. In this case, there are essentially two connections with differing priorities. Hence,

in absence of service differentiation, this scheme can potentially be twice as aggressive as a regular

TCP connection. While such behavior may be justified when a user is charged for marked packets, it

may be desirable to turn off marking when service differentiation is not supported by the network.

To address this, a simple mechanism for turning off the marking and modified windowing when

the network does not support end-to-end service differentiation is implemented. Note that the bot-

tleneck of a connection may shift from a link that supports service differentiation to one that does

not, and vice versa. Hence detection of service differentiation on a connection path is not a one-time

process; it requires constant monitoring. To minimize the cost of monitoring and, at the same time,

remain reactive to changes in the network dynamics, an exponential back-off algorithm is used to

determine monitoring intervals. In particular, the source keeps track of the inter-drop times for both

priority and best-effort packets. In a network which supports service discrimination, the number

of priority packets transmitted between successive priority packet drops is expected to be substan-

tially greater than the number of best-effort packets transmitted between successive non-priority

packet drops. When this is not the case, the source simply turns off the marking and the windowing

algorithm, reverting back to normalTCP. After a preset interval, marking is turned on again and
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the source monitors inter-drop intervals to detect service differentiation. If it fails to detect service

differentiation, it shuts down marking for twice the duration it had before. If the source observes

that service differentiation is supported by the network, the connection continues using the modified

windowing algorithm and resets the back-off interval to its initial (smaller) value.

Figure 6.18(a) shows the throughput observed by five connectionsC1, C2, C3, C4, andC5

going fromn0 to n5when all of the queues in the network are drop-tail queues with no support for

service differentiation. ConnectionC1 has a target rate of4Mbs. All other connections are best-

effort. A source-transparentPME is used to mark packets in this example. As expected, bottleneck

bandwidth is shared fairly among all five connections. Note that the packets are continually being

marked even though the network does not honor their DS marking. This is because thePME cannot

determine that the DS field in the packets is being ignored unless it keeps additional information.

Since the connection is always below its target bandwidth, thePME simply marks all of its packets.

Figure 6.18(b) shows the same experimental setup as before. However, in this example, thePME

is integrated within the source. As the figure shows,C1 backs off its marking as it detects that the

network does not support any service differentiation. Thus, the connection competes fairly with all

of the other best-effort connections for the excess bandwidth.

The back-off mechanisms used when thePME is integrated into the source adapt quickly to the

changes in the network. This helps the source adapt its windowing and marking strategy as the bot-

tleneck link shifts from non-priority to priority queues in a heterogeneous network. Figure 6.19(a)
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shows a network with 4 nodes wherer0 implements the ERED queueing mechanism whiler1 and

r2 are simple drop-tail gateways. In this network, two priority connectionsC1 andC2 with 4Mbs

target bandwidths and several transient best-effort connections are simulated. The transient connec-

tions are used to move the bottleneck link fromr0-r2 to r2-r3. Figure 6.19(b) shows the throughputs

seen by different sources as the bottleneck moves from one link to another. Initially, connectionsC1

andC2 going fromr0 to r3 are active. In the absence of any other connections, neither connection

needs to mark any of their packets in order to achieve their target rates. Att = 100s, a best-effort

connection is spawned betweenr0 andr1. Since a fair share of the bottleneck bandwidth of10Mbs

does not satisfy the target rates of connectionsC1 andC2, they both mark their packets at a rate

of 2Mbs. From the equations outlined in Section 6.4, this is the optimal marking rate in this sce-

nario. Each connection also receives2Mbs of the leftover best-effort bandwidth. Att = 200s, the

best-effort connection terminates and two new best-effort connections are started between nodesr1

andr3. At this time, the bottleneck link is betweenr2 andr3 which happens to be a drop-tail queue

with no support for service differentiation. In this case, even thoughC1 andC2 fail to sustain their

target rates, they back off their marking and revert back to the original windowing algorithm. Con-

sequently, all four connections now receive an equal share of the bottleneck bandwidth of10Mbs.

At t = 300s, the best-effort connections terminate and a new best-effort connection is spawned

between nodesr0 andr1. At this point, the bottleneck shifts to the linkr0-r2 which supports service

differentiation. This change is detected byC1andC2and they turn on marking to reach their target

rate of4Mbs. Finally, att = 400s, the best-effort connection terminates, leaving the network in its

initial state. The connectionsC1 andC2 once again turn off their marking since they can support

their target throughput without packet marking.

6.6 Conclusions

In this chapter, a number of adaptive packet marking algorithms for providing soft bandwidth

guarantees over the Internet have been proposed and analyzed. Marking algorithms that are external

and transparent to the source and algorithms that are integrated with the congestion and flow control

mechanisms at the source have been examined. Both sets of algorithms have advantages and disad-

vantages from the standpoint of performance and deployment issues. The results presented in this
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chapter clearly demonstrate that simple service differentiation, and when used in conjunction with

adaptive source control, can be an effective means to provide quality of service in the Internet.

This work can be extended in several ways. For example, the impact of marking packets at

multiple places in the network is being investigated. Also under investigation is the interaction and

interoperability of the proposed schemes with alternative mechanisms to support quality of service

in the Internet. As described in Chapter 5, enhancements to BLUE for performing service differ-

entiation are also being considered. Finally, generalization of the two priority scheme to multiple

priorities is being examined.
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CHAPTER 7

CONCLUSION

This thesis has focused on solving two extremely important challenges to today’s Internet: sup-

porting an explosion in the number of users and supporting a myriad of new applications which

require more out of the network than the best-effort service that the Internet currently provides. To

this end, a number of modifications to the basic congestion control and queue management algo-

rithms of the Internet have been examined. More specifically, this thesis has:

1. Shown that even withECN, current active queue management mechanisms such as RED are

ineffective because they are not sensitive to the level of congestion in the network. To ad-

dress this problem, an adaptive modification to RED which allows it to manage congestion

more effectively has been developed, implemented and evaluated. In addition, this thesis has

demonstrated the inherent weakness in all current active queue management mechanisms in

that they rely on queue lengths to do congestion control. To address this problem, BLUE, a

queue management algorithm based on the history of queue behavior has been developed, im-

plemented and evaluated. BLUE outperforms all current active queue management algorithms

by a large margin in terms of packet loss rates and buffer space requirements.

2. AnalyzedTCP in order to show weaknesses in its congestion control algorithms when a large

number of connections are present. To address this, a modification toTCP congestion control

which allows sources to fully utilize network capacity without packet loss in the presence

of an arbitrarily large number of connections has been developed and evaluated. When used

in conjunction with adaptive queue management mechanisms, these modifications have been

shown to maximize network efficiency even with an extremely limited amount of network
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buffers.

3. Developed and analyzedSFB, a novel mechanism for scalably enforcing fairness between a

large number of connections using a very small amount of buffer space and state.

4. Developed and analyzed a new form of providing QoS over the Internet based on priority

marking. This was one of the first pieces of work in differentiated services (Summer 1996)

and eventually led to the formation of theIETF’s DIFFSERV working group in early 1998.

This work addresses the problem of having disjunct rate control mechanisms in the network:

TCP and priority marking. In addition, it has shown how such marking can be ineffective due

to TCP dynamics. To address this problem, a number of modifications toTCP which allow

TCP to take advantage of the priority mechanisms in the network have been proposed and

evaluated.

5. Developed an architecture for providing soft bandwidth guarantees in an easily deployable

manner. As part of this architecture, a number of novel mechanisms for integrating packet

marking into end hosts has been proposed and evaluated. These mechanisms allow optimal

marking rates to be obtained between sources and allow hosts to scalably detect heterogeneity

and lack of service differentiation in the network.

With the rapid increase in users and applications caused by the success of theWWW, it is im-

perative that the infrastructure in place in the Internet be able to meet these new challenges. While

this thesis has examined a large number of issues and has provided a number of solutions, there are

still several open issues which need to be addressed. As part of on-going work, several key aspects

of this dissertation are being extended. They include:

1. Parameterizing Adaptive RED and BLUE to current Internet traffic. By understanding how In-

ternet traffic changes over a range of time scales, the performance of both queue management

schemes can be optimized. In addition, a number of ways to predictively and pre-emptively

set the parameters of Adaptive RED and BLUE are being considered. Since routers often have

access to more detailed information on the number of flows which are currently active, it is

possible to make these queue management algorithms even more proactive.
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2. Developing more protective and adaptive queue management algorithms for supporting dif-

ferentiated services. In particular, techniques for making BLUE priority-aware are currently

being examined. By using BLUE queue management instead of RED, differentiated services

can be supported with a minimal amount of buffer space.

3. Extending priority-aware congestion control beyondTCP by usingRTP over UDP. While a

large number of applications useTCP, the growing number of applications, and in particular,

streaming audio and video applications do not.

4. Developing additional mechanisms for detecting whether or not service differentiation is be-

ing done on packets of a flow. Given the diversity of the Internet infrastructure, the ability to

detect service differentiation is essential for both service providers and end users.

Given this additional work and the modifications described in this thesis, it is possible to sig-

nificantly improve network efficiency in times of heavy congestion as well as provide a variety of

predictable services to emerging applications. By maximizing network efficiency across a large

range of loads, congestion collapse can be effectively prevented and the lifetime of many of the net-

work links and routers currently in place can be extended. By providing mechanisms for scalably

supporting service differentiation between flows in the Internet, the widespread deployment of a

large class of bandwidth-sensitive applications can be enabled. Together, they will allow the Inter-

net to continue to provide robust services to its users and applications well into the next century.
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