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CHAPTER 1

INTRODUCTION

The success of the Internet can largely be attributed to the strength of its protocols. By providing
users and developers with robust, interoperable services, the Internet has effectively provided all of
the essential building blocks for constructing applications such asth&. As one looks at almost
all of the applications in widespread deployment on the Internet today, it is no coincidence that they
are all built uponrcp/IP. Over the last decadecpP/IP has consistently met the challenge of new
applications and has been able to provide a solid foundation from which to build them.

With the rapid proliferation of thevww, the Internet has seen an enormous growth in both the
demand for access from its users and in the demand for new services from its applications. As a
result of these new challenges, weaknessesw#iiP have become increasingly apparent. Rising
packet loss rates and decreasing network efficiency have caused significant problems to users. In
addition, the inability to support new services has severely hindered the widespread deployment of
bandwidth-sensitive applications. This thesis focuses on these extremely important challenges to
today’s Internet and describes how current congestion control and queue management techniques

can be modified to solve them.

1.1 Congestion Control in the Internet

At the heart ofTCP/IP’s success over the last decade is itdighto deliver service in times of
extremely high demand. The key reason behind thixigs congestion control mechanisms [34].
The idea behindcp congestion control is to control network load by having sources adjust their

rates according to the level of congestion in the network. More specifically,gPaource detects



or observes packet loss based on information on the packets which it has sent, it backs off its
sending rate in order to avoid further packet loss and congestiomclif aource observes that all of
its packets are being delivered, it slowly increases its sending rate in order to fully utilize network
capacity. In this wayycp has been able to effectively minimize packet loss while maximizing
network utilization over the lastatade.

Recently, as demand for access has outpaced tliy &dr providers to upgrade network paths,
the ability of Tcpto provide best-effort service efficiently has deteriorated. In particular, an alarming
rise in packet loss rates has been observed across a number of network links [53]. This rise in packet
loss has resulted in the steady decline of network efficiency as sources and routers continually
generate and forward packets which are then dropped. In order to address the steady rise in packet
loss rates in the Internet, the Internet Engineering Task Fogce)(is considering the deployment
of Explicit Congestion NotificationgCN) [23, 55] and active queue management [4, 26] as a means
to prevent packet loss. The idea behih is to give the network the ability to explicitly signal
TCP sources of congestion and to have tte® sources reduce their transmission rates in response
to the signal. Sincacp sources currently only reduce their transmission rates upon detecting a
packet loss, withowtCN, the amount of packet loss observed across the Internet will always remain
non-zero. WhileecN provides the network a mechanism for reducing packet loss, it must be used
in conjunction with active queue management in order to be effective. The goal of active queue
management is to detect congestion early and to convey congestion notification to sources before
gueue overflow and packet loss occur. By decoupling congestion notification from packet loss and
using active queue management mechanisms, it is the hope i&fthéhat packet loss rates in the

Internet can be controlled.

1.2 Quality of Service in the Internet

The service realized bycp over today’s Internet is commonly known as “best-effort”. Using
simple FIFO queueing in the network combined witttP congestion control at the end points,
sources maintain approximate fairness between themselves when they are multiplexed over the same
bottleneck link. As the need for new services has grown, the lack of service differentiation in the

network has become problematic. As a result, a growing number of applications such as multimedia



streaming applications continually circumvertr and its congestion control mechanisms in favor
of ubp and their own rate control mechanisms.

In an attempt to address the growing needs of applicationg; tirehas developed a number of
architectural enhancements to the current Internet infrastructure which allow the network to provide
predictable services to applications on an end-to-end basis. The result of this effort has been the
standardization of the Resource Reservation Setup Prosgb] [6, 69] and its associated suite
of service classes [59, 68]. In this approach, individual applications signal their resource require-
ments to the network on an end-to-end basis. Given this, intermediate network elements (routers,
switches, etc.) set aside the appropriate amount of resources for the application. When subsequent
packets arrive at each network element, they are then scheduled in a manner which satisfies the
requirements of the application. While this service architecture provides a solid foundation for
providing different classes of service in the Internet, it mandates fairly significant changes to the
network. In addition, support for such services can add a significant amount of overhead in packet
processing within the network. Because of this, ther is also considering a more evolutionary
approach to provide service differentiation in the Internet. This approach, as outlined by the Differ-
entiated Services (BFSERV) working group, relies on the use of the type-of-service bits (ToS) bits
in theip header [2, 13, 54, 58] to provide coarse-grained quality of service to applications. The goal
of the DIFFSERYV effort is to define a minimal set of building blocks which can be used to construct

a variety of services to emerging applications.

1.3 Structure of Thesis

This thesis presents effective techniques for supporting an explosion in the number of users
and for supporting a myriad of new applications which require more out of the network than the
best-effort service the current Internet infrastructure affords. Chapter 2 surveys related work on
controlling congestion and on providing quality of service in the Internet. Chapter 3 and Chapter 4
address the problem of maximizing network efficiency in times of extremely heavy congestion.
Chapter 3 demonstrates a significant weakness in current active queue management techniques in
that they are not sensitive to the level of congestion in the network. In order to address this short-

coming, an adaptive queue management algorithm which can effectively reduce packet loss over



a wide range of workloads is developed, implemented and evaluated. While adaptive queue man-
agement provides some benefit, Chapter 3 also shows that high packet loss rates are, in part, an
artifact of TCP congestion control. As a result, a conservative modificationdes congestion

control algorithm is proposed and evaluated. Together, these two modifications can prowide an

der of magnitudémprovement in packet loss rates using a significantly smaller amount of buffer
space in the network. Chapter 4 extends this work by addressing several problems with current ac-
tive queue management algorithms. In particular, this chapter demonstrates that the dependence on
gueue lengths to perform congestion management is inherently flawed. To address this limitation,
BLUE, a fundamentally different active queue management algorithm is proposed, implemented,
and evaluated. This algorithm outperforms all current active queue management algorithms by a
large margin in terms of packet loss rates and buffer space requirements. In addition, this chapter
also proposes an extension talg which allows the network to scalably enforce fairness between

a large number connections. This extension uses an extremely small amount of buffer space and
state.

Chapter 5 and Chapter 6 address the problem of supporting quality of service across the Inter-
net. In particular, these chapters focus on building scalable, deployable mechanisms for support-
ing bandwidth guarantees across the Internet based on I#rRSERV approach. Chapter 5 first
demonstrates how IBFSERV-style mechanisms can be ineffective in providing predictable service
to applications. One of the major problems is that the end-to-end rate control mechamismi®f
disjunct from the rate-based marking being done in the network. In order to address this problem,
this chapter proposes and evaluates several modifications to the congestion control mechanisms at
the end host in order to fully take advantage ofFESERV-marking in the network and to deliver
predictable service to applications. Chapter 6 extends this work by developing an architecture for
providing soft bandwidth guarantees in a scalable, easily deployable, manner. In particular, the the
bandwidth sharing and marking behavior of connections usirg$ERV-style marking is analyzed
and some of the weaknesses of current approaches are shown. This chapter then describes novel
mechanisms for integrating packet marking into end hosts in order to (1) obtain optimal marking
rates between sources, (2) detect heterogeneity and lack of service differentiation in the network,
and (3) allow for incremental deployment. Finally, Chapter 7 concludes with a summary of research

contributions.



CHAPTER 2

BACKGROUND

This chapter reviews the important features of today’s congestion control and queue manage-

ment algorithms as well as the current state of providing quality of service in the Internet.

2.1 TCP and Active Queue Management

It is important to avoid high packet loss rates in the Internet. When a packet is dropped before
it reaches its destination, all of the resources it has consumed in transit are wasted. In extreme
cases, this situation can lead to congestion collapse [34]. Loss rates are especially high during times
of heavy congestion, when a large number of connections compete for scarce network bandwidth.
With the explosion of thevww, recent measurements have shown that the growing demand for
network bandwidth has driven loss rates up across a number of congested links in the Internet [53].

When a network is congested, a large number of connections compete for a share of scarce link
bandwidth. Over the last decade;p congestion control has been used to effectively regulate the
rates of individual connections sharing network linkcp congestion control is window-based.

The sender keeps a congestion windaw(D) whose size limits the number of unacknowledged
packets the sender can have outstanding in the network. Upon receiving acknowledgments for
successfully transmitted data, the sender increases its transmission rate by incrementing the size of
its congestion window. At some point in time, the rate at whici® sends its packets eventually
exceeds the network’s capacity to deliver them. When this happens, queues build up in the network
routers and overflow, causing packets to be droppezk assumes that all packet loss is due to

congestion and reduces its congestion window upon detecting a fa@sss congestion control



algorithm is fairly straightforward. When a connection starts up, it attempts to ramp up its sending
rate quickly by exponentially increasing its congestion window until it reaches an implementation-
specific value $§STHRESH. This stage is calledlow-startand allows the source to double its
congestion window, and thus its sending rate, every round-trip time. In order to prevent excessive
losses due to an exponentially-increasing sendingTatesenders typically employ what is known
as the congestion-avoidance algorithm [34, 61], a modificatiogkdirst deployed in Reno variants
of TCP. In this algorithm,TCP uses thessTHRESH/alue to approximate the window size which the
network can support. When the window size exceeds this thresholdenters the congestion
avoidance phase. In this phase, the window is increased at a much slower rate of one segment per
round-trip time. When the offered load increases above network capacity, packets are eventually
dropped. One way in whichcp detects a packet loss is through the receipt of a number of duplicate
cumulative acknowledgments from the receiver [35]. Upon receiving a given number of duplicate
acknowledgments;cp infers that a packet loss has occurred and immediately reduces its sending
rate in half by halving its congestion window and se$3HRESHto the new value of the congestion
window. These mechanisms are calfadt retransmitindfast recovery

When congestion is severe enough such that packet loss cannot be inferred in such a manner,
TCP relies on a separate, retransmission timeout mechanism to trigger subsequent retransmissions
of lost packets. When a retransmission timeout ocaws,reduces its window size to one segment
and retransmits the lost segment. To prevent continual retransmissions in times of severe congestion
and network outagescp employs an exponential back-off algorithm. In particular, if the sender
continually sends the same segment, but receives no acknowledgments tor édoubles its re-
transmission timeout interval. Upon receipt of an acknowledgment for subsequent new segment,
TCPresets the timeout interval and resumes its normal sending.

Figure 2.1 shows a graphical picture of howr slow-start and congestion avoidance work. As
the figure showstcCP initially starts with a congestion window of 1. The window is then doubled
every round-trip time. When the congestion window reachgsHRESH TCP slows its rate of
increase. Eventually, when the transmission rate of the connection overwhelms the bottleneck link,
packets are dropped. This loss is detectedrby which then reacts by halving the congestion
window (assuming the fast-retransmit and fast-recovery mechanisms are triggered). As the figure

shows, upon recovering from congestion, tieP sender enters the congestion avoidance phase
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Figure 2.1: Example ofcp congestion window behavior

in which the window is increased linearly at a rate of one segment per round trip time. In steady
state,Tcp then oscillates between a windowIdf and% wherel depends on the capacity of the
network and the number of connections currently active over the bottleneck link.

Given the importance ofcp and its congestion control mechanisms to the health of the Inter-
net, there have been a number of proposed modifications to its algorithms. One modification which
has been proposed is selective acknowledgments (SACK) [45]. SACK augmarisscumula-
tive acknowledgment mechanism with additional information that allows the receiver to inform the
sender which segments it is missing. By specifying this informationt dresender can make more
intelligent decisions in determining when packets have been lost and in identifying which segments
should be retransmitted. This helpsp detect congestive loss more quickly and eliminates un-
necessary retransmissions byp senders. Another set of proposedr modifications focuses on
congestion recoveryrcp is ACK-clocked, often sending only after it has received acknowledg-
ments for previously transmitted packets. When there are insufficient packets or acknowledgments
in flight to triggerTcp sends, a retransmission timeout must occur befor&tiresource can resume
sending. Because the Reno variantraf freezes its window while recovering from congestion,
it often induces a subsequent retransmission timeout since the source does not send packets upon
receiving acknowledgments in the recovery phase. To address this problem, a simple observation

is made. When acp sender receives any type of acknowledgment, it is a signal that a packet has
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left the network and should thus allow thiep sender to inject an additional packet without causing
further congestion. This modification allowsP to maintain its ACK-clocking and prevents unnec-
essary retransmission timeouts. Both the FACK [44] and NewReno [24, 32] modifications use this
observation to improvecp performance. Finally, more radical changest®'s congestion control
algorithms have been proposed. In current incarnationsef the congestion window follows a
sawtooth-like pattern where the congestion window is continually increased until packet loss occurs.
While this allowsTtcp to probe for additional bandwidth, such behavior eventually induces packet
loss. The idea behind the Tri-S [66,67] and Vegas [7] modifications is to change the congestion
avoidance phase so that it only performs its linear increase when the network is not congested. In
both algorithms, if the round-trip times indicate an increase in delay due to queues being built up in
the network, the cp source either decreases or fixes the size of the congestion window rather than
increasing it. While these mechanisms have the potential for improving loss rates in the Internet, it
is unclear how well each scheme performs when congestion is persistentitlargadyy modifying
the linear-increase/multiplicative-decrease algorithma#, these modifications cannot ensure that
max-min fair sharing occurs between connections which are multiplexed across the link [8, 38].
With the exception of Tri-S and Vegas, one of the problems withritye congestion control

algorithm over current networks is that the sending sources reduce their transmission rates only
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after detecting packet loss due to queue overflow. This is a problem since a considerable amount
of time may pass between when the packet is dropped at the router and when the source actually
detects the loss. In the meantime, a large number of packets may be dropped as sources continue
to transmit at a rate that the network cannot support. Because of thigihés advocating the

use of explicit congestion notificatiog¢N) [23, 55] and active queue management as a means to
prevent packet loss. The idea behitiN is to decouple packet loss from congestion notification.

In this proposalgcN is implemented using two bits of the type-of-service/DS field ofithieeader

and two bits of the currently reserved flags field of tle® header as shown in Figure 2.2. When a
network router experiences congestion, it can explicitly signal the sources instead of dropping their
packets. In order to do so, the router first examinesethie-capable Transport bit (ECT) to see

if the flow is ECN-capable. If it is noeCcN-capable, the packet is simply dropped. If the flow is
ECN-capable, the congestion experienced bit (CE) is set and used as a signaide theeiver that
congestion has occurred. Thep receiver, upon receiving this signal, modifies ttee header of

the return acknowledgment using a currently unused bit irrtireeflags field. As Figure 2.2 shows,

a bit labeled EcN-echo” is used by the&cp receiver to indicate the presence of congestion to the
sender. Upon receipt ofiecP segment with thecN-echo bit set, thecp sender invokes congestion
control mechanisms as if it had detected a packet loss. In addition, it sets the “Congestion Window
Reduced” (CWR) bit of its next packet to the receiver in order to signal the receiver that it has, in

fact, reduced its sending rate.



In conjunction withecN, the IETF is also advocating the use of active queue management.
The idea behind active queue management is to detect incipient congestipand to convey
congestion notification to the end hosts, in order to allow them to reduce their transmission rates
before queue overflow and packet loss occur. One form of active queue management being proposed
by thelETF for deploymentin the network is (Random Early Detection) [4, 26].E maintains
an exponentially weighted moving average (EWMA) of the queue length which it uses to detect
congestion. RRD detects increases in the average queue length and uses it to determine whether
or not to drop orECN-mark a packet. More specifically, Figure 2.3 plots the marking/dropping
probability of RED as a function of the average queue length. As the figure shows, when the average
gueue length exceeds a minimum thresheld:(;;,), packets are randomly dropped or marked with
a given probability. A connectioreceiving congestion notification in the form of acN mark,
cuts its congestion window in half as it would if it had detected a packet loss. The probability
that a packet arriving at theE® queue is either dropped or marked depends on, among other
things, the average queue length and an initial probability parameter,(). As Figure 2.3 shows,
the calculated marking/dropping probability is a linear function of the average queue length. The
probability is 0 when the average queue length is less than or equaltg and linearly increases
to maxz, when the average queue length approaches a maximum thresheid,j. When the
average queue length exceedsz,;, all packets are dropped or marked.

With the deployment oECN and ReD, it is the hope of theeTF that packet loss rates in the
Internet can be controlled. Unfortunately, as Chapter 3 and Chapter 4 show, there are significant
weaknesses in bothcP congestion control and in B queue management which prevent packet
loss from being eliminated. Given these weaknesses, a number of congestion control and queue

management algorithms which effectively prevent packet loss are proposed and evaluated.

2.2 Integrated and Differentiated Services

As the Internet evolves, the number of diverse applications being deployed has increased signif-
icantly. Unfortunately, many of these applications require more stringent performance guaranteesin
terms of bandwidth and end-to-end delay than the current Internet infrastructure and its best-effort

service provide [5, 12]. Because the best-effort service model in place today cannot support every
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Figure 2.4: DFFSERV architecture

application, a great deal of effort has been taken to construct additional services in order to meet the
demands of new applications.

In an attempt to enrich and augment the services provided by the network, the Internet Engineer-
ing Task ForcelETF) has developed a number of architectural extensions that permit the allocation
of different levels of service to different users. One of the outcomes of this effort is an architec-
ture that provides service discrimination by explicit allocation and scheduling of resources in the
network. This model, based on the Resource Reservation Setup Pratege) (6, 69] and its as-
sociated suite of service classes [59, 68], is the Internet incarnation of the traditional “circuit-based”
quality of service architecture. While this service architecture provides a solid foundation for pro-
viding different classes of service in the Internet, it mandates significant changes to the Internet
infrastructure. Because of this, a more evolutionary approach to provide service differentiation in
the Internet using the type-of-service (ToS) bits in thdeader [2, 13, 54, 58] has recently gained
a lot of momentum. Through the Differentiated ServicesF3ERV) working group, these bits,
as shown in Figure 2.2, have been renamed as the “DS field” and the functions associated with
them have been redefined. The crux of theH3ERV approach is to standardize a simple set of
mechanisms for handling packets with different priorities [3, 11, 19, 50], as encoded in the DS field

of the P header. Figure 2.4 shows the basic architecture of tireS2RV approach. As the figure
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shows, traffic conditioners such as shapers, DS-markers, and droppers are placed at the edges of the
network. Given this functionality at the edge, the interior routers then use the priority markings of
packets in order to deliver differentiated services to various packets. This provides a very basic QoS
architecture in which most of the complexity is pushed to the edges of the network where it is the
most scalable.

Because of the limited amount of bits available for use in the DS field, theSBRV working
group has defined a small set of building blocks which are used by routers to deliver a number of
services. These building blocks, called per-hop behaviors (PHBs), are encoded in the Differentiated
Services Codepoint (DSCP) part of the DS field and specify the forwarding behavior each packet
receives by individual routers in the Internet. When used on an end-to-end basis, it is envisioned that
these building blocks can be used to construct a variety of services which are able to support a range
of emerging applications. Among the initial PHBs being standardized are the Expedited Forward-
ing (EF) [37] and the Assured Forwarding (AF) [31] PHBs. The EF PHB specifies a forwarding
behavior in which packets see a very small amount of loss and a very low queueing delay. In order
to ensure every packet marked with EF receives this service, EF requires every router to allocate
enough forwarding resources so that the rate of incoming EF packets is always less than or equal to
the rate at which the router can forward them. In order to preserve this property on an end-to-end
basis, EF requires that traffic be shaped and reshaped in the network. The AF PHB group, on the
other hand, specifies a forwarding behavior in which packets see a very small amount of loss. The
AF PHB group consists of four, independently forwarded classes. Within each class, two or three
drop preference levels are used to differentiate between flows in the class. The idea behind AF is
to preferentially drop best-effort packets and packets which are outside of their contract when con-
gestion occurs. By limiting the amount of AF traffic in the network and by managing the best-effort
traffic appropriately, routers can then ensure low loss behavior to packets marked with the AF PHB.

While itis relatively clear how to build predictable services using the protocols and mechanisms
provided byrsvp and INTSERV, the ability to construct predictable services using the coarse-
grained mechanisms provided byABSERV is an open issue. SincelEFSERV specifies only the
local forwarding behavior given to packets at individual routers, one of the biggest challenges is to
be able to concatenata*SERV mechanisms on an end-to-end basis to construct useful services for

applications. Chapter 5 and Chapter 6 address some of the problems in providing predictable end-

12



to-end services using IBFSERV mechanisms based on the AF PHB. Key among these problems
is the complex interaction of current congestion control and queue management algorithms with
the priority marking and handling of packets in the network. As a result of these problems, an
architecture and a number of mechanisms are described which allow applications to effectively take

advantage of DFFSERV support.
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CHAPTER 3

TECHNIQUES FOR ELIMINATING PACKET LOSS IN
CONGESTED TCP/IP NETWORKS

3.1 Introduction

As described in Chapter 2, one of the reasons for high packet loss rates is the failure of the
network to provide early congestion notification to sources. This has led to proposals for active
gueue management such astRand variations thereof [26, 41]. WhileER certainly outperforms
traditional drop-tail queues, this chapter shows that it is difficult to parametegzegReues to
perform well under different congestion scenarios. The key problem is that congestion notification
does not directly depend on the number of connections multiplexed across the link. In order for early
detection to work, congestion notification must be given at a rate which is high enough to prevent
packet loss due to buffer overflow, while low enough to prevent underutilization of the bottleneck
link.

This chapter demonstrates the ineffectiveness of the curenigeue management algorithm
and shows how RD queues can be self-parameterized depending on traffic load in order to reduce
packet loss and maintain high link utilization. While adaptive queue management techniques can
provide some benefit, high loss rates at heavy loads are, in part, an artifact'sfcongestion
control algorithm. When a large number of sntatlP connections share a common bottleneck,
the traffic generated can cause rapid fluctuations in queue lengths which result in packet loss. This
chapter also investigates several ways of modifying's congestion control mechanism in order

to make the aggregate traffic generated by a large numbecmEonnections better-behaved. In
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particular, using a scaled linear increase or a bandwidth-based linear increase in the window size,
instead of the linear increase algorithm used by, is shown to substantially reduce packet losses.

When used together, the adaptive queue management mechanisms and the proposed enhancements
to TcP's windowing algorithm can effectively eliminate packet loss even in highly-congested net-

works.

3.2 Active Queue Management

One of the inherent weaknesses &iRand some of the other proposed active queue manage-
ment schemes is that congestion notification does not directly depend on the number of connections
multiplexed over the link. In order for early detection to work in congested networks, congestion
notification must be given to enough sources so that the offered load is reduced sufficiently to avoid
packet loss due to buffer overflow. Conversely, ttEbRjueue must also prevent congestion notifi-
cation from being given to too many sources in order to avoid situations where the bottleneck link
becomes underutilized. For example, consider a bottleneck link of cap@ditys which is equally
shared amongst several connections. Assumamwindowing, when 100 connections share the
link, sending congestion notification to one connection reduces the offered 198 id bs. On the
other hand, when only 2 connections share the link, sending congestion notification to one of them
reduces the offered load 05 M bs. In general, with a bottleneck link that suppoisconnections,
giving congestion notification to one connection reduces the offered load by a fa¢ter g%;). As
N becomes large, the impact of individual congestion notifications decreases. Without modifying
the ReD algorithm to be more aggressive, thelRqueue degenerates into a simple drop-tail queue.

On the other hand, a8 becomes small, the impact of individual congestion notifications increases.

In this case, without modifying the#® algorithm to be less aggressive, underutilization can occur

as too many sources back off their transmission rates in response to the observed congestion. This
section examines the impact that traffic load has on active queue management techniques such as

RED and proposes on-line mechanisms for optimizing performance.
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Figure 3.1: Network topology

3.2.1 Traffic load and early detection

To examine the impact that traffic load has on early detection mechanisms, a set of experiments
using thens simulator [46] was performed. T simulator has been used extensivelyin a number
of studies reported in the literature. Whibs does not use productiorce code, it implements
congestion and error control algorithms used in different implementationsmvith remarkable
accuracy. In these experiments, both the aggressiveness of the early detection algorithm and the
total number of connections multiplexed on the bottleneck link were varied. Figure 3.1 shows the
network topology used in the experiments. Each connection originates at one of the leftmost nodes
(n0,n1,n2,n3, nd) and terminates at8, making the link betweenb andn6 the bottleneck. The
performance of of RD usingecN [23] is examined first. By using B> and end hostcp sources
enabled withecN, all packet losses from theE® queue can be attributed to buffer overflow. In
order to isolate the effects of congestion notification triggerednby,; from that triggered by
maxq, the maxy, parameter is set to the queue size. This, in effect, disables;, and causes
packet loss to occur whenever early detection does not work. Additional experimentsiusipng
values which are below the queue size are described in Section 3.2.2. Figure 3.2 shows the queue
length plot of the congested queue located froto n6 when there are 8 and 32 connections
simultaneously competing for bandwidth over the link. In these experiments ghelgorithm is
made aggressive by changing.z,, RED’s initial drop probability. As Figure 3.2(a) shows, when

only 8 connections are active, aggressive early detection sends congestion notification back to the
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Figure 3.2: Aggressive early detectiondz, = 0.250)

sending sources at a rate which is too high, causing the offered load to be significantly smaller
than the bottleneck link bandwidth at certain times. This causes periodic underutilization where the
gueue is empty and the bottleneck link has no packets to send. Figure 3.2(b) shows the queue plot
when the number of connections is increased to 32. In contrast, aggressive early detection performs
as desired, sending congestion notification at a rate which can both avoid packet loss and achieve
high link utilization.

Figure 3.3 shows the same set of experiments using conservative early detection. In contrast
to Figure 3.2(a), Figure 3.3(a) shows that by using less aggressive early detectioapthedtie
can maintain high link utilization while avoiding packet loss over smaller numbers of connections.
However, when the number of connections is increased to 32, as Figure 3.3(b) shows, conservative
early detection does not deliver enough congestion notification to the sending sources. Thus, the
gueue continually overflows causing thefiRqueue to behave more like a drop-tail queue. The
figure also shows that the bottleneck queue never drains even though it is dropping a significant
number of packets. This indicates thatp is not aggressive enough in backing off its sending
rate in response to congestion and that the packets which are successfully delivered through the
bottleneck queue are enough to trigger subsequent rate increases in the serdiogrces. Thus,
the bottleneck queue remains close to fully occupied through the duration of the experiment.

To quantitatively evaluate the impact ofaz,, the experiments were repeated across a range
of traffic loads and the loss rates and link utilizations observed were plottezghcin experiment,

connections are started within the first 10 seconds of simulation. After 100 seconds, both the loss
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Figure 3.3: Conservative early detectiondz, = 0.016)

rates and the link utilization for the bottleneck link are recorded for 100 seconds. The loss rate is
calculated as the number of packets dropped by the queue divided by the total number of packets
which arrive at the queue. Link utilization is calculated as the total number of packets sent divided
by the maximum number of packets the link could send. Figure 3.4(a) shows the loss rates observed
for experiments using 4, 8, 32, and 64 connections. The figure plots the loss rates when a drop-tail
gueue is used at the bottleneck link. As the drop-tail results show, loss rates at the bottleneck link
increase proportionally to the number of connections using the link. There are two main reasons
why this is the case. One reason, as described earlier, is that with a large number of connections,
it takes a larger amount of congestion notification (i.e. packet drops), to sufficiently signal the end
hosts to back off their sending rates. The other reason is due to a fundamental problerarwith
congestion control which is described in Section 3.3. Figure 3.4(a) also shows the loss rates using
RED-ECN over a range ofnax, values. The corresponding bottleneck link utilization éarch
experiment is shown in Figure 3.4(b). The figures show that for small numbers of connections, loss
rates remain low across all valuesot.z,,, while only small values of:ax, can keep the bottleneck

link at full utilization. Thus, to optimize performance over a small number of connections, early
detection must be made conservative. In contrast, for large numbers of connections, bottleneck link
utilizations remain high across aflaxz, values while only large values atax, are able to prevent
packet loss from occurring. In order to optimize performance in this case, early detection must be

made aggressive.
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Figure 3.4: Impact of early detection aggressivenessem-RCN

3.2.2 Avoiding deterministic congestion notification

In the previous sectiompaz;y, is set equal to the queue size so that whenever the early detection
algorithm fails, packet loss occurs. By settingiz,;, sufficiently below the queue size, th&eR
algorithm can avoid packet losses when early detection fails by deterministically marking every
incoming packet. Figure 3.5 shows the queue length plot using the same experiment as in Fig-
ure 3.3(b) with a larger bottleneck queue size and a fixed;;, of 80K B. When the queue size is
120K B, the queue length plot shows that even with a fairly significant amount of additional buffer
space, packet loss is not eliminated. The plot also shows that the combined effect of@ising
and packet drops for signaling congestion notification leads to periods of time weie able to
impact the sending rates of the sources. This is in contrast to the behavior seen in Figure 3.3(b). In
that experiment, a connection which was able to send a packet through the bottleneck link always
increased its sending rate even though the bottleneck queue was full. By setting sufficiently
low and usingecN, all connections receive congestion notification when the queue is full whether
it is from anecN or from a packet loss. Thus, as Figure 3.5(a) shows, after a sustained period of
ECN marking and packet loss, the sources back off enough to allow the queue to drain. One of the
problems with deterministic marking is that it often goes overboard in signaling congestion to the
end hosts. As the queue length plot shows, periods of congestion are immediately followed by fairly
long periods of underutilization where the queue is empty. Furthermore, it takes a large amount of

extra buffer space in order to ensure that no loss occurs. Figure 3.5(b) shows the queue length plot
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Figure 3.5: Impact ofnazs, and queue size

using a queue size A0 K B. As the figure shows, even when deterministic marking is done at
average queue lengths&i K B, the actual queue length can more than double before sources have

a chance to back off.

3.2.3 AdaptiveRED

From the previous experiments, it is clear that more aggressive early detection is needed when
a large number of flows are active in order to avoid packet loss and deterministic congestion notifi-
cation. Similarly, less aggressive early detection is needed when a small number of flows are active
in order to prevent underutilization é8ause adaptinge® parameters can be beneficial to network
performance, this section proposes an on-line mechanism for adaptively changing the parameters
according to the observed traffic. This algorithm, called Adaptige Rs shown in Figure 3.6. The
idea behind this algorithm is to infer whether or na@rRshould become more or less aggressive by
examining the average queue length behavior. If the average queue length continually crosses back
and forth overmin,;, then the early detection mechanism is being too aggressive. If the average
gueue length continually crosses back and forth ever;;, then the early detection mechanism is
not aggressive enough. Given the behavior of the average queue length, the algorithm then adjusts
its value ofmaz, accordingly. For this algorithmpaz, is simply scaled by constant factors of
« and 3 depending on which threshold it crosses. Figure 3.7 shows how AdaptivecRanges
the marking/dropping behavior ofe®. In contrast to the original Bd algorithm as shown in Fig-

ure 2.3, Adaptive RD’s marking function changes depending on the settinguot,. In times of
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Figure 3.6: Adaptive RD algorithm
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Figure 3.8: Static random early detection
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Figure 3.9: Adaptive RD

light congestion, the marking/dropping probabilities remain quite low until the average queue length
reachesnaz,,. In times of heavy congestion, the marking/dropping probabilities increase quickly
as the average queue length exceeds;;,.

To show the feasibility of Adaptive D, another experiment using the same network shown
in Figure 3.1 was run, but with 8 queues of siza 00K B. In this experiment, the number of
active connections is varied between 8 and 32 over 40 second intervals. Figure 3.8 shows the
gueue length plots usinge® queues statically configured to be either aggressive or conservative.
When aggressive early detection is used, as shown in Figure 3.8(a)gthguRue performs well
whenever 32 connections are active. When only 8 connections are active, howevantthedre is
too aggressive in its congestion notification, thus causing periodic underutilization where the queue
is empty. When conservative early detection is used, as shown in Figure 3.8(bkolgiBue only
performs well when 8 connections are active. When all 32 connections are actives thgguBue
continually fluctuates between periods of sustained packet loss@wdnarking and subsequent
periods of underutilization.

Figure 3.9(a) shows the queue length plot of the same experiment using Adaptivevikh
a and g set to 3 and 2, respectivelynaz, is initially set to to 0.020 and then allowed to vary
according to the algorithm. As the plot shows, after brief learning periods when the experiment
starts and when the input traffic changes, ttEbRjueue is able to adapt itself well. Figure 3.9(b)
plots themaz, parameter as the# queue adapts it to the input traffic. As expected, its value

adapts to reflect the number of active flows. When all 32 connections are activg,increases
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significantly, causing the Eb algorithm to become more aggressive. When only 8 connections are

active,maz, decreases, causing th&Ralgorithm to become less aggressive.

3.2.4 Round-trip time sensitivity

In the previous experiments, the round-trip time for all of the connections was kept approxi-
mately the same. While this allows for an initial understanding of the problems withaRd the
effectiveness of Adaptive B0, a more realistic topology with varying round-trip times can provide
slightly different results. In this section, the experimental setup is changed to reflect the presence of
connections with a variety of round-trip times going across the bottleneck link. Figure 3.10 shows
the network evaluated. In this network, the round trip times are varied by increasing and decreasing
the transmission delay across several links. Given this heterogeneity, the round-trip delays between
connections when the network is unloaded ranges fipms to 230ms.

Using this network, the experiment in the previous section was repeated. Figure 3.11 shows the
gueue length traces using both aggressive and conservative early detection. The figure shows similar
results as before with one small difference. When conservative early detection is used with a large
number of sources, deterministic congestion notification does not always cause underutilization of
the bottleneck link. One of the reasons behind this is the fact that the varying round-trip times
cause sources to react to deterministic congestion notification at different times. Thus, they do not
synchronously reduce their transmission rates. Another reason why underutilization is not severe is
that sources with extremely small round-trip times (B&ms) are able to ramp up their transmis-
sion rates quickly after congestion occurs. While this allows such flows to grab a disproportionate
amount of the bottleneck link capacity, it also keeps the bottleneck link more fully utilized across
time.

Figure 3.12 shows the performance of AdaptiveDRover the same experiment. As the figure
shows, the ability for Adaptive BD to hit RED's “sweet spot” is not severely affected by the differ-
ence in round-trip time. Thewez,, modification still allows D to adapt effectively to changes in

network load.
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Figure 3.13: Testbed

3.2.5 Implementation

To further evaluate Adaptive, it has been implemented in FreeBSD 2.2.6 and ALTQ [9]. In
the implementation, calls to the geneiic ENQUEURBNdIF _DEQUEURacros fromif _output
andif _start are changed to replace thg=0 queueing mechanism typically used in BSD Unix
with the Adaptive D queueing discipline. Using this implementation, several experiments on a
small testbed of PCs shown in Figure 3.13 were performed. In the figure, each network node and
link is labeled with CPU model and link bandwidth, respectively. Note that all links are shared
Ethernet segments. Hence, the acknowledgments on the reverse path collide and interfere with data
packets on the forward path. As the figure shows, FreeBSD-based routers using Adamive R
connect the Ethernet and Fast Ethernet segments.

To generate load on the systemetperf  [49] is usednetperf is a well-known, parameter-
izable tool for generating network load in order to evaluate the performance of both end hosts and
network elements. In the experiments shown, a variable number of infietiperf ~ sessions are
run fromfast to slow , the endpoints of the network. The router queue on the congested inter-
face onrouter2  to the Ethernet segment is sizedb@tk' B using aminy, of 10K B amax;y of
40K B. A maz, value of 0.02 is used for the conservative early detection algorithm while:s,
value of 1.00 is used for the aggressive early detection algorithm.»Idw, value of Adaptive
RED is initially set at 0.02 and allowed to vagccording to the algorithm in Figure 3.6. In order
to ensure the Adaptive ® modifications did not create bottlenecks in the routers, a number of
experiments were run betwetast androuter2 using Adaptive RD onrouterl to forward
packets between both hosts. In all of the experiments, the sustained throughputecf  was
always abova 0 M bs. Thus, experiments run frofast to slow always bottleneck at the output

interface to the Ethernet segmentroniter2
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Figure 3.14: Queue management performance

Figure 3.14 shows the throughput and packet loss rates at the bottleneck link across a range of
workloads. The throughput measures the rate at which packets are forwarded through the congested
interface. This rate slightly overestimates the end-to-end goodput ofetiperf  sessions since
retransmissions are counted. The packet loss rate measures the ratio of the number of packets
dropped at the queue and the total number of packets received at the queue. In each experiment,
throughput and packet loss rates were measured over ten 5-second intervals and then averaged. As
Figure 3.14(a) shows, both the conservative and adaptive early detection algorithms maintain high
throughput levels across all workloads while the aggressive early detection algorithm achieves a
lower throughput for smaller numbers of connections. Note that since the Ethernet segments are
shared, acknowledgments on the reverse path collide with data packets on the forward path, thus
limiting throughput. Figure 3.14(b) shows the packet loss rates over the same workloads. As the
figure shows, both the aggressive and the adaptive early detection algorithms maintain low packet
loss rates across all workloads while the conservative early detection algorithm suffers from fairly
large packet loss rates as the number of connections increases. When the number of connections
is large, an interesting observation is that the marking rate of the adaptive and aggressive early
detection algorithms approaches 50%. Because aggregateehavior becomes more aggressive
as the number of connections increases, it becomes more and more difficult famhguBuUe to
maintain low loss rates. Fluctuations in queue lengths occur so abruptly thaethel&orithm

oscillates between periods of sustained marking and packet loss and periods of minimal marking
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and link underutilization. This observation is revisited in Section 3.3 and in Chapter 4.

3.2.6 Using packet loss for congestion notification

The previous experiments examine the use of early detection in its “purest” form where con-
gestion notification is free and causes no packet losses. Without supparNphowever, D
must resort to dropping a packet in order to signal congestion. This leads to an interesting optimiza-
tion problem where the B> queue must pick awaz, value which minimizes the sum of packet
drops due to early detection and packet drops due to buffer overflow. With extremely:lange
values, packet loss rates are dominated by drops due to early detection while with extremely small
maz, values, packet loss is mostly due to queue overflow. To illustrate this, the experiments in
Section 3.2.1 were repeated using a normabRjueue. Figure 3.15 shows the loss rates bR
with 32 and 64 connections running through the bottleneck link. Agaim,as, decreases, the per-
formance of D approaches a drop-tail queue. Howeveryas:, increases, the drops contributed
by the early detection algorithm begin to dominate the loss rate. Both graphs show a cusp at the
point which minimizes the sum of the losses contributed by the early detection algorithm and by
buffer overflow. This cusp occurs at different valuesiofz, depending on how many connections
are present. As more connections are added, the optimal valuexf increases.

Note that even with a BD queue parameterized to minimize loss, packet loss rates continue to

increase with traffic load. Using drops as a means for congestion notification fundamentally limits
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the loss rate observed across the Internet. As more connections come on-line, the rate of congestion
notification, and thus, the loss rates increase. Steady state analysigobtbengestion avoidance
algorithm [22, 40, 42, 51] gives some insight as to why this is the case. Such analysis has shown
that given random packet loss at constant probahilitthe upper bound on the bandwidtirap
connection sees can be estimated as:

MSS C

BW < 2225
< RIT Jp

(3.1)

where M SS is the segment sizeRTT is the round-trip time, and’ is a constant. Using this
model, packet loss rates over a single bottleneck link dffbs can be approximated for a fixed
number of connectiond’. In this situation, the bandwidth delivered to each individual connection
is approximately the link bandwidth divided by the number of connecti#r)s By substituting this
into the previous equation and solving fgrthe following is obtained

» (NM)Z (3.2)

L RIT

As the equation shows, when all of the connections are usingaikecongestion avoidance
algorithm, the upper bound on the packet loss rate quadratically increases with the number of con-
nections present. Intuitively, this phenomenon can be shown using an idealized example. Suppose
two identical networks have bandwidth-delay producté4X B from a given pair of end points as
shown in Figure 3.16. In one network, 4 identical connections are active while in another 8 identical
connections are. Given fair sharing amongst the connections, the congestion windows of each con-
nection will approximately be the bandwidth-delay product divided by the number of connections
present. For 4 connections, each connection will have congestion windows whiltateswar
16 K B. Assuming normatcp windowing and a segment size bK B, an individual connection in
this network will typically build its congestion window up to around 16 packets, receive congestion
notification in the form of a lost packet, back off its window to about 8 packets and then slowly build
its congestion window back up at a rate of one packet per round-trip time. Given this behavior, the
loss rate across all connections in this idealized model would then be approximately 4 packet drops
every 8 round-trip times o?%cﬁm. Similarly, using the same idealized model, it can be shown
that when 8 connections are present, losses occur at a raf&&f”* , a quadratic increase.

Because the derivation of Equation 3.2 is based on idealized scenarios, the actual loss rates
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Figure 3.16: Example network

do not quite vary quadratically with the number of connections. From the drop-tail experiments

in Figure 3.15, the loss rates observed show a dependence on the number of connections which
is somewhere between linear and quadratic. There are several reasons why this is the case. One
reason is that the derivation assumes a fair sharing of bandwidth across the bottleneck link. It has
been shown that as the numbermfp connections increases, the amount of unfairness between
connections increases considerably [48]. Another reason is that the equation does not model the
occurrence of retransmission timeouts. By using modetsefbehavior which capture retransmis-

sion timeouts, loss rates can be predicted more accurately [52].

The results from Equation 3.2 are still significaschuse they show that as networks become
more congested, packet loss rates increase considerably, thus making the probability of congestion
collapse more likely. The equation highlights the need for decoupling packet loss from congestion
notification through the use of explicit congestion notification. In lieu of explicit congestion notifi-
cation, however, the equation also provides some insight on how to improve loss rates given a fixed
number of connections. One way is to alter the congestion avoidance mechanism itself so that it
does not continually increase its sending rate beyond the network’s capacity. For example, schemes
such as Tri-S [66, 67] orcp Vegas [7] can be used to reduce the amount of packet losses observed.
Another way is to increase the bottleneck link bandwillttBy increasing the link bandwidth, the
effective congestion windows of individual connections increases, thus decreasing the frequency of
congestion notification in the scenario above. Reducing the segment size used in the congestion
avoidance algorithm can also improve loss rates. The smaller segment size allows the end host to
grow its congestion window more slowly, thus decreasing the rate at which it receives congestion

notification. Finally, loss rates can be improved by increasing the round-trip time. Increasing the
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(1) closecwnd()
if (CWND ==1)
scale = scale * 2;

counter = int(2aexRIT _y 4 1.
timer anterval !

elsenormaltcp_closecwnd();
(2) send()
if (CWND == 1)
if (counter <0)
sendnextsegment;

counter = int(ZuexRIT _y 4 1.
timer anterval !

return;
elsenormaltcp_send();
(3) opencwnd()
if (CWND == 1 && scale > 1)
scale = %;
if (scale < 1) scale =1,
return;

normaltcp_.opencwnd();
(4) Every timerinterval
counter = counter - 1;

Figure 3.17: &BTCP algorithm

round-trip time, through the use of additional network buffers [65] increases the bandwidth delay

product which slows the rate of congestion notification.

3.3 End Host Congestion Control

While properly designed active queue management mechanisms like AdajgtivedR help
reduce packet losses, such techniques alone cannot guarantee low loss rates especially when traffic
load fluctuates wildly. Instead, intelligent queue management must be combined with intelligent
end host congestion control in order to obtain high utilization with a minimal amount of packet loss.
If the offered load overwhelms the bottleneck link before congestion notification can be delivered,
buffer overflow and packet loss is inevitable. This section describes several weaknesses in
congestion control and how they can cause high loss rates even in the presence of active queue man-
agement. Given this behavior, a number of possible modificationsris windowing mechanism

which alleviate this problem are proposed and evaluated.
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3.3.1 Adjusting the minimum transmission rate

One of the limitations offCP's congestion control mechanism is that in normal operation, the
minimum transmission rate of &cP sender is one segment per round-trip time. When a large
number of connections are multiplexed over a low bandwidth link, the inabilitcefto transmit
at lower rates causes a significant amount of packet loss and retransmission timeoutscf48].
by exponentially backing off its retransmission timeout interval, does in fact have a mechanism
which allows it to transmit at a rate lower than one segment per round-trip time. However, upon
a single successful transmissiait,p resets this timer and resumes transmitting at a minimum rate
of one segment per round-trip time. From the standpoint of transmission rates, this in effect makes
TCP congestion control an exponentially-increasing algorithm. If a large number of connections
increase their transmission rates in this manner, the network sees substantial bursts which cause
packet loss. One way to fix this problem is to simply decrease the exponential back-off interval
when a packet is successfully transmitted rather than resetting the value. This prevents the source
from automatically ramping up its sending rate as soon as it has received a single acknowledgment
after a retransmission timeout. Figure 3.17 shows a simple algorithm for doing so. In this case,
instead of resettingcP’'s back-off interval, it is halved. In the rest of the chapter, this variation of
TcPis referred to as $8TCP. TCP's minimum transmission rate is also directly determined by the
segment size and the minimum window size used [1]. Smaller segment and minimum window sizes
translate into lower minimum sending rates. In addition, from Equation 3.2 in Section 3.2, using a
smaller segment size makes linear increase less aggressive and thus reduces the amount of packet
losses.

To understand the impact that the segment size, the minimum window size, andamners
modifications have on packet loss rates in congested networks, a number scenarios in the network
shown in Figure 3.18 are examined. In this network, 100 connections are run from#ibedes
through the bottleneck.5Mbs link between nodet and nodeB to nodesn5—n9. For the ReD
gueuesinazy, is used as the measure of buffer size in an attempt to more fairly compare drop-tail
and ReD queues. The actual queue size is set at (h2#;;) while min,, is set at (0.25hax4).

For most of the experiments in this section, early detection is made conservative by-fixingo
0.016, in order to isolate the impact end host modifications have on performance. Figure 3.19(a)

shows the packet loss rates observedrby and SusTcp for different segment sizes and initial
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Figure 3.18: Network topology

windows. As the Figure 3.19 shows, the use of the smaller segment size of 500 bytes significantly
improves loss rates over the use of the larger 1000 byte segment size. In addition, the figure also
shows that the @8TCcP modifications have a very modest impact on the loss rates. Finally, the
doubling ofTcP's minimum window leads to a significant increase in the amount of packet loss ob-
served. For a better understanding of the above observations, the queue length plots of the bottleneck
link for the various experiments are examined. Figure 3.19(b) shows the queue length plot of the
experiment usingcP with RED-ECN queues. Themaz, used in the experiment wa§ K B. The

figure shows that the queue quickly fills up soon after congestion notification stops being delivered.
This is due to the fact thatcp ramps its transmission rate too quickly upon successfully sending its
segments, causing large queue length fluctuations which defeat the early detection mechanism and
induce packet loss.

Figure 3.20(a) shows the queue length plot using the smaller segment size angetherS
modifications. As the figure shows, the modifications slow the increase in transmission rates of
individual connections and thus help reduce the amount of queue fluctuations and packet loss. Note
that the )BTCP modifications alone are not enough to allow early detection to work. One of the
reasons why is that whileu®TcP can reduce the minimum sending rates of the sources, it still
allows a multiplicative increase in sending rates. Such traffic easily defeats early detection causing

packet loss to occur. Additional modifications which address this are described in Section 3.3.2.

1The queue length plot of normatp over normal D queues shows results similar to Figure 3.3(b).
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Figure 3.19: Minimum sending rates and the performancecef

Figure 3.20(b) shows the queue length plot of norm@# over RED-ECN queues using a minimum
window of two segments. As shown in the trace, using the large minimum window defeats the
early detection mechanism ofeR as well as the congestion control mechanisntob. Thus,

while a large minimum window may be desirable in unloaded networks where it can reduce transfer

latencies considerably, it must be used carefully or not at all when the network is congested.

3.3.2 Adjusting linear increase

In steady staterCp uses its congestion-avoidance algorithm to slowly increase its transmission
rate. In this phase, the congestion window of a connection increases linearly by one segment per
round-trip time. During times of congestion when a large number of connections are competing
for bandwidth, the window size of each connection is small. Unfortunately, for small windows,
linear increase is a misnomer since increasing the window size by a segment can have a non-linear
impact on the connection’s transmission rate. For example, when a connection has a congestion
window of 1, it doubles its sending rate when it increments its window by a segment. When a
large number of connections with small windows are aggregated, the network sees traffic which is
multiplicatively increasing and decreasing. This causes rapid fluctuations in queue lengths, periods
of high utilization and packet loss followed by periods of underutilization. Such traffic patterns also
defeat early detection mechanisms such & Recause large queues can accumulate over very

short time periods.
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Figure 3.20: Queue plots for decreased segment size and increased window size

In this section, modifications to the linear increase algorithm are considered in order to enable
TCP to work better under heavy congestion. Two techniques, in particular, are considered: (1) a
scaled linear increase and (2) a bandwidth-based linear increase. The idea behind the scaled increase
is to increase the congestion window by a fixed fractional amount when the congestion window is
small. This is a heuristic much like the current linear increase algorithm. While it can certainly
alleviate some of the problems seen with standard linear increase, fixed increases in general have
the problem of either not being aggressive enough when the network is uncongested or being too
aggressive when the network is congested. Figure 3.21 shows the scaled linear increase algorithm
used. In the experiments, scaled increases are used to slow the increase in transmission rates when
the congestion window is effectively below one. Thus, when the network is not congested, the
source simply behaves as a normab source.

In addition to the scaled linear increase algorithm, an experimental, bandwidth-based linear in-
crease algorithm was also examined. The motivation of the bandwidth-based algorithm is rather
intuitive. Assume that the bottleneck router has enough buffers to ab&rihigher than its bot-
tleneck bandwidth for a duration of about a round-trip time. This is the time it takes for congestion
notification to reflect itself back to the bottleneck link. Thergdich source only increases its trans-
mission rate byat mostX % every round-trip time, the network can ensure a minimal amount of
packet loss. Bandwidth-based increases inherently depend on the round-trip times of each of the
connections. This is because it takes at least a round-trip time for congestion natification to have

an impact on the offered load seen by the router. Bandwidth-based increases also inherently de-
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opencwnd()
if (CWND ==1 && scale > 1)
scale = scale - scale_factor;
if (scale < 1) scale =1,
elsenormaltcp_opencwnd();

Figure 3.21: Scaled sub-lineau8tcp algorithm

pend on the amount of buffering at the bottleneck link. If the buffers are increased at the bottleneck
link, the end sources can be more aggressive in ramping up their transmission rates. On the other
hand, increased buffering can also prevent sources from ramping up their transmission rates by in-
creasing the round-trip time and thus the latency in delivering congestion notification. Even with
bandwidth-based increases, there is still a small likelihood of buffer overflow. One reason is that
in the case of RD queues, deterministic congestion notification is triggered only when the average
gueue length exceedsaz;,. The actual queue length can often be larger than the average queue
length especially when the offered load is steadily increasing. Another reason icthagffic

exhibits short-term burstiness which makes its offered load appear to be much larger than it actually
is [70]. Such burstiness can cause buffer overflow even when the overall offered load is below the
bottleneck link capacity. Still, the key advantage of using bandwidth-based linear increases is that
the behavior of its aggregate traffic is mostly independent of the number of connections present.
The router thus sees traffic which increases at a fairly fixed rate regardless of the amount of conges-
tion in the network. Controlling the behavior of aggregate traffic allows active queue management
schemes to work as intended. Figure 3.22 shows the bandwidth-based linear increase algorithm used
in the experiments. As the algorithm shows, the window increase used is calculated as the mini-
mum of TCP's current linear increase and a calculated bandwidth-based increase. Note that one of
the disadvantages of the bandwidth-based increase algorithm is that it falls in a class of algorithms
which have been theoretically shown to be unable to provide max-min fair sharing in a responsive
manner [8, 38]. While fairness is a concern, even witl's current congestion control algorithm,
fairness between connections has already been shown to be poor in times of congestion and among
connections with varying round-trip times [25, 48]. In addition, the idealized model used in [8]
assumes that congestion notification is given to all sources when the bottleneck resource becomes

saturated. With more intelligent queueing algorithms such BB &d FRED [26, 41] that deliver
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ecwnd = EWID.
wnd = min(ecwnd x FL e cwnd + g );
if (wnd< 1)
CWND =1;
scale = ﬁ;
else
CWND = wnd;
scale = 1;

Figure 3.22: Bandwidth-based)8Tcp algorithm

congestion notification preferentially to higher bandwidth flows, it may be possible for a larger class
of increase/decrease algorithms to quickly converge to max-min fair sharing.

Given these modified increase algorithms, the previous experiments were repeated in order to
evaluate their performance. Figure 3.23 shows the loss rates and the link utilization observed. For
the fixed scaled increases, the graphs show the results using a scaling féctﬁoofhe bandwidth-
based linear increase algorithm, the percent bandwidth increase was set to 1% in order to prevent
packet loss in the network shown in Figure 3.18 when usiag/a B RED queue with aning, of
5K B and amazy, of 20K B. Figure 3.23(a) shows the loss rates observed using the varimus
schemes. The graph shows that using the sub-linear increases greatly reduces the amount of packet
loss. In fact, for smaller buffer sizes, the difference in loss rates is as higtwvasal! orders of
magnitude. The bandwidth-based algorithm, in particular, provides extremely low loss rates under
heavy congestion even when a small amount of buffering is present. Figure 3.23(b) shows the link
utilization observed across all schemes. While the scaled linear increase algorithm provides low
losses, it is unable to sustain full link utilization. The bandwidth-based algorithm, on the other
hand, maintains high link utilization across all buffer sizes.

In order to understand why the scaled linear increase algorithm sees lower link utilization and
sometimes higher packet loss than the bandwidth-based algorithm, the queue length plots of the
bottleneck queue were captured. Figure 3.24(a) plots the queue lengths from the experiment using
amaxy, of 80K B. The traces show that the use of sub-linear increases makes aggreg#tes
aggressive, thus preventing sustained periods of packet loss observed in the previous experiments
shown in Figure 3.20. Figure 3.24(a) also shows, however, that the sources are still aggressive

enough to defeat the early detection mechanism. It takes a sustained period of congestion notifica-
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Figure 3.23: Performance of modified linear-increase algorithms

tion when the average queue length exceeds:,;, for the offered load to be reduced sufficiently
below link capacity. As shown in Section 3.2.2, sustained congestion notification can be detrimental
to link utilization since it inevitably causes too many sources to back off their transmission rates.
As the queue plot shows, whenaz,, is triggered, the bottleneck link can subsequently become
underutilized. There are a couple of ways to fix this problem. One would be to make the scaled
increases even smaller so that static early detection has a chance to signal the end hosts in time to
preventmaaz,, from being triggered. Another way to improve performance is to simply make the
early detection mechanism more aggressive as described in Section 3.2. Additional experiments
have shown both ways can be effective in improving the performance of scaled increases. In con-
trast to the scaled linear increase, Figure 3.24(b) shows the queue length plot when each source is
using bandwidth-based increases. As the figure shows, the aggregate traffic fluctuates much less,

allowing early detection to perform as intended.

3.4 Tuning for Optimal Performance

The previous two sections have shown how individually, active queue management and end host
mechanisms can be used to significantly reduce loss in the network. When used together, they form
a synergistic combination which can allow the network to achieve extremely high efficiency even
in times of heavy congestion. Figure 3.25 shows the loss rates and bottleneck link utilizations over

a range of workloads using the bandwidth-based &P algorithm with Adaptive RD queues in
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Figure 3.24: Sub-linear@TcP performance

the network. In these experiments, the topology in Figure 3.18 is used and the number of connec-
tions going across the5Mbs link is varied from 25 to 300. As the figure shows, the packet loss
rates remain extremely low while the bottleneck link utilizations remain remarkably high across all
experiments.

In order to compare the improvements against other schemes, the packet loss rates using a
traffic load of 100 connections is used. Figure 3.26(a) plots the loss rates for a range of end host
and queue management schemes. The figure shows the performance of nopmging both
drop-tail and D queues as well as the performance of normm@ usingecN using both a static
RED-ECN queue and an AdaptiveE®-ECN queue. In addition, the figure plots the performance
of the bandwidth-basedusTcp algorithm over both static and adaptive RECN queues. In this
figure, the graph shows that decoupling congestion notification from packet loss through the use
of ECN improves loss rates significantly. The graph also shows that both the Adaivefd
SusTcP modifications provide substantial performance improvement and that, when used together,
they allow the network to achieve optimal performance.

The previous experiments fixed both the round-trip times and the percent bandwidth increase
used (1%). Since the performance of the proposed congestion control mechanisms have an inherent
dependence on both, additional experiments which varied them were performed. Figure 3.26(b)
plots the loss rates using 100 connections when the percent bandwidth increase used is 10%, 30%,
and 50%. The experiments also vary the transmission delay across the bottleneck lifilgfsom

to 10ms and50ms, thus considerably increasing the round-trip time. As the figure shows, as each
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Figure 3.25: Performance across traffic load

source is allowed to increase its sending rate more quickly, loss rates slowly rise as the burstiness
seen at the router increases. However, even with larger percent increases, loss rates still remain
relatively low compared to other schemes. The figure also shows that an increased round-trip time

has little impact on performance, with loss rates remaining low as well.

3.5 Conclusion and Future Work

This chapter has shown how active queue management and end host congestion control algo-
rithms can be designed to effectively eliminate packet loss in congested networks. In particular,
an adaptive RD mechanism which is cognizant of the number of active connections and the use
of bandwidth-based linear increases can both provide significant benefits in terms of decreasing
packet loss and increasing network utilization. There are several ways in which these mechanisms
can be extended. In particular, several ways for methodically improving the adaptiveness of the
RED algorithm are being examined. This chapter presents one specific algorithm for taileing R
parameters to the input traffic. There are many other potential alternatives for doing so. For exam-
ple, the RED queue could actually keep track of the number of active connections and change its
aggressiveness accordingly. Another mechanism would be to havethguRue infer the number
of connections present by the rate at which the average queue length changes and have it then adapt

its parameters accordingly. It may also be possible to adapt o#®pRrameters instead ofazx,
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Figure 3.26: Performance comparisons

to optimize performance. For example, one could adaptively change inter-packet drop probabilities
or the ReD threshold values depending on the input traffic. Finally, in extremely congested networks
for which settingnaz, to 1 is not sufficient, it may be possible to make the marking/dropping even
more aggressive by having the marking probability change as a non-linear function of the average
gueue length. Figure 3.27 shows an example of how the marking/dropping function can be modi-
fied to further improve the performance oER. As the figure shows, whensaaz, setting of 1 is
insufficient, the marking function can assume a non-linear shape allowing the marking to become
even more aggressive. Changing the marking function in this manner can atlowwoRcontrol
congestion even under extremely heavy congestion.

Additional ways for improving end host congestion control algorithms are also being examined.
While bandwidth-based increases provide end hosts with an upper bound on how aggressively they
can ramp up their sending rates, it is often desirable for a source to change its sending rate more
slowly or not at all when nearing the congestion point in order to avoid oscillations inherent in
TCP's windowing algorithm [7, 66,67]. Incorporating such techniques into the bandwidth-based
increase algorithm are being explored. Additional mechanisms for improving fairness over short
time scales are being considered. One of the advantagesrofongestion avoidance is that it
inherently gives an advantage to low-bandwidth flows. For flows with equivalent round-trip times,
low-bandwidth flows with small congestion windows increase their effective sending rates more

quickly than higher-bandwidth flows with larger windows when usitg’s congestion-avoidance
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algorithm. Extensions which address this problem in the context of bandwidth-based increases are

also being considered.

41



CHAPTER 4

BLUE: A NEW CLASS OF ACTIVE QUEUE MANAGEMENT
ALGORITHMS

4.1 Introduction

One of the striking results in Chapter 3 is that even wgitin, RED queue management is still
unable to eliminate packet loss over a large range of workloads. Packet loss can only be eliminated
when modifications are made t@P's congestion control algorithms. This chapter demonstrates a
fundamental weakness withelR and all other known active queue management techniques. This
weakness severely impacts their ability to minimize packet loss. The problem lies in the fact that
all of the algorithms rely on some form of the queue length in order to estimate congestion. While
the presence of a persistent queue indicates congestion, its length gives very little information as to
the severity of congestion, that is, the number of competing connections sharing the link. In a busy
period, a single source transmitting at a rate greater than the bottleneck link capacity can cause a
gueue to build up just as easily as a large number of sources can. Sincedladerithm relies
on queue lengths, it has an inherent problem in determining the severity of congestion. As a result,
RED requires a wide range of parameters to operate correctly under different congestion scenarios.
While RED can achieve an ideal operating point, it can only do so when it has a sufficient amount
of buffer space and is correctly parameterized [15, 65].

In light of the above observation, this chapter proposes a fundamentally different active queue
management algorithm, called.Be, which uses packet loss and link utilization history to manage

congestion. BUE maintains a single probability, which it uses to mark (or drop) packets when they
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are queued. If the queue is continually dropping packets due to buffer overflag iBcrements

the marking probability, thus increasing the rate at which it sends back congestion notification. Con-
versely, if the queue becomes empty or if the link is idlepB decreases its marking probability.
Using simulation and experimentation, this chapter demonstrates the superionty®t®RED in
reducing packet losses even when operating with a smaller buffere Biaintains low packet loss
rates over a wide-range of workloadithout requiring modifications tacp's congestion control
algorithm. Finally, using mechanisms based arB, this chapter proposes and evaluates Stochas-
tic Fair BLUE (sFB), a novel mechanism for effectively and scalably enforcing fairness amongst a

large number of flows.

4.2 The Inadequacy ofRED

As described in Chapter 2, one of the biggest problems withls congestion control algorithm
over drop-tail queues is that the sources reduce their transmission rates only after detecting packet
loss due to queue overflow. Since considerable amount of time may elapse between the packet
drop at the router and its detection at the source, a large number of packets may be dropped as
the senders continue transmission at a rate that the network cannot supporall®&iates this
problem by detecting incipient congestiearly and delivering congestion notification to the end
hosts, allowing them to reduce their transmission rates before queue overflow occurs. In order to be
effective, a RD queue must be configured with a sufficient amount of buffer space to accommodate
an applied load greater than the link capacity from the instant in time that congestion is detected
using the queue length trigger to the instant in time that the applied load decreases at the bottleneck
link in response to congestion naotification ER must also ensure that congestion notification is
given at a rate which sufficiently suppresses the transmitting sources without underutilizing the
link. Unfortunately, when a large number ofp sources are active, the aggregate traffic generated
is extremely bursty [18,21]. Bursty traffic often defeats the active queue management techniques
used by RD since queue lengths grow and shrink rapidly, well befoe® Ran react. Figure 4.1
shows a simplified pictorial example of howeR functions under this congestion scenario.

The congestion scenario presented in Figure 4.1 occurs when a large nunTiogr sifurces

are active and when a small amount of buffer space is used at the bottleneck link. As the figure
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Figure 4.1: ED example

shows, at = 1, a sufficient change in aggregater load (due toTcP opening its congestion
window) causes the transmission rates of te sources to exceed the capacity of thétlemeck

link. At ¢t = 2, the mismatch between load and capacity causes a queue to build up at the bottleneck.
At ¢ = 3, the average queue length exceeas:;, and the congestion-control mechanisms are
triggered. At this point, congestion natification is sent back to the end hosts at a rate dependent on
the queue length and marking probability:z,. Att = 4, theTCcp receivers either detect packet

loss or observe packets with th&cN bits set. In response, duplicate acknowledgments and/or
TcP-basedecN signals are sent back to the sources.t At 5, the duplicate acknowledgments
and/orecN signals make their way back to the sources to signal congestion=A4, the sources

finally detect congestion and adjust their transmission rates. Finally-at, a decrease in offered

load at the bottleneck link is observed. Note that it has taken from 1 until ¢ = 7 before

the offered load becomes less than the link’s capacity. Depending upon the aggressiveness of the

aggregateacp sources [18, 21] and the amount of buffer space available in the bottleneck link, a
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Figure 4.2: Ideal scenario

large amount of packet loss and/or deterministioey marking may occur. Such behavior leads to
eventual underutilization of the bottleneck link.

One way to solve this problem is to use a large amount of buffer space foletheteue. For
example, it has been suggested that in order fop B work well, an intermediate router requires
buffer space that amounts to twice the bandwidth-delay product [65]. This approach, in fact, has
been taken by an increasingly large number of router vendors. Unfortunately, in networks with
large bandwidth-delay products, the use of a large amount of buffer adds considerable end-to-end
delay and delay jitter. This severely impacts the ability to run interactive applications. In addi-
tion, the abundance of deployed routers which have limited memory resources makes this solution
undesirable.

Figure 4.2 shows how an ideal queue management algorithm works. In this figure, the congested
gateway delivers congestion notification at a rate which keeps the aggregate transmission rates of the
TCP sources at or just below the clearing rate. WhileDRcan achieve this ideal operating point, it

can do so only when it has a sufficiently large amount of buffer space and is correctly parameterized.

4.3 BLUE

In order to remedy the shortcomings oER, this section proposes and evaluates a fundamen-
tally different queue management algorithm calladuB. Using both simulation and experimen-
tation, BLUE is shown to overcome many ofeR’s shortcomings. RD has been designed with
the objective to (1) minimize packet loss and queueing delay, (2) avoid global synchronization of

sources, (3) maintain high link utilization, and (4) remove biases against bursty sources. This sec-
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Upon packet loss event:
if ( (now - last_update) > freezetime) then
Pm = pm + delta
last_update = now
Upon link idle event:
if ( (now - last_update) > freezetime) then
Pm = pm - delta

last_update = now

Figure 4.3: The BUE algorithm

tion shows how BUE either improves or matcheseR’s performance in all of these aspects. The
results also show thattB/E converges to the ideal operating point shown in Figure 4.2 in almost all

scenarios, even when used with very small buffers.

4.3.1 The algorithm

The key idea behind BUE is to perform queue management based directly on packet loss and
link utilization rather than on the instantaneous or average queue lengths. This is in contrast to
all known active queue management schemes which use some form of queue occupancy in their
congestion managementLBE maintains a single probability,,,, which it uses to mark (or drop)
packets when they are enqueued. If the queue is continually dropping packets due to buffer over-
flow, BLUE increments,,, thus increasing the rate at which it sends back congestion notification.
Conversely, if the queue becomes empty or if the link is idlg) B decreases its marking probabil-
ity. Figure 4.3 shows the BJE algorithm. Note that besides the marking probabilityUB uses
two other parameters which control how quickly the marking probability changes over time. The
first is freezetime This parameter determines the minimum time interval between two successive
updates of,,,. This allows the changes in the marking probability to take effect before the value is
updated again. While the experiments in this chaptdrdezetimeas a constant, this value should
be randomized in order to avoid global synchronization [25]. The other parameterdetedde-

termines the amount by whigh, is incremented when the queue overflows, or decremented when
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Figure 4.4: Network topology

the link is idle. Note that there are a myriad of ways in whigh can be managed. Experiments
using a wide range of parameter settings and algorithm variations have also been performed with
the only difference being how quickly the queue management algorithm adapts to the offered load.
While BLUE seems extremely simple, it provides a significant performance improvement even when

compared to a BRD queue which has been optimally parameterized.

4.3.2 Packet loss rates usinBeD and BLUE

In order to evaluate the performance aflg, a number of experiments were run usirgy[46]
over a small network shown in Figure 4.4. Using this network, Pareto on/off sources with mean
on-times of 2 seconds and mean off-times of 3 seconds were run from one of the leftmost nodes
(no, n1, no, n3, ny) to one of the rightmost nodesy, ne, n7, ng, ng). IN addition, all sources were
enabled witreCN support and were randomly started within the first second of simulation. Packet
loss statistics were then measured after 10 seconds of simulation for 100 seconds. Loss statistics
were also measured fore® using the same network and under identical conditions. For #e R
gueuemin:, andmax, were set to 30% and 90% of the queue size, respectivalp’sRtonges-
tion notification mechanism was made as aggressive as possible by settingo 1. For these
experiments, this is the ideal settingrat.z,, since it minimizes both the queueing delay and packet
loss rates for RD [21]. For the B.UE experimentsdeltawas set td).01 andfreezetime was set

to 10ms. Again, simulations using a range délta andfreezetime values were also performed
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Figure 4.5: Packet loss rates oERand B.UE

and showed similar results with the only difference being how quigklyconverges to the correct
value.

Figure 4.5 shows the loss rates observed over different queue sizes using. betlail R=D
with 1000 and 4000 connections present. In these experiments, the queue at the bottleneck link
between4 and B is sized froml00K B to 1000/ B. This corresponds to queueing delays which
range from17.8ms and 178ms as shown in the figure. In all experiments, the link remains over
99.9% utilized. As Figure 4.5(a) shows, with 1000 connections,)B maintains zero loss rates over
all queue sizes even those which are below the bandwidth-delay product of the network [65]. This
is in contrast to RD which suffers double-digit loss rates as the amount of buffer space decreases.
An interesting point in the BD loss graph shown in Figure 4.5(a) is that it shows a significant dip
in loss rates at a buffering delay of aroustiins. This occurs because of a special operating point
of RED when the average queue length stays abowe;,;, all the time. At several points during this
particular experiment, the buffering delay and offered load match up perfectly to cause the average
gueue length to stay at or aboweaz,,. In this operating region, the #® queue marks every
packet, but the offered load is aggressive enough to keep the queue full. This essentially allows
RED to behave at times like BJE with a marking probability of 1 and a queueing delay equivalent
to maxy,. This unique state of operation is immediately disrupted by any changes in the load or
round-trip times, however. When the buffering delay is increased, the corresponding round-trip
times increase and cause the aggregatebehavior to be less aggressive. Deterministic marking

on this less aggressive load causes fluctuations in queue length which can increase packet loss rates
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since ReD undermarks packets at times. When the buffering delay is decreased, the corresponding
round-trip times decrease and cause the aggregatéehavior to be more aggressive. As a result,
packet loss is often accompanied with deterministic marking. When combined, this leads again to
fluctuations in queue length. At a load which is perfectly selected, the average queue lengih of R
can remain atnax, and the queue can avoid packet loss and prevent queue fluctuations by marking
every packet.

As Figure 4.5(b) shows, when the number of connections is increased to 4000,s8ll sig-
nificantly outperforms RD. Even with an order of magnitude more buffer spacepRtill cannot
match B.UE’s loss rates usin@7.8ms of buffering at the bottleneck link. It is interesting to note
that BLUE’s marking probability remains at 1 throughout the duration of all of these experiments.
Thus, even though every packet is being marked, the offered load can still cause a significantamount
of packet loss. The reason why this is the case is thatdi®esources being used do not invoke a
retransmission timeout upon receiving N signal with a congestion window of 1. Section 4.3.4
shows how this can significantly influence the performance of beth &d B.UE.

The most important consequence of usingJB is that congestion control can be performed
with a minimal amount of buffer space. This reduces the end-to-end delay over the network, which
in turn, improves the effectiveness of the congestion control algorithm. In addition, smaller buffer-
ing requirements allow more memory to be allocated to high priority packets [10, 30], and frees up
memory for other router functions such as storing large routing tables. Finall\g Bllows legacy

routers to perform well even with limited memory resources.

4.3.3 UnderstandingBLUE

To fully understand the difference between thebRand B_UE algorithms, Figure 4.6 compares
their queue length plots in an additional experiment. In this experiment, a workload of infinite
sources is changed by increasing the number of connections by 200 every 20 seconds. As Fig-
ure 4.6(a) shows, BO sustains continual packet loss throughout the experiment. In addition, at
lower loads, periods of packet loss are often followed by periods of underutilization as determinis-
tic packet marking and dropping eventually causes too many sources to reduce their transmission
rates. In contrast, as Figure 4.6(b) shows, sinceBBmanages its marking rate more intelligently,

the queue length plot is more stable. Congestion notification is given at a rate which neither causes
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Figure 4.6: Queue length plots oER and B.UE

periods of sustained packet loss nor periods of continual underutilization. Only when the offered
load rises to 800 connections, doesU& sustain a significant amount of packet loss.

Figure 4.7 plots the average queue lengph.£) and the marking probabilityT%tpr) of
RED throughout the experiment. The average queue lengtteofédntributes directly to its mark-
ing probability sincep; is a linear function ofY .. (py, = maz, x %) As shown in
Figure 4.7(a), the average queue length ebRluctuates considerably as it follows the fluctuations
of the instantaneous queue length. Because of this, the marking gityb@bR ED, as shown in
Figure 4.7(b), fluctuates considerably as well. In contrast, Figure 4.8 shows the marking probability
of BLUE. As the figure shows, the marking probability converges to a value that results in a rate
of congestion notification which prevents packet loss and keeps link utilization high throughout the
experiment. In fact, the only situation whereug:= cannot prevent sustained packet loss is when ev-
ery packet is being marked, but the offered load still overwhelms the bottleneck link. As described
earlier, this occurs at = 60s when the number of sources is increased to 800. The reason why
packet loss still occurs when every packee@N-marked is that for these sets of experiments, the
Tcrpimplementation used does not invoke an RTO wheaa@msignal is received with a congestion
window of 1. This adversely affects the performance of bo#DRnNd BLUE in this experiment.
Note that the comparison of marking probabilities betweep Bnd BLUE gives some insight as to

how to make RD perform better. By placing a low pass filter on the calculated marking probability

of RED, it may be possible for Rb’s marking mechanism to behave in a manner similartoBs.
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While low packet loss rates, low queueing delays, and high link utilization are extremely impor-
tant, the queue length and marking probability plots allow us to explore the effectivenes®of R
and BLUE in preventing global synchronization and in removing biases against bursty soueces. R
attempts to avoid global synchronization by randomizing its marking decision and by spacing out
its marking. Unfortunately, when aggregater load changes dramatically as it does when a large
amount of connections are present, it becomes impossibledort& achieve this goal. As Fig-
ure 4.7(b) shows, the marking probability oER changes considerably over very short periods of
time. Thus, RD fails to mark packets evenly over time and hence cannot remove synchronization
among sources. As Figure 4.8 shows, the marking probability oEBemains steady. As a result,
BLUE marks packets randomly and evenly over time. Consequently, it does a better job in avoiding
global synchronization.

Another goal of RD is to eliminate biases against bursty sources in the network. This is done
by limiting the queue occupancy so that there is always room left in the queue to buffer transient
bursts. In addition, the marking function ofER takes into account the last packet marking time
in its calculations in order to reduce the probability that consecutive packets belonging to the same
burst are marked. Using a single marking probabilitypB achieves the same goal equally well.

As the queue length plot of IBJE shows (Figure 4.6), the queue occupancy remains below the
actual capacity, thus allowing room for a burst of packets. In addition, since the marking probability

remains smooth over large time scales, the probability that two consecutive packets from a smoothly
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transmitting source are marked is the same as with two consecutive packets from a bursty source.

4.3.4 The effect ofeCN timeouts

All of the previous experiments usecp sources which suppoHCN, but do not perform a re-
transmission timeout upon receipt of @aN signal with a congestion window of 1. This has a
significant, negative impact on the packet loss rates observed for leatlaiRd BL.UE especially at
high loads. Figure 4.9 shows the queue length ploteb Bnd B.UE using the same experiment as
above withTcp sources enabled withcN timeouts. Figure 4.9(a) shows that by deterministically
marking packets atiax4,, RED oscillates between periods of packet loss and periods of underuti-
lization as described in Section 4.2. Note that this is in contrast to Figure 4.6(a) where wgithout
timeouts,TCP is aggressive enough to keep the queue occupied at all times. An interesting point
to make is that RD can effectively prevent packet loss by settingritaz,;, value sufficiently far
below the size of the queue. In this experiment, a small amount of loss occurs since deterministic
ECN marking does not happen in time to prevent packet loss. While the usendimeouts allows
RED to avoid packet loss, the deterministic marking eventually causes underutilization at the bottle-
neck link. Figure 4.9(b) shows the queue length plot biB over the same experiment. In contrast
to ReD, BLUE avoids deterministic marking and maintains a marking probability that allows it to
achieve high link utilization while avoiding sustained packet loss over all workloads.

Figure 4.10 shows the corresponding marking behavior of bath &d B.UE in the experi-

ment. As the figure shows lBE maintains a steady marking rate which changes as the workload is
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Figure 4.9: Queue length plots oER and B_UE with ECN timeouts

changed. On the other handgRs calculated marking probability fluctuates from 0 to 1 through-
out the experiment. When the queue is fully occupiedpRvermarks and drops packets causing
a subsequent period of underutilization as described in Section 4.2. Conversely, when the queue is
empty, RED undermarks packets causing a subsequent period of high packet loss as the offered load
increases well beyond the link’s capacity.

Figure 4.11 shows howcN timeouts impact the performance oER and B.UE. The figure
shows the loss rates and link utilization using the 4000 connection experiments in Section 4.3.2. As
the figure shows, the use BEN timeouts allows RD to effectively prevent packet loss. However,
because it often deterministically marks packets, it suffers from piilczation. BLUE, on the other

hand, maintains low packet loss rates and high link utilization across all experiments.

4.3.5 Implementation

In order to evaluate BUE in a more realistic setting, it has been implemented in FreeBSD 2.2.7
and ALTQ [9]. The implementation was done in a manner similar to that of Adapte Bs de-
scribed in Section 3.2.5. Using this implementation, several experiments were run on the testbed
shown in Figure 4.12. Each network node and link is labeled with the CPU model and link band-
width, respectively. Note that all links are shared Ethernet segments. Hence, the acknowledgments
on the reverse path collide and interfere with data packets on the forward path. As the figure shows,

FreeBSD-based routers using theulg queue management algorithm connect the Ethernet and Fast
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Ethernet segments. In order to generate load on the system, a variable numegresf [49]
sessions are run from thBM PC 360and theWinbook XLto thelBM PC 365and theThinkpad

770. The router queue on the congested Ethernet interface dhthHistation Zprois sized at

50K B which corresponds to a queueing delay of abfiuts. To ensure that the IRJE modifica-

tions did not create a bottleneck in the router, the testbed was reconfigured exclusively with Fast
Ethernet segments and a number of experiments between network endpoints were run using the
BLUE modifications on the intermediate routers. In all of the experiments, the sustained throughput
was always above0 M bs.

Figures 4.13(a) and (b) show the throughput and packet loss rates at the bottleneck link across a
range of workloads. The throughput measures the rate at which packets are forwarded through the
congested interface while the packet loss rate measures the ratio of the number of packets dropped
at the queue and the total number of packets received at the queue. In each experiment, throughput
and packet loss rates were measured over five 10-second intervals and then averaged. Note that
theTcpP sources used in the experiment do not implensan timeouts. As Figure 4.13(a) shows,
both the B.UE queue and the optimally configurecER queue maintain relatively high levels of
throughput across all loads. However, sinacebRperiodically allows the link to become underuti-
lized, its throughput remains slightly below that of B=. As Figure 4.13(b) shows, B sustains
increasingly high packet loss as the number of connections is increased. Since aggregatic
becomes more aggressive as the number of connections increases, it becomes difficnt tor R

maintain low loss rates. Fluctuations in queue lengths occur so abruptly thaethal&orithm
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Figure 4.11: Performance ofe® and BLUE with ECN timeouts

oscillates between periods of sustained marking and packet loss to periods of minimal marking and
link underutilization. In contrast, BJE maintains relatively small packet loss rates across all loads.
At higher loads, when packet loss is observedpB maintains a marking probability which is

approximately 1, causing it to mark every packet it forwards.

4.4 Stochastic FairBLUE

Up until recently, the Internet has mainly relied on the cooperative nature®tongestion
control in order to limit packet loss and fairly share network resources. Increasingly, however, new
applications are being deployed which do not mse congestion control and are not responsive to
the congestion signals given by the network. Such applications are potentially dangerous because
they drive up the packet loss rates in the network and can eventually cause congestion collapse [34,
53]. In order to address the problem of non-responsive flows, a lot of work has been done to provide
routers with mechanisms for protecting against them [16, 41]. The idea behind these approaches is
to detect non-responsive flows and to limit their rates so that they do not impact the performance
of responsive flows. This section describes and evaluateshastic FairBLUE (SFB), a novel
technique for protectingcp flows against non-responsive flows using theuB algorithm.sFeis
highly scalable and enforces fairness using an extremely small amount of state and a small amount

of buffer space.
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Figure 4.12: Experimental testbed

4.4.1 The algorithm

Figure 4.14 shows the basieB algorithm.sFBis aFIFO queueing algorithm that identifies and
rate-limits non-responsive flows based on accounting mechanisms similar to those usedugith B
SFBmaintainsV x L accounting bins. The bins are organized.itevels with NV bins in each level.

In addition, SFB maintains () independent hash functions, each associated with one level of the
accounting bins. Each hash function maps a flow into one ofMreecounting bins in that level.

The accounting bins are used to keep track of queue occupancy statistics of packets belonging to a
particular bin. This is in contrast to Stochastic Fair Queueing [47)( where the hash function

maps flows into separate queues. Each bigrr keeps a marking/dropping probability, as in

BLUE, which is updated based on bin occupancy. As a packet arrives at the queue, it is hashed into
one of theN bins in each of thd. levels. If the number of packets mapped to a bin goes above

a certain threshold (i.e., the size of the bim), for the bin is increased. If the number of packets
drops to zerop,, is decreased.

The observation which drivesFB is that a non-responsive flow quickly driveg to 1 in all of
the L bins itis hashed into. Responsive flows may share one or two bins with non-responsive flows,
however, unless the number of non-responsive flows is extremely large compared to the number of
bins, a responsive flow is likely to be hashed into at least one bin that is not polluted with non-
responsive flows and thus has a normalvalue. The decision to mark a packet is baseg.on,,

the minimump,,, value of all bins to which the flow is mapped into. jf,;, is 1, the packet is
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Figure 4.13: Queue management performance

identified as belonging to a non-responsive flow and is then rate-limited. At this point, a number
of options are available to limit the transmission rate of the flow. In this work, flows identified as
being non-responsive are simply limited to a fixed amount of bandwidth. This policy is enforced by
limiting the rate of packet enqueues for flows wjth;,, values of 1. Figure 4.15 shows an example
of how sreworks. As the figure shows, a non-responsive flow drives up the marking probabilities
of all of the bins it is mapped into. While thecp flow shown in the figure may map into the
same bin as the non-responsive flow at a particular level, it maps into normal bins at other levels.
Because of this, the minimum marking probii of the Tcp flow is below 1.0 and thus, it is not
identified as being non-responsive. On the other hand, since the minimum marking probability of
the non-responsive flow is 1.0, it is identified as being non-responsive and rate-limited.

Note that just as BUE’s marking probability can be used 8FB to provide protection against
non-responsive flows, it is also possible to apply Adaptig®R maz, parameter to do the same.
In this case, a per-bimazx, value is kept and updated according to the behavior of flows which map
into the bin. As with ReD, however, there are two problems which make this approach ineffective.
Thefirstis the fact that a large amount of buffer space is required in order tegabRerform well.
The second is that the performance ofedRbased scheme is limited since even a moderate amount
of congestion requires max, setting of 1. Thus, RD, used in this manner, has an extremely

difficult time distinguishing between a non-responsive flow and moderate levels of congestion.
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Bll][n]: Lx N array of bins (L levels, N bins per level
enque()
Calculate hash function valués, A1, ..., hir—1;
Update bins at each level
fore=0toL —1
if (B[7][hi].qlen > bin_size)
Bli][h;].pm += delta;
Drop packet;
else if (B[¢][h;].qlen == 0)
B[i][h;].pm -= delta;
Pin = MINB[O]ho)-pe -~ BILY[AL).p);
if (prin == 1)
ratelimit()
else

Mark/drop with probabilityp,,;;,,;

Figure 4.14:sFB algorithm

4.4.2 Evaluation

Usingns, thesFa algorithm was simulated in the same network as in Figure 4.4 with transmis-
sion delays ofi0ms on all links. ThesrB queue is configured with00 K’ B of buffer space and
maintains two hash functions each mapping to 23 bins. The size of each bin is set to 13, approxi-
mately 50% more tha%rd of the available buffer space. Note that by allocating more glgéchthe
buffer space to each bisfs effectively “overbooks” the buffer in an attempt to improve statistical
multiplexing. Notice that even with overbooking, the sizesath bin is quite small. SinceLBE
performs extremely well under constrained memory resousrEscan still effectively maximize
network efficiency. The queue is also configured to rate-limit non-responsive flaws6tb! bs.

In the experiments, 400cP sources and one non-responsive, constant rate source are run for
100 seconds from randomly selected nodesiin 41, n2, n3, n4) to randomly selected nodes in

(ns, ne, n7, ng, ng). IN ONE experiment, the non-responsive flow transmits at a ratdidk while
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Figure 4.15: Example cfFB

in the other, it transmits at a rate ¢6Mbs. Table 4.1 shows the packet loss observed in both
experiments fosFB. As the table shows, for both experimerdsp performs extremely well. The
non-responsive flow sees almost all of the packet loss as it is rate-limited to a fixed amount of the
link bandwidth. In addition, the table shows that in both cases, a very small amount of packets from
TcpPflows are lost. Table 4.1 also shows the performancesnf.Rn contrast tasFB, RED allows the
non-responsive flow to maintain a throughputrelatively close to its original sending rate. As aresult,
the remainingrcp sources see a considerable amount of packet loss which causes their performance
to deteriorate. Finally, the experiments were repeated wsingvith an equivalent number of bins
(i.e., 46 distinct queues) and a buffer more than twice the gizbl{( B), making each queue equally
sized at9 K B. For each bin in thesFqQ, the ReD algorithm was applied withning, and maxy,
values set a2 K B and8 K B, respectively. As the table shovarQwith RED does an adequate job
of protectingrcp flows from the non-responsive flow. However, in this case, partitioning the buffers
into such small sizes causes a significant amount of packet loss to occur. Additional experiments
show that as the amount of buffer space is decreased even further, the problem is exacerbated and
the amount of packet loss increases considerably.

To qualitatively examine the impact that the non-responsive flow haseperformance, Fig-
ure 4.16 plots the throughput of all 4G@p flows usingsFe when the non-responsive flow sends
at a45Mbs rate. As the figure showsFs allows eachrcp flow to maintain close to a fair share

of the bottleneck link’s bandwidth while the non-responsive flow is rate-limited to well below its
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2Mbs non-responsive flow| 45Mbs non-responsive flow

Packet Loss{bs) SFB | RED | SFQ+RED SFB RED | SFQ+RED

Total 1.856| 1.787 3.599 44.850| 13.393| 46.467

Non-responsive flow| 1.846| 0.034 1.034 44.841)| 10.324| 43.940

All Tcpflows 0.010| 1.753| 0.966 0.009 | 3.069 2.527

Table 4.1:sFBloss rates in\/bs (one non-responsive flow)

transmission rate. In contrast, Figure 4.17(a) shows the same experiment using nemogleRe
management. The figure shows that the throughput of @ flows suffers considerably as the
non-responsive flow is allowed to grab a large fraction of the bottleneck link bandwidth. Finally,
Figure 4.17(b) shows that whilerQ with RED can effectively rate-limit the non-responsive flows,

the partitioning of buffer space causes the fairness between flows to deteriorate as well. The large
amount of packet loss induces a large number of retransmission timeouts across a subset of flows
which causes significant amounts of unfairness [48]. Thus, through the course of the experiment, a
few TcPflows are able to grab a disproportionate amount of the bandwidth while many of the flows
receive significantly less than a fair share of the bandwidth across the link. itioadd this, SFQ

with ReD allows %th of the 400 flows to be mapped into the same queue as the non-responsive
flow. Flows that are unlucky enough to map into this bin receive an extremely small amount of the

link bandwidth.sFB, in contrast, is able to protect all of thep flows in this experiment.

4.4.3 Limitations of SFB

While it is clear that the bas&rB algorithm can protectcp-friendly flows from non-responsive
flows without maintaining per-flow state, it is important to understand how it works and its lim-
itations. SFB effectively uses levels with N bins in each level to creatd” virtual buckets.

This allowssFB to effectively identify a single non-responsive flow in At flow aggregate using

O(L x N) amount of state. For example, in the previous section, using two levels with 23 bins per
level effectively creates 529 buckets. Since there are only 400 flows in the expersmgigable to
accurately identify and rate-limit a single non-responsive flow without impacting the performance

of any of the individualrcp flows. As the number of non-responsive flows increases, the number
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of bins which become “polluted” or hayg,, values of 1 increases. Consequently, the probability
that a responsive flow gets hashed into bins which are all polluted, and thus becomes misclassified,
increases. Clearly, misclassification limits the abilityseB to protect well behavedcp flows.

Using simple probabilistic analysis, Equation (4.1) gives a closed-form expression of the prob-
ability that a well-behavedcp flow gets misclassified as being non-responsive as a function of
number of levels (L), the number of bins per level (B), and the number of non-responsive/malicious
flows (M), respectively.

1

p=[-0-5"" (4.1)

In this expression, wheh is 1, SFB behaves much likerFQ. The key difference is thadrFB using
one level is still aFiFO queueing discipline with a shared buffer wheqQ has separate per-bin
gueues and partitions the available buffer space amongst them.

Using the result from Equation (4.1), it is possible to optimize the performanserxivena
priori information about its operating environment. Suppose the number of simultaneously active
non-responsive flows can be estimatéd)(and the amount of memory available for use in the
SFB algorithm is fixed (). Then, by minimizing the probability function in Equation (4.1) with
the additional boundary condition thatx N = (', sFB can be tuned for optimal performance.
To demonstrate this, the probability for misclassification across a variety of settings is evaluated.
Figure 4.18(a) shows the probability of misclassifying a flow when the total number of bins is fixed
at 90. Figure 4.18(b) shows the same probability function when the total number of bins is fixed at

900. In these figures, the number of levels usedrs along with the number of non-responsive
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Figure 4.17: Bandwidth ofcp flows using RED andsFQ (45 M bs flow)

flows are varied. As the figures show, when the number of non-responsive flows is small compared
to the number of bins, the use of multiple levels keeps the probability of misclassification extremely
low. However, as the number of non-responsive flows increases past half the number of bins present,
the single levesFB queue affords the smallest probability of misclassification. This is due to the fact
that when the bins are distributed across multiple lexedsh non-responsive flow pollutes a larger
number of bins. For example, using a single lesfe queue with 90 bins, a single non-responsive

flow pollutes only one bin. Using a two-leveFB queue with each level containing 45 bins, the
number of effective bins is 45645 (2025). However, a single non-responsive flow pollutes two bins
(one per level). Thus, the advantage gained by the two-tmetjueue is lost when additional non-
responsive flows are added, as a larger fraction of bins become polluted compared to the single-level
situation.

In order to evaluate the performance degradatiosrefas the number of non-responsive flows
increases, Figure 4.19 shows the bandwidth plot of theB(lows when 4 and 8 non-responsive
flows are present. In these experiments, each non-responsive flow transmits at & fdies oAs
Equation (4.1) predicts, in asFB configuration that contains two levels of 23 bigs;5% of the
TcPp flows (11) are misclassified when 4 non-responsive flows are present. Similarly, when 8 non-
responsive flows are preseft96% (36) of theTcp flows are misclassified. When the number of
non-responsive flows approach¥s the performance afFe deteriorates quickly as an increasing

number of bins at each level becomes polluted. In the case of 8 non-responsive flows, approxi-
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Figure 4.18: Probability of misclassification

mately 6 bins or one-fourth of the bins in each level are polluted. As the figure shows, the number
of misclassified flows matches the model quite closely. Note that even though a larger number of
flows are misclassified as the number of non-responsive flows increases, the probability of misclas-
sification in a two-levebFB still remains below that o§FQ or a single-levekFe. Using the same
number of bins (46), the equation predicts thag and a single-levedrFB misclassify’.42% of the
Tcpflows (34) when 4 non-responsive flows are presentl@nt2% of the Tcp flows (64) when 8

non-responsive are present.

4.4.4 srBwith moving hash functions

In this section, two basic problems with thes algorithm are addressed. The first, as described
above, is to mitigate the effects of misclassification. The second is to be able to detect when non-
responsive flows become responsive and to reclassify them when they do.

The idea behingFs with moving hash functions is to periodically or randomly reset the bins
and change the hash functions. A non-responsive flow will continually be identified and rate-limited
regardless of the hash function used. However, by changing the hash function, responioes
that happen to map into polluted bins will potentially be remapped into at least one unpolluted
bin. In many ways the effect of using moving hash functions is analogous to channel hopping in
CDMA [33, 64] systems. It essentially reduces the likelihood of a responsive connection being

continually penalized due to erroneous assignment into polluted bins.
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Figure 4.19: Bandwidth ofcp flows usingsFs

To show the effectiveness of this approach, the idea of moving hash functions was applied to the
experiment in Figure 4.19(b). In this experiment, 8 non-responsive flows along with 400 responsive
flows share the bottleneck link. To protect against continual misclassification, the hash function is
changed every two seconds. Figure 4.20(a) shows the bandwidth plot of the experiment. As the
figure showssFB performs fairly well. While flows are sometimes misclassified causing a degra-
dation in performance, none of thiepr-friendly flows are shut out due to misclassification. This is
in contrast to Figure 4.19 where a significant numbera# flows receive veryittle bandwidth.

While the moving hash functions improve fairness across flows in the experiment, it is interest-
ing to note that every time the hash function is changed and the bins are reset, non-responsive flows
are temporarily placed on “parole”. That is, non-responsive flows are given the benefit of the doubt
and are no longer rate-limited. Only after these flows cause sustained packet loss, are they identified
and rate-limited again. Unfortunately, this can potentially allow such flows to grab much more than
their fair share of bandwidth over time. For example, as Figure 4.20(a) shows, non-responsive flows
are allowed to consum&85M bs of the bottleneck link. One way to solve this problem is to use
two sets of bins. As one set of bins is being used for queue management, a other set of bins using
the next set of hash functions can be warmed up. In this case, any time a flow is classified as non-
responsive, it is hashed using the second set of hash functions and the marking probabilities of the
corresponding bins in the warmup set are updated. When the hash functions are switched, the bins

which have been warmed up are then used. Consequently, hon-responsive flows are rate-limited
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Figure 4.20: Bandwidth ofcp flows using modifiedsFs algorithms

right from the beginning. Figure 4.20(b) shows the performance of this approach. As the figure
shows, the double buffered moving hash effectively controls the bandwidth of the non-responsive
flows and affords thecp flows a very high level of protection.

One of the advantages of the moving hash function is that it can quickly react to non-responsive
flows which becomeacp-friendly. In this case, changing the hash bins places the newly reformed
flow out on parole for good behavior. Only after the flow resumes transmitting at a high rate, is
it again rate-limited. To show this, an additional experiment was run using the same experimental
setup as above. In this experiment, one non-responsive flow with a transmission¥aféoénd
one oscillating flow is run between network endpoints. The oscillating flow transmits/as
fromt = 10stot = 30s and from¢t = 50s tot = 70s. At all other times, the flow transmits at
0.10M bs, approximately a fair share of the bottleneck link. Table 4.2 shows the packet loss rates in
the experiment. As the table shows, the first non-responsive flow sees a sustained packet loss rate
throughout the experiment which effectively limits its throughput to well below its transmission
rate. The table also shows that when the second flow transmits/as, it observes a sustained
packet loss rate as a large fraction of its packets are dropped by the queue. When the second flow
cuts its transmission rate to a fair share of the link’s bandwidth, it is reclassified and a very small
fraction of its packets are dropped. Finally, the table shows that allr¢@dlows see a minimal
amount of packet loss throughout the experiment. Figure 4.21 shows the bandwidth plotrfopthe

flows in the experiment. As shown in the figuseg protects the cp flows from the non-responsive
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Loss Rates (il bs)

10s-30s | 30s-50s | 50s-70s | 70s-100s

Non-responsive FIOV\u 4.866 4.849 4.898 4.863

Oscillating Flow 4.871 0.025 4.845 0.017
TCP Flows 0.402 0.358 0.260 0.324
Total 10.139 | 5.232 | 10.003 | 5.204

Table 4.2:sFBloss rates (one non-responsive, one oscillating flow)

flows, thus allowing them to maintain close to a fair share of the bottleneck link.

4.4.5 Round-trip time sensitivity

The previous experiments widFB use a network topology in which all of the connections have
approximately the same round-trip time. When a large number of connections with varying round-
trip times are used witBFB, fairness between flows can deteriorate. It has been showmndhat
connections with smaller round-trip times can dominate the bandwidth on the bottleneck link since
their window increases are clocked more frequently. When a small number of such connections are
presentsFB can mitigate this problem somewhat. Similar to the non-responsive flow cases above,
TCP connections with small round-trips slowly drive the marking probability of their bins higher.
Thus, wherp,,;,, is calculated, they receive a larger fraction of congestion notification. However,
when a large number afcp flows with varying round-trip times are present, this mechanism breaks
down just assFB breaks down with a large number of non-responsive flows.

Figure 4.22 shows the performance ofRand sFB using the network shown in Figure 4.4.
Using this network, 400 sources are randomly started between network end points. As the figure
shows, both RD andsFB show biases towards connections with smaller round-trip times. However,

since all of the flows still us&cp, the amount of unfairness between flows is limited.
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4.5 Comparisons to Other Approaches

SFB provides one particular solution for identifying and rate-limiting non-responsive flows,

thereby enforcing fairness. This section compamesto other related approaches.

4.5.1 RED with penalty box

The ReD with penalty box approach takes advantage of the fact that high bandwidth flows see
proportionally larger amounts of packet loss. By keeping a finite log of recent packet loss events,
this algorithm identifies flows which are non-responsive based on the log [46]. Flows which are
identified as being non-responsive are then rate-limited using a mechanism such as class-based
gueueing [27]. While this approach may be viable under certain circumstances, it is unclear how
the algorithm performs in the face of a large number of non-responsive flows. Unless the packet
loss log is large, a single set of high bandwidth flows can potentially dominate the loss log and
allow other, non-responsive flows to go through without rate-limitation. In addition, flows which
are classified as non-responsive remain in the “penalty box” even if they subsequently become
responsive to congestion. A periodic and explicit check is thus required to move flows out of the
penalty box. Finally, the algorithm relies orrap-friendliness check in order to determine whether
or not a flow is non-responsive. Withoatpriori knowledge of the round-trip time of every flow
being multiplexed across the link, it is difficult sxcurately determine whether or not a connection

is TCP-friendly.
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Figure 4.22: Bandwidth afcp flows over varying round-trip times.

45.2 FRED

Another proposal for using 8 mechanisms to provide fairness is FlovedR (FRED) [41].
The idea behind RED is to keep state based on instantaneous queue occupancy of a given flow. If a
flow continually occupies a large amount of the queue’s buffer space, it is detected and limited to a
smaller amount of the buffer space. While this scheme provides rough fairness in many situations,
since the algorithm only keeps state for flows which have packets queued at the bottleneck link, it
requires a large amount of buffers to work well. Without sufficient buffer space, it becomes hard for
FRED to detect non-responsive flows since they may not have enough packets continually queued
to trigger the detection mechanism. In addition, non-responsive flows are immediately re-classified
as being responsive as soon as they clear their packets from the congested queue. For small queue
sizes, it is quite easy to construct a transmission pattern which exploits this propemgbfirr
order to circumvent its protection mechanisms. Note #ra does not directly rely on queue
occupancy statistics, but rather long-term packet loss and link utilization behaeiwauBe of this,
SFBIis better suited for protectingce flows against non-responsive flows using a minimal amount
of buffer space. Finally, as with the packet loss log approarbpralso has a problem when dealing
with a large number of non-responsive flows. In this situation, the ability to distinguish these flows
from normalTcp flows deteriorates considerably since the queue occupancy statistics used in the
algorithm become polluted. By not using packet loss as a means for identifying non-responsive

flows, FRED cannot make the distinction betwedhtcp flows multiplexed across a link versidé
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non-responsive flows multiplexed across a link.

4.5.3 RED with per-flow queueing

A RED-based, per-active flow approach has been proposed for providing fairness between
flows [63]. The idea behind this approach is to do per-flow accounting and queueing only for
flows which are active. The approach argues that since keeping a large amount of state is feasible,
per-flow queueing and accounting is possible even in the core of the network. The drawbacks of this
approach is that it provides no savings in the amount of state requirafldfvs are activeQ (V)
amount of state must be kept to isolate the flows from each other. itiaddhis approach does
not address the large amount of legacy hardware which exists in the network. For such hardware, it
may be infeasible to provide per-flow queueing and accounting. Besmagwovides considerable
savings in the amount of state and buffers required, it is a viable alternative for providing fairness

efficiently.

4.5.4 Stochastic Fair Queueing

Stochastic Fair QueueingkqQ) is similar to ansrFs queue with only one level of bins. The
biggest difference is that instead of having separate queeaesises the hash function for account-
ing purposes. ThusFB has two fundamental advantages ogeR. The first is that it can make
better use of its bufferssFe gets some statistical multiplexing of buffer space as it is possible for
the algorithm to overbook buffer space to individual bins in order to keep the buffer space fully
utilized. As described in Section 4.4.2, partitioning the available buffer space adversely impacts
the packet loss rates and the fairness amongstlows. The other key advantage is tis#B is a
FIFO queueing discipline. As a result, it is possible to change the hash function on the fly without
having to worry about packet re-ordering caused by mapping of flows into a different set of bins.
Without additional tagging and book-keeping, applying the moving hash functi@mtcan cause

significant packet re-ordering.

4.5.5 Core-Stateless Fair Queueing

Core-Stateless Fair Queueing [62]sFQ) is a highly scalable approach for enforcing fairness

between flows without keeping any state in the core of the network. The approach relies on per-flow
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accounting and marking at the edge of the network in conjunction with a probabilistic dropping
mechanism in the core of the network. The idea belisdQis to estimate the rate of the flow

at the ingress of the network or network cloud and to attach an estimate of the flow’s sending rate
to everypacket that the flow sends. Given this label, intermediate routers at congested links in the
network calculate a dropping probability which is derived from an estimate of a fair share of the
bottleneck link capacity and the rate of the flow as identified in the label.

While csrQ provides an elegant and efficient solution to providing fairness, it relies on the
use of additional information that is carried in every packet of the flow. Thus, the scheme trades
off overhead in the packet header at every network link for resource management overhead at the
bottleneck router. In addition, it requires that both intermediate routers and edge devices adhere to
the same labeling and dropping algorithm. A misconfigured or poorly implemented edge device can
significantly impact the fairness of the scheraes, on the other hand, does not rely on coordination
between intermediate routers and edge markers and can peform well without placing additional

overhead in packet headers.

4.6 Conclusion and Future Work

This chapter has demonstrated the inherent weakness of current active queue management al-
gorithms which use queue occupancy in their algorithms. In order to address this problem, a fun-
damentally different queue management algorithm calledeBhas been designed and evaluated.
BLUE uses the packet loss and link utilization history of the congested queue, instead of queue
lengths, to manage congestion. In addition 1B, this chapter has proposed and evaluateg
a novel algorithm for scalably and accurately enforcing fairness amongst flows in a large aggregate.
Using sFB, non-responsive flows can be identified and rate-limited using a very small amount of
state.

As part of on-going work, several extensions toUg andsFB are being considered. In order
to improve the adaptiveness and accuracy bfB, a range of real, Internet, traffic traces is being
studied. By understanding how quickly and how often traffic changes across bottleneck links, the
BLUE algorithm and its parameters can be optimally parameterized. To improve the effectiveness of

SFB, additional mechanisms for managing non-responsive flows are being examined. In this chapter,
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non-responsive flows were rate-limited to a fixed amount of bandwidth across the bottleneck link.
However, it is possible to rate-limit non-responsive flows to a fair share of the link’s capacity. One
way to do this is to estimate both the number of non-responsive flows and the total number of
flows going through the bottleneck. Using this information, the rate-limiting mechanism can be set
accordingly. Another possible mechanism to find the number of “polluted” bins and use it to derive
the fraction of flows which are non-responsive. Assuming perfect hash functions, this can be directly
derived from simple analytical models 8fB as described in Section 4.4. Finally, the development

of an “enhanced” BUE queue management algorithm which is similar to “enhancedd RL9,

20] is being considered. By using.BE, the buffer requirements needed to support differentiated

services can be greatly reduced.
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CHAPTER 5

UNDERSTANDING TCP DYNAMICS IN A DIFFERENTIATED
SERVICES INTERNET

5.1 Introduction

The previous two chapters have addressed how to improve the efficiency of delivering best-
effort service in today’s Internet. While this is important to the future success of the Internet,
another important problem facing the Internet today is supporting additional services for emerging
applications. As described in Chapter 2, tH&F is considering a more evolutionary approach to
provide service differentiation in the Internet using the type-of-service (ToS) bits i theader.
Through the Differentiated Services If#SERV) working group, a small set of building blocks are
being defined which allow routers to scalably provide service differentiation. While it is relatively
clear how to build predictable services using the protocols and mechanisms providesgbgnd
INTSERV, the ability to construct predictable services using the coarse-grained mechanisms pro-
vided by DFFSERV is an open issue.

This chapter presents an implementation of a controlled-load service variant using the simple
priority mechanisms provided byIBFSERv, and in particular, the AF PHB. Controlled-load ser-
vice [68] is one of the services which has been standardized byntifeeRv working group for
deploymentin the network. One of the salient features of this service is that it provides predictable,
end-to-end bandwidth assurances to applications. However, because of the implicit need to pro-
cess and forward packets from sources on a per-flow basis, the controlled-load service, along with

many of the otherNTSERV services has not seen widespread deployment in the Internet due to the
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amount of overhead involved in supporting it.

By eliminating the per-flow forwarding aspects associated WwithSERV-style services, this
chapter describes a more scalable implementation of controlled-load service. This implementation
uses a simple extension to the queueing mechanisms in today’s routers coupled with modifications
to TCP's congestion control mechanisms. These modifications enable the network to guarantee a
minimal level of end-to-end throughput to different network sessions. In addition, any residual
network capacity is shared in a socially cooperative fashion, in a manner similar to the one in use
in the Internet today by applications usingp. In this scheme, each reserved session is associated
with a traffic envelope. Traffic is policed at the source and packets conforming to the envelope
are marked (with the AF PHB). Non-conformant traffic and best-effort traffic is injected into the
network unmarked. At the routers an enhance&w RERED) [26] algorithm is used. In RED, both
marked and unmarked packets share the same queue. When the queue length at the router
exceeds a certain threshold, packets are dropped randomly as doee igakeways. However,
unlike standard RD gateways where all packets have the same drop probability, in the enhanced
RED (ERED) gateway, marked packets have a lower drop probability than the unmarked packets.

The service realized by the mechanism described above is an interpretation of the controlled-
load service. By definition, traffic belonging to a controlled-load session and conforming to the
associated traffic envelope sees very little loss and very little queueing delay through the network.
Non-conformant controlled-load traffic is treated as best-effort traffic. By using a common queue for
best-effort and conformant controlled-load traffic, the recommended delay targets for conformant
controlled-load traffic is relaxed. This laxity not only simplifies the implementation and reduces
packet handling overheads at the routers, but also helps maintain packet ordering. Nokethat E
only ensures a low loss rate to conformant controlled-load traffic. Because many elastic and tolerant
playback applications can withstand a reasonable amount of queueing delay, the use ofesbared
to service both marked and unmarked packets is feasible.

There are many ways to potentially implement controlled-load service using a variety of trans-
port protocols other thancp and a variety of queueing mechanisms other thaak While other
approaches may perform equally weltp is the only one considered since its use is ubiquitous.

In addition, ERED queueing is used because (1) it does not require per-flow queueing which may

not scale well and (2) it maintaimsFo ordering of packets which is important teP's congestion
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control mechanisms.

Although controlled-load service can be used in conjunction with any transport protocol, the
focus in this chapter is oncp. TCPis examined since (1) an overwhelming number of applications
useTcP as the transport protocol of choice, and t2p has a well-developed congestion and flow
control mechanism that makes it an interesting case study. While some of the tolerant playback ap-
plications may not usecp, the mechanisms described here can easily be applied to other transport
protocols, such asTP. The objective of this chapter is to understand and to improve the end-to-end
control mechanisms used irce in a network which supports both best-effort and priority-based
mechanisms. The analysis of the behavior of unmodified over a network which does priority

marking has particular relevance for currentESERV proposals based on AF.

5.2 Integrated Services

Thersvpand the NTSERV working groups in theeTF have defined several protocols and stan-
dards to support controlled-load and other integrated services in the Internet. This section reviews

these standards and shows how the proposed enhancements fit itortokefined framework.

5.2.1 Policing and marking

To avail itself of a reservation, a connection has to specify a traffic envelope, Jalfest
The Tspec includes a long-term average ratg)(a short-term peak rate,(), and the maximum
size ) of a burst of data generated by the application. For example, for an application generating
MPEG-encoded video, the average rate could be the long-term data rate, the peak rate could be the
link bandwidth at the source, and the burst size could be the maximum size of a frame. The Tspec
also specifies the maximum and minimum packet sizes to be used by the application. Connections
are monitored and policed at the network entry points. This could be either at the source, or at
the boundary between the corporate or campus intranet and the Internet. Packet classification and
service differentiation also takes place at the routers. The service priority given to a packet is
a function of the Tspec, and in the case of some service classes, a separate service specification
known asRspec For controlled-load service, no Rspec is specified.

In order to police traffic at the source, token buckets are used [56]. The token generation process
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follows the Tspec advertised by the source. That is, the long-term average rate of token generation
ist,,, the short-term peak rate of token generatian jsand the depth of the token bucketisEach

time a packet is injected into the network, if sufficient tokens are available, an equivalent number
of tokens are considered consumed. If tokens are not present at the time of transmission, the packet
is treated as non-conformant. In the presence of an AF-style marking facility, classification is only
required at the network entry point and not at interior routers. Conformant controlled-load traffic
is AF-marked at network entry points before being injected into the network while non-conformant
controlled-load traffic and best-effort traffic is injected into the network unmarked. In the absence of
a marking facility,ip datagrams have to be passed through a classifier at the source, as well as at the
routers, to determine which flows they belong to and to determine whether they are in violation of,
or in conformance with, the advertised Tspecs of the flows. In the rest of the chapter, it is assumed

that AF-marking is available in the network.

5.2.2 Packet handling

The routers perform admission control for controlled-load connections. Admission control al-
gorithms are not discussed in this chapter, but, for the purpose of the experiments, it is assumed that
the aggregate reservation levels at the routers are within their capacities. In addition to performing
admission control, the routers also need to support service differentiation between marked (con-
formant controlled-load) and unmarked (nhon-conformant controlled-load and best-effort) packets.
One obvious approach to providing different services to marked and unmarked packets is to main-
tain separate queues for each class and serving them according to their scheduling priority. Another
approach is to use a commerrFo queue for both compliant and non-compliant traffic. A com-
monFIFO queue not only simplifies the scheduling functionality at the router, it also helps maintain
packet ordering in controlled-load connections. Although maintaining packet ordering is not a re-
quirement, failure to do so may have serious performance impacts on transport protocols such as
TCP.

In order to provide service differentiation between marked and unmarked packets, a selective
packet discard mechanism based on an enhanced version oEthesRsed. Enhanced Random
Early Detection (RED) is a minor modification to the originalé& algorithm. In ERED, the thresh-

olds only apply to unmarked packets. Unmarked packets are randomly dropped when the average
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queue length exceedsin,, (unmark) and are all dropped when the average queue length exceeds
max, (unmark). Marked packets are only dropped when the queue is full. In order to ensure low
loss of marked packets;ing;, andmaz,, values need to be set appropriately. For example, in a
system withn controlled-load sessions with peak rateSr;gfi =1,2,...,n, aservice rate of,

and a buffer of lengttB, the thresholds must be set so that they can roughly ensure that no marked

packets are droppédin particular, the following equation should hold:

(Z T, — L) X maxth(iznmar ) < B = mazy,(unmark)
=1

Note that the maximum number of unmarked packets that can be in the queue at any time is
around (razs,(unmark)). It takes at moé%m”l(j{w to completely drain the queue of un-
marked packets. Given the maximum aggregate arrival rate of marked p@kgtsnd the service
rate [, the rate of increase of the queue occupan@i@ — I since transmission of an unmarked
packet makes room for an incoming marked packet. Hence, the amount of excess buffer space
needed to ensure no marked packets are dropped is the prod@k@f{ L), the rate of increase
in queue occupancy ar?@%jffm—“”“l, the time needed to drain the unmarked packets. Unfortu-
nately, since the thresholds suchrasz;;, are triggered by an average queue length calculation,
these settings can still lead to weuessary losses in compliant packets. For example, additional
gueueing work has shown the use of absolute thresholds for limiting unmarked packets can effec-
tively prevent loss of marked packets [10, 30]. Whilee® works well for the experiments in this
study, a queue management algorithm which reserves a portion of the queue for marked packets
while performing RED on the remaining portion might be ideal for controlling congestion while
effectively supporting the priority marking.

An appropriately parameterizedRED queue can still be used to guarantee low loss rate to con-
formant controlled-load traffic. Since it uses a comnra¥o queue, though, the delay experienced
by the conformant controlled-load traffic and best-effort traffic is the same. It is possible to param-
eterize RED queues to control the queue size, and hence, the queueing delay. However, a small
gueue size may lead to high loss rates for unmarked packets. An alternative approach is to main-
tain separate queues for controlled-load and best-effort traffic. Separation of traffic classes is likely

to improve the delay performance of controlled-load traffic. However, it complicates bandwidth

LIt is assumed that the duration of bursts is the same for all sources. This assumption can be relaxed for more precise
admission control.
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(Each link has a 10ms transmission delay)

Figure 5.1: Network topology

sharing between non-conformant controlled-load and best-effort traffic. The router would have
to use weighted fair queueing to ensure equal-fair share of excess bandwidth to non-conformant
controlled-load and best-effort traffic. Consequently, it has to monitor the number of active con-
nections in the controlled-load and best-effort classes and has to adjust the weights dynamically
depending on the number of connections in each class.

Finally, there are many other ways of realizing controlled-load service. Some of these mecha-
nisms, such as class-based queueing [27] and weighted fair queueing [5, 12,14, 28,29, 57, 60], can
be used to accurately implement controlled-load and other service classes definedNiSeryvI
working group. Section 5.8 describes howeEb and services based on priority handling of pack-
ets can be embedded in a more fully evolved integrated and differentiated services Internet. In

particular, the ability to effectively embedRED in a class-based queueing framework is shown.

5.3 UnderstandingTcp Dynamics

This section is devoted to the studyfp dynamics in a differentiated services environment.
For the purpose of the experiments, tisesimulator was modified [46]. For most of the experiments
reported here, the NewReno variantrafr [32] is used. The simulator was then modified by adding
policing and extending the 8 queueing discipline. For the experiments in this section, a simple
network topology shown in Figure 5.1 is considered. The capacity of each bi-directional link is
labeled and has a transmission delaylofns. Connections requesting a reservation specify a
peak and a mean rate of service, and the maximum size of a burst. At the source, tokens are

generated at the service rate and are accumulated in a token bucket. The depth of the token bucket
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Figure 5.2: Effect of reservation on end-to-end throughput.

is the same as the maximum burst size specified by the source. Throughout this chapter, the token
bucket size is measured in units of time. In units of tokens, it is equivalent to token generation rate
multiplied by the bucket size in units of time. The peak rate is set to the link speed by detzrilt.
segments belonging to the reserved connections are transmitted as marked datagrams if there are
sufficient tokens available in the token bucket at the time of transmission. Otherwise, they are sent
as unmarked datagramscp segments belonging to best-effort connections are sent as unmarked

datagrams. It is assumed that sources are greedy, that is, they always have data to send.

5.3.1 Effect of service rate

In order to investigate the effect of service rate on end-to-end throughput, three connections
with reservations ot Mbs, 2Mbs, and4 M bs, and three best-effort connections from nadeto
nb were run. Each controlled-load source used a token bucket of dépth and each node has a
100K B ERED queue withmaz, of 80K B andminy, of 20K B. The maximum drop probability
of the unmarked packets for this experiment Wag. This probability is chosen in order to make
early detection aggressive enough to control the length of the queue. Note that a drop probability
which is too small makes the early detection mechanism ineffective while a drop probability which

is too large can lead to underutilization of the link as described in Chapter 3.
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Figure 5.2(a) shows the throughput seen by each connection. Throughput is computed by mea-
suring the data received at the receiver over an observation period and dividing it by the observation
interval. Figure 5.2(b) plots the compliant throughput seen by connections with reservations. Thisis
the portion of the throughput that is contributed by marked packets. Ideally, it should be equal to the
reserved rate of service. From Figure 5.2(a), it is evident that connections with higher reservations
generally see better throughput than connections with lower or no reservations. However, as shown
in Figure 5.2(b), the compliant portions of the bandwidth received by all reserved connections are
less than their respective service rates.

The explanation for the observations from Figure 5.2 lies in the flow and congestion control
mechanisms used bycp. The TCP sessions with reservations exercise their flow and congestion
control mechanisms in the same way as best-effort connections. However, they have a lower prob-
ability of losing a packet at the routers since their marked packets have lower (in this case close
to zero) probability of getting dropped.eBause connections with higher reservations mark their
packets at a higher rate, they have a decreased probability of having a packet dropped. This is
why connections with higher reservations see higher throughput than connections with lower or no
reservations. However, as observed from Figure 5.2 fails to fully exploit the benefits of the
reservation. The compliant part of the throughput is less than the reservation levels in all cases.
Since marked packets are not dropped by the network it is apparent that the source is not generating
a sufficient number of marked packets to keep the reserved pipe full. Since the sender is a greedy
source, it is thacp congestion control mechanism that is responsible for throttling the source. The
tokens, however, are generated at a rate commensurate with the reservation. If the source does not
have enough or is unable to transmit packets, the token bucket fills up and ultimately overflows
causing token loss.

Figure 5.3 shows the packet trace of the connection withhs reservation over a five-second
interval. The plot shows the sequence number (modulo®2@® congestion window of the sender,
and the number of lost tokens (given in packets modulo 200) for the connection. A positive slope
of the lost token curve indicates a non-zero token loss rate throughout the observation period. The
windowing mechanism used P is partly responsible for this phenomenon.

TCP uses two windows for the purpose of flow and congestion control. The receiver maintains

2Segments of sizeK B are used. The sequence number is the sender’s packet sequence number.
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Figure 5.3: Packet trace d@f\/bs connection.

and enforces an advertised windomMND) as a measure of its buffering capacity. The sender
enforces a congestion windowWND) as a measure of the capacity of the network. The sender is
prohibited from sending more than the minimumaefnD and cwND worth of unacknowledged
data. As described in Chapter 2, when the loss of a segment is detectedyts its congestion
window in half or sets its congestion to 1 depending on whether its fast recovery or its retransmission
timeout mechanism is used. For connections with reservations, both actions are overly conservative
behavior since they are insensitive to the reservation that a particular connection may have. Thus,
even when tokens are present and the sender is eligible to transmit a new segment, it may be throttled
by the congestion window. As shown in Figure 5.3, the rate of token loss increases (as indicated
by the change in slope in the lost token curve) when a packet loss is detected (as indicated by the
decrease in congestion window), and slowly decreases as the congestion window opens up.
Another cause for token loss is the presence of persistent gaps in the acknowledgment stream.
Such gaps are part of a phenomenon commonly referred to as ACK-compression [70]1Since
uses acknowledgments to trigger transmissions, any significant time gap between the receipt of
successive acknowledgments causes the token bucket to overflow and results in a loss of transmis-

sion credits. The effects of these gaps can be seen in many places in the trace where the sequence
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Figure 5.4: Compliant throughput éf\/bs connection over various token buckets.

number is frozen. There are several ways in which these gaps can develop. One is through the
recovery process after a loss is detected usitejs fast recovery and fast retransmit mechanisms.
After detecting a loss (by the receipt of a given number of duplicate acknowledgmerruts

its congestion window in half by halting additional transmissions until one half of the original win-
dow’s packets have cleared the network. Freezing the sender for this period of time causes the token
bucket to overflow, but more importantly, puts a gap in the data stream which results in a gap in the
acknowledgment stream during the next round-trip interval. Gaps in the acknowledgments cause
the token bucket to overflow and cause gaps in the data stream once again. Another way they can
form is through the normal dynamics of network traffic. Congestion on the forward and/or reverse
path, as well as additional queueing delays and jitter experienced as new connections come on-line,

can also create significant gaps in the stream.

5.3.2 Effect of token bucket depth

One way to alleviate the problem of token loss is to use a deeper token bucket. To investigate
the impact of the token bucket depth on compliant throughput, the experiment described in the
last section was repeated across a range of token bucket depths. Figure 5.4(a) shows the compliant
throughput seen by the connection with/d bs reservation for token bucket sizesi®fm s, 100ms,

200ms, 400ms, and800ms using the same network topology and traffic. Increasing the token
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bucket depth improves the compliant throughput seen by a connection. However, it is only when
the token buckets are very larg€0(ms and 800ms in this case) that the compliant throughput
seen by a connection remains at the reserved rate. Unfortunately,4fbfba connection, this
bucket depth corresponds to a maximum burst of compliant packets ofaf® t05. In order for

the network to ensure that compliant packets are not dropped, it must have the capacity to buffer
such bursts. Without sufficient buffer space, a significant amount of burst losses can occur, causing
the performance of th&cp connection to deteriorate. To see the effect of this, the traffic going
through the network is increased by adding identical traffic going in the reverse direction. That is,
all connections are bidirectional. Adding traffic has several effects. One effect is that it spaces out
acknowledgments even further. Another, more problematic effect, is that it adds more congestion
to the network which causes queues to be fully occupied. Without sufficient buffer space to handle
large token buckets worth of priority packets, reserved connections experience a substantial amount
of burst losses. This causes the connection to eventually freeze since recovering fitgore mu
losses using RenocP, in particular, requires multiple round-trip timese@&use of this, the source

is eventually throttled until the lost packets aresessfully retransmitted [17]. Note that as the
bandwidth-delay is increased, the advertised window becomes a limiting factor in the performance
of the source. If the advertised window is not large enough, whenever a single packet is lost, the
source must freeze until the packet is successfully retratezin Figure 5.4(b) shows the result

of this experiment. In contrast to Figure 5.4(a), large token buckets do not give any additional
performance improvement. The connection never receives a compliant throughput more than half
of its4 Mbs reservation.

The use of large token buckets allows large bursts of marked packets into the network which
can result in loss of marked packets, thus defeating the service differentiation mechanism provided
by ERED. In awFQ implementation of controlled-load service, this is akin to overflowing a flow’s
gueue by allowing it to burst at a rate greater than the queue length. As with any service differ-
entiation, in order to ensure correct behavior, admission control must be done with the sources to
guarantee performance. FORED queues, this essentially means thatithe,, andmaz,;, values
must be set appropriately so that marked packets are not dropped due to an over-occupation of un-
marked packets. For a given queue size there is some flexibility in terms of setting the thresholds

depending on the traffic load. As the load due to controlled-load traffic increasesathg and
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miny, values can be lowered to ensure low or no loss of conformant controlled-load traffic. As the
controlled-load traffic load decreases, thex,, andmin,, values can be set higher to improve the
throughput of best-effort traffic. However, the extent to which this flexibility in setting the queue
thresholds can be used to ensure correct behavior is limited. As discussed in Section 5.2, for a given
gueue size and link speed, the aggregate controlled load traffic that can be admitted into the system

is limited by

(Z T, — L) X maxth(iznmar ) < B — max, (unmark).
=1

The above condition guarantees zero loss of conformant controlled-load traffic in the worst
case scenario where all controlled-load sources burst traffic at the highest rate at the same time.
In the rest of this chapter, it is assumed that the above condition is satisfied at every node and
that marked packets are never dropped. Note that the scenario captured in the above inequality is
very pessimistic. It is extremely unlikely for all controlled-load sources to burst at the same time.
Also, guaranteeing zero loss of conformant traffic is not a requirement for controlled-load service.
Consequently, it is possible to relax this condition and admit more controlled-load sessions than
deemed possible by the above inequality. Empirical and statistical admission control mechanisms,
such as measurement based admission control [39], can easily be used to operate the network at a

high utilization while maintaining low loss rates for conformant controlled-load traffic.

5.4 TcP Adaptations

In this section, a number of modificationstoP's control mechanisms are proposed and eval-

uated. These refinements heipp adapt better in an integrated services environment.

5.4.1 Timed transmissions

Since deeper token buckets require larger buffers in routers and allow less flows to be admitted,
it is desirable to keep the size of the token buckets small. To alleviate the effects of persistent gaps
in acknowledgment without increasing the token bucket depth significantly, two different schemes
are consideredielayedandtimedtransmissions. These schemes better adapt the acknowledgment-

based transmit triggers to the rate-based marking mechanisms. In the delayed transmission scheme,
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(1) After every acknowledgment
if (room under congestion and advertised windgws)
if (tokens available- packet size)
send packet as marked
else
send packet as unmarked

(2) After everyTIMER expiry
if (room under advertised window)
if (tokens available- packet size)
send packet as marked
resetTIMER

Figure 5.5: Timed transmission algorithm.

a segment is held back for a random amount of time when there are insufficient tokens present to
transmit it as a marked packet. This, in effect, adds randomization to the data stream of the con-
nection which can potentially eliminate persistent gaps in the acknowledgment stream. In addition,
this scheme reduces the probability of the packets getting dropped inside the network since holding
back packets increases the probability that they are sent as marked packets. While the delayed trans-
missions work reasonably well when the reverse path is lightly-loaded [17], additional experiments
have shown that it is not very effective in the presence of reverse path congestion.

The second mechanism examined involves the use of a periodic timer. In this saterse,
acknowledgment-triggered transmissions are augmented with a timer-triggered transmission mech-
anism. This timer-based triggering ensures that transmission opportunities are not lost while the
connection is waiting for an acknowledgment. In the timed transmission mechassmreserved
connection uses at most one timer which can have an interval which is customized. Connections
can also share a single timer depending on the overhead on the end host. In the timed transmission
scheme, the acknowledgment-clocked transmission algorithm is left unmodified. However, when-
ever a periodic timer expires, the connection examines the tokens in the token bucket. If there are
sufficient tokens available in the token bucket and there is room under the advertised window of the
receiver, the sender transmits the packet as marked, temporarily ignoring the value of the conges-
tion window. The timer is then reset to wake up another timer interval later. Figure 5.5 presents the
algorithm formally.

The intuition behind timed transmission is very simple. If there are enough tokens in the bucket,
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Figure 5.6: Throughput with timer-triggered transmissions.

as per contract with the network, the sender is eligible to inject new data in the network. Hence,
the congestion window is temporarily disregarded. Note that it is also possible to disregard the
congestion window for conformant sends triggered with an acknowledgment. However, the use of
the timers helps prevent sending back-to-back packets, making the resulting traffic stream slightly
smoother and more network-friendly. Regardless of how compliant sends are triggered, the connec-
tion still adheres to the advertised window constraint to avoid overflowingettesver’s buffers. In

case of network disruption, the sendingp freezes when the number of unacknowledged packets
reaches the advertised window. Thus, the timer-triggered sends do not continue to occur in the pres-
ence of network failure. Having a timer trigger transmissions alleviates the problem of lost tokens
caused by gaps in the acknowledgments. In order to guarantee zero token loss, the timer interval

should be equal téfucketsize=(Lacketsize1)] - This takes care of the worst case where there are

PacketSize — 1 tokens in the bucket when a timer interrupt occurs.

Using this timer mechanism, the experiment in Section 5.3 was repeated. For the experiment,
token buckets of depthOms were used along with a timer granularity ®fms. Figure 5.6(a)
plots the total bandwidth received by all connections and the compliant bandwidth received by the
connections with reservations. As shown in the figure, each connection gets its reserved rate and a

share of the excess bandwidth.
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While the timed transmissions allow for temporary violations of the congestion window to oc-
cur, non-compliant packets are sent only when there is room under the congestion window. Thus,
this mechanism does not alter the wagP's congestion window is calculated. Usingp's win-
dowing algorithm can be a problem since upon detection of a loss, the congestion window is cut
in half or reduced to 1 regardless of a connection’s reservation. Thus, although the timed trans-
mission mechanism allows the connection to receive its reserved e windowing mechanism
can restrict the controlled-load connections from competing for the excess bandwidth in the net-
work®. Figure 5.6(b) plots the throughput seen by a best-effort connection and the non-compliant
throughput seen by each of the reserved connections using timed transmissions. The plots show that
connections with reservations receive a smaller share of the residual capacity when compared to the
best-effort connection. The connections with larger reservations are penalized to a greater extent
since halving the congestion window of a connection willibs reservation has a more drastic

impact than halving the congestion window of &/ bs connection.

5.4.2 Rate adaptive windowing

For reserved connections, the swings in the congestion window should always be above the
window guaranteed by the reserved rate. To account for and exploit the reserva#snyindow-
ing algorithm is modified. The key idea behind this modification is that for reserved connections,
CWND consists of two parts: a reserved part equal to the product of the reserved rate and the es-
timated round-trip time, and a variable part that tries to estimate the residual capacity and share it
with other active connections. Note that the reserved pattiD is a function of the round-trip
time. While the algorithm currently uses the comnta® round-trip measurements to estimate this,
measurements using tlrep timestamps optiorRTTM) [36] can provide a more accurate estimate.
Assuming that the size of the reservation window\venD, the size of the variable window is
CWND—RWND. In the modified scheme, the size of the variable window is adjusted using the tradi-
tional Tcp windowing mechanism and simply added to the calculated valesveifd. Specifically,
the sender, instead of reduciog/ND by half at the beginning of the fast recovery, sets iRtoND

+ CWND-RWND At the beginning of a slow start after detection of a lost segment through the

3Non-conformant controlled-load traffic is treated as best-effort traffic. Hence, residual network capacity should be
fairly shared between best-effort traffic and non-conformant controlled-load traffic.
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(1) After every new acknowledgment
if (CWND < SSTHRESH
CWND = CWND + W
else

CWND = CWND + m

(2) WhennDuUP exceeds a threshold

CWND = RWND + SWRD=RWRD 4 n\pyp

SSTHRESH= RWND 4 SWND-RWRD

(3) Upon RTO

CWND =RWND + 1

SSTHRESH= RWND + SWND=RWND

Figure 5.7: Rate adaptive windowing algorithm.

retransmission timeout, it setsvND to RWND+1 instead of 1. In both casesSTHRESHIS set to

+CWRD-RWND andawnp instead of the minimum ofND andawnp.

the minimum ofRWND
Finally, because packets sent uné@rnD should not clock congestion window increases, window
increases are scaled By{O-BWND ~Note that even with these modifications to the windowing
algorithm, the sender must still adhere to AwenD restriction. That s, it is prohibited from sending

more than the minimum ofwND andcwND worth of unacknowledged data. Because of this, the

size of the receiver’s buffer must be at least the size of the reservation window in order to sustain
the reserved rate usirgep. This control algorithm is summarized in Figure 5.7.

The experiments described in the previous section were repeated with the windowing modifica-
tions in place. Figure 5.8(a) shows the aggregate and compliant throughput seen by each reserved
connection using the modifications to the windowing algorithm. It also shows throughput seen by
a best-effort connection between the same source and destination. As seen in the figure, all con-

nections perform as expected. Figure 5.8(b) plots the amount of excess bandwidth received by

each reserved connection, as well as the bandwidth received by the best-effort connection. When
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Figure 5.8: Throughput with timer and windowing modifications.

compared to Figure 5.6(b), the reserved connections obtain a fairer share of the excess bandwidth.
A common concern with any modification tewP's windowing mechanism is that the change
may be too aggressive and thus, cause unnecessary congestion. The experiments which have con-
ducted so far, including the ones reported in this chapter, show no bias towards connections using
the modified windowing mechanism. A number of different flavors of the windowing algorithm
have also been examined. They differ in the vieayND is computed an@wND is clocked.RWND
is computed by multiplying the reserved rate with the estimated round-trip time. Depending on
how conservative the windowing mechanism needs to be, different estimates of round-trip time
can be used. Experiments using both the best and average estimates of round-trip times were also
performed and showed similar results. Note that in times of congestion, the estimated round-trip
time tends to be large and thus, the rate-based window can also grow large during a period of time
when the network needs a respite. Using the best observed round-trip time in this case, allows the
connection to be on the conservative side in calculating its rate-based window.
Another concern in deploying the modifications is that it may potentially lead to congestion
collapse since sources maintain a minimum sending rate which they do not back off from. In order
for such modifications to be deployed, the use of proper signaling, admission control, and resource

reservation must be required in order to prevent congestion collapse. Even when such mechanisms
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CPU Type 133M H = powerrC | 33M Hz POWER

Timer setting 7.4us 14.Qus
Timer handling 7.1us 30.1us
Timer canceling 6.5us 9.6us

Table 5.1: Timer overheads (AIX 4.2 kernel).

exist, it still may be ecessary to add some mechanism to back off the timer and windowing mod-
ifications. For example, misconfiguration and/or the presence of legacy equipment may make it
impossible to guarantee an end-to-end minimum sending rate. In order to prevent congestion col-
lapse in these scenarios, the end host should be modified to respond to a large amount of packet
loss. One simple alternative is for the source to simply turn off both the timer and windowing

modifications whenever it detects any loss of marked (compliant) packets.

5.5 Fine-Grained Timers

This section explores the cost associated with deploying fine-grained timenints well as

the benefits of using such a timer for sending data.

5.5.1 Timer overheads

In the description of the timed transmission algorithm, the existence of connection-specific
timers is assumed. However, it is possible, and desirable, to use a common timer shared amongst
all reserved connections. Such optimizations can be easily incorporated using techniques such as
the protocol timer services in thesb-style TCP/IP stack. One of the common criticisms against
the use of timers is the overhead associated with handling timer interrupts. For that rezson,
uses coarse-grained (typicall§0ms and500ms) timers. However, the state of the art in processor
technology and operating systems has advanced considerably since the first design and implemen-
tation of TCP. Processors and timer implementations today are much faster, and consequently, the
overheads of handling timer interrupts are much lower.

Table 5.1 shows the overheads of setting, canceling, and handling timers iBnwes/6000
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Figure 5.9: Throughput of M bs connection over various timer intervals.

machines runningix 4.2, one equipped with38 M H = POWER cpPuand the other with 433 M H =

PowerPC CPU The table shows that the overheads of timer operations in modern sy$g8Sms K =
PowerPC) are quite small. Even when older systems, such a83kéH » RS/6000, are considered

in this study, the overheads are well within acceptable limits. Note that these measurements were
taken without any optimization to the timer data structures inahe kernel. Inaix 4.2 timer

blocks are arranged in a linear array. The overhead of timer operations are expected to be even
lower if the timer blocks are stored as a hash table. However, at this point such an optimization is

not deemed necessary.

5.5.2 Buffer requirements

While there are concrete costs associated with using fine-grained timers, there are also signifi-
cant benefits. One benefit in using these timers is that it reduces the size of the token buckets used
for each application. From the calculations in Section 5.4, given a certain timer interval, the token
bucket depth should be at led$timerInterval x BucketRate) + (PacketSize — 1) to prevent
token loss. Because the token bucket size grows linearly with the timer interval, using fine-grained
timers allows applications to request smaller token buckets. Since each router must be able to buffer

a burst the size of the entire token bucket for each application, the size of these buckets has a direct
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impact on the amount of buffer space required in network routers.

Figure 5.9 shows the impact that the timer-interval has on the throughput o} fhe connec-
tion using the same multi-hop network setup. The simulations were run using both the timer and
windowing modifications as described in Section 5.4. As Figure 5.9(a) shows, as the timer interrupt
interval increases, the throughput of this connection drops considerably. The reason why this drop
is so dramatic is that the lack of buffer space in the network causes a significant amount of burst
losses. Burst losses severely limit the throughput of Rezmvariants since it takes one round-trip
time to recover from each loss. This causes the serirdgo degenerate into a stop-and-wait pro-
tocol. Figure 5.9(b) shows the results of the same experiment using buffers which are twice the size
(160K B). With significantly larger buffers, the connection is able to get its share of the bandwidth

over a larger range of timer interrupt intervals.

5.6 Transient Behavior

To take a closer look at the transient behavior, a controlled-load connection’s reservation is
changed in the presence of several best-effort connections. In particular, a controlled-load con-
nection which has a reservation that is toggled fri@s\/bs to 6 M bs every 20 seconds was run

betweem0 andn5. Four pairs of best-effort connections were also run between these two nodes.
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Figure 5.10(a) plots the total throughput of the controlled-load connection using unmatifed

This connection uses a token bucket depttg@ims in order to prevent a large amount of to-

ken losé. The plot also shows the reservation that the connection has over time. As shown in
the figure, the bandwidth received by the connection reacts slowly to increases in the reservation
while it reacts quickly to the decrease in reservation. This is directly attributed to the additive in-
crease/multiplicative decrease propertyraf’s windowing algorithm [34]. Figure 5.10(b) shows

the congestion window trace for the norntalp source. The graph shows the congestion window
linearly increasing in response to an increase in reservation level at time8s, t = 40s, and

t = 80s. Thus, by the time the window size reaches a size which can support the size of the reser-
vation, almost the entire 20 second interval has elapsed. This is why the total throughput of this
connection lags behind the reservation change.

Figure 5.11(a) shows the same experiment, but with the reserved connection using the timer and
windowing modifications described earlier. Note that the throughput of the connection immediately
reacts to both the increase and decrease in reservation levels. Figure 5.11(b) shows the congestion
window trace of the connection over the same time period. The window size in this case reacts more
quickly to the change and thus allows the connection to get its reserved rate. One advantage of rate-

based windowing is that the congestion window immediately reflects any changes in reservation

“Note that the size of the buffers on each interfacklisiK’ B, which is enough to absorb the large bursts that are
caused by the deep token bucket.
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Figure 5.12: All nodes using drop-tail queues.

level, especially when the level is increased. Fop-variants which use fast retransmit and fast-

recovery, the connection is often in a state where it is increasing its congestion window additively in
order to find a congestion window that indicates the amount of available bandwidth in the network.
With a large change in reservation, this can take a fairly long time, especially for connections with

large round-trip times.

5.7 Path of Evolution

For the experiments reported in previous sections, it is assumed that all routers on the path
of a connection employ support for AF such aseb. While this is desirable, modifications to
the Internet infrastructure will be incremental and evolutionary. To understand the impact of this
heterogeneity in the network, a number of scenarios are considered where none or only a selective
subset of routers areRED-capable.

The purpose of the first experiment is to examine the impact of reeplgateways on reserved
connections. In this experiment, twapP connections with reservations off bs and4 M bs as well
as a single best-effort connection are run between ne@lesdr5. Pairs of best-effort connections
are also run between nodes andn7 and betweem8 andn9. Figure 5.12(a) plots the throughput
seen by these connections when all the routers are drop-tail routers which do not distinguish be-

tween marked and unmarked packets. The connections with reservations use the timed transmission
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mechanism and the modified windowing scheme. Note that while no service differentiation is being

done on the links, it is assumed that adequate admission control and provisioning is being done
in order to ensure that the offered load does not overwhelm network links and cause congestion
collapse.

As shown in Figure 5.12(a), the reserved connections indeed see higher throughputthan the best-
effort connection between the same nodes. However, the absen&epfriechanisms in routers
adversely impacts the performance of connections with reservations. This situation worsens with
the increase in the reservation level. Thisis because a connection with a higher reservation transmits
a larger amount of data and thus, the number of packet drops it experiences is proportionally higher.
In addition, the connection with a larger reservation transmits data in larger bursts and is susceptible
to burst losses in the drop-tail queues. This is reflected in the oscillation in the bandwidth curve
for the connection with aMbs reservation. Burst losses, as described earlier, interact poorly
with Reno sources since it takes a full round-trip time to recover from each loss. This freezes the
sender and prevents it from getting its reserved rate. A packet trace of this connection verifies this
behavior. Figure 5.12(b) shows the same experiment with the reserved connectionsAgsing
TcP. As shown in the figure, despite the absence REE queueing, all connections manage to
achieve aggregate throughputs close to their respective desired levels.

From the results of these experiments, it is fair to conclude that even without sophisticated
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scheduling mechanisms it may be possible to extend the paradigm of equal sharing of network
capacity to one where it is shared in accordance with allocations. Note, however, that in the experi-
ments here, the aggregate reservation is lower than the network capacity. Cooperation among differ-
entTCP connections is also assumed. This means that admission control and voluntary adherence
to the socially cooperative congestion control is still required. TRefEmechanism simply pro-

vides additional protection to compliant controlled-load traffic against best-effort and non-compliant
controlled-load traffic.

To examine the impact of BED-capable routers at selected places, the experiments described
above were repeated using Reno sources with only a few selected routers emplRymgHg-
ure 5.13(a) shows the throughput of the same set of connections when interfaces only #tehe bo
neck links betweem1 and»2 and betweem3 andn4 employ ERED queues while the rest of the
interfaces use drop-tail queues. As the graph shows, placEp fueues at bottleneck points in
the network is sufficient to provide connections their allocated share of the bandwidth. However, as
shown in the figure, the connection sometimes dips below its reservation level due to burst losses
which can occur in the presence of drop-tail queues. Figure 5.13(b) shows the throughput of the
connections when thelED queues are placed on nonttbeneck links between( andn1 and be-
tweenn4 andnb. As with the drop-tail experiments in Figure 5.12(a), the performance of the high
bandwidth connection suffers throughout.

The results from these experiments demonstrate that there is an effective path of evolution of in-
tegrated services in the Internet. For the integrated services to be useful, it is not required to upgrade
the entire infrastructure at the same time. There is substantial value in following an evolutionary
path where at first the control mechanisms at the end hosts are modified and routers support admis-
sion control. Enhanced queueing mechanisms, suchra®,Ecan then be deployed at observed

bottlenecks and then gradually throughout the network.

5.8 cBQ and ERED

The experiments in this chapter have shown how to effectively provide minimum bandwidth
guarantees in the network usingEd gateways. While this service may be useful to a large class

of applications, in a fully-evolved integrated services Internet, such a mechanism must coexist with
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Figure 5.14:cBQ experiment.

other mechanisms for providing a range of alternative services. This allows applications written
using such a service, to continue to work as the Internet infrastructure is upgraded and more sophis-
ticated packet and link scheduling support is put into place.

The ERED mechanism can be easily embedded into more sophisticated scheduling disciplines
such as class-based queueing®) [27]. cBQ is one of the more popular mechanisms proposed
for packet and link scheduling in an integrated services Internetslp datagrams belonging to
different classes are put in different queues in the routers. The queues are serviced in different
priority order based on the allocation given to the associated traffic class. Embedded as a class in
CBQ, ERED can be used to provide weighted bandwidth sharing between connections of a class.
By aggregating connections with varying bandwidth requirements in one class, the total number of
classes in a class-based queue is reduced and thus, the overhead in link scheduling. To examine this
possibility, the RED queue was embedded into thBQ implementation ohs. Its performance in
the network shown in Figure 5.14(a) was then examined. This network consists of two agéncies,
and B, who share a common link (between nodéand D) to a provider’'s network. In this setup,
agencyA is entitled to 20% of the link’s bandwidth while agengyis entitled to the remaining
80% of it. Node( usescBQ with 20% of the link share allocated to traffic from agemtyand 80%
allocated to traffic from agencl. Note that while either one of the two agencies is idle, the other,
active agency, is entitled to use the entire link for itself. In addition, since the allocation is relative,

admission control must assume the worst case scenario in admitting flows to a class. That is, it must
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assume all other classes are using their share of the link. Both queues witltiBgrsystem use
the ERED mechanism to share bandwidth between individual connections.
Figure 5.14(b) shows the throughput seen by connections originatingfrantd B and travers-
ing the link betweert’ and /). Connectionsi1 and A2 originate from agencyl and have reserved
rates of0.5Mbs and1Mbs, respectively. They start at timés= 0s andt = 100s. Connections$31
and B2 originate from agency3 and have reserved rates o¥/bs and2Mbs. These connections
start at times = 200s andt = 300s, respectively. As the graph shows, betwees 0s and
t = 100s, connectiond1 gets all of the bandwidth since it is the only active connection. Between
t = 100s andt = 200s (after connectiom2 starts) the link’s bandwidth is shared between connec-
tions A1 and A2. However, sincel2 has al M bs reservation, it gets slightly more total bandwidth
than A1. When B1 starts att = 200s, it is the only active connection from agen&; Hence,
it receives the entire 80% of the link’s bandwid#h\{bs). The two connections from agency
then share the remaining bandwidfh\{bs) according to their reservations. Finally,fat 300s,
connectionB2 starts and th& M bs allocated to agency is split between connectioB1 and B2
in accordance with their reservations. That/#2, gets approximately M bs more thanB1. What
happens throughoutthe course of this experiment is that when the class is allowed to be overlimited,
the ERED queue is drained at a sufficient rate so as to support higher rates of input data. As soon as
the class becomes regulated, the queue builds up,rEe Gueue drops unmarked packets and the

connections in the class resumes sending at a lower rate.

5.9 Conclusions

This chapter has examined a way of providing a large class of bandwidth-sensitive Internet ap-
plications with a useful service using minimal enhancements to the network infrastructure. Towards
this end, a simple extension to the packet queueing algorithms at the routers has been proposed and
analyzed. Assuming a network which supports minimum rate guarantees, a number of modifica-
tions toTcP's congestion control algorithm have been proposed and evaluated. These modifications
take advantage of the network support provided and can allow connections with reservations to ob-
tain their reserved rates and share excess bandwidth in the network. It is important to note that

these modifications require the presence of end-to-end signaling, admission control, and resource
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reservation. Without such support, it is necessary for sources to turn off the modifications in order
to prevent possible congestion collapse in networks which do not support minimum rate guarantees.

The study reported in this chapter can be extended in many ways. In particular, applying this
work in the context of other transport protocols is being considered especiallyrwitand ubp.

Many multimedia applications do not require the reliable delivery titat provides. While this

study focuses omcp, implementing a similar scheme usirgp and upp fitted with TcP's flow-

control mechanism is possible. Another extension being considered is the usessbBsed mech-

anisms in place of RED to do service differentiation. As shown in Chapter 4,UB can manage
congestion with a minimal amount of buffer space. EnhancingeBwith additional priority-based
mechanisms is relatively easy and can provide significant improvement in performance. Another
key area of future work is the admission control policies for such a service. While this chapter has
not addressed admission control, the observations made on token bucket depths, router buffer sizes,
source burstiness, anRED-parameterization will be instrumental in developing admission control
policies for this service.

On a final note, any allocation-based sharing of network capacity has to be associated with a
policy and/or pricing scheme. The proposal for prioritizing a part of a traffic stream with marking
and competing with best-effort traffic for sharing the residual capacity fits in very well with pricing
schemes which are currently being considered for the Internet. Users paying for a certain level of
marking see incrementally better performance over those who do not. During times of light loads,
when the incremental costs of congestion are low, the user can decrease his/her level of bandwidth

reservation and costs until an acceptable level of aggregate throughput is observed.
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CHAPTER 6

ADAPTIVE PACKET MARKING FOR PROVIDING
DIFFERENTIATED SERVICES IN THE INTERNET

6.1 Introduction

The DIFFSERV architecture does away with the problem of maintaining and managing flow
states in the core of the network. However, in order to provide firm service assurances, one still
needs to provision the network to handle the offered load. As described in Chapter 5, one way
to keep the offered load from exceeding the provisioned capacity is to assign traffic profiles to
users and networks and then monitor and enforce them [11, 19, 31, 37] at the user-network and
network-network interfaces. Such approaches that provide firm guarantees on performance require
end-to-end signaling in order to communicate the traffic profiles throughout the network. They also
require policing and shaping to enforce the traffic profiles at the network boundaries. This chapter
describes an alternative approach to service differentiation that provides soft bandwidth guarantees,
but eliminates the need for end-to-end signaling and enforcement of traffic profiles.

This chapter considers a network service model which usesSBRv mechanisms to deliver
soft bandwidth guarantees to applications using a modest enhancement to the congestion control
and queue management algorithms provided by today’s Internet. As in Chapter 5, the network
is assumed to support a one-bit priority scheme with lower loss rates for higher priority traffic as
in AF. In this model, traffic is monitored at both user-network and network-network interfaces.
However, instead of strictly allocating and enforcing traffic profiles on an end-to-end basis, a more

flexible model that relies on adaptive traffic control at the host and at the edges of the network is
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used. In this model, the user or network administrator specifies a desired minimum service rate
for a connection or connection group and communicates this to a control engine located at or near
the host-network interface. The objective of the control engine, which is calfegtlket marking

engine (PME), is to monitor and sustain the requested level of service by setting the DS field in
the packet headers appropriately. By default, all packets are generated as low priority packets. If
the observed service rate at the low priority level either meets or exceeds the requested service rate,
the PME assumes the role of a passive monitor. If however, the observed throughput falls below
the minimum target rate, theME starts prioritizing packets until the desired target rate&ched.

Once the target is reached, it strives to reduce the number of priority packets witliogttialow

the minimum requested rate. In this architecture, traffic needs to be monitored and marked only at
the host-network interface. However, the end host and network edge mechanisms described in this
chapter are intelligent enough to adapt appropriately in network environments where packets are
re-marked and/or dropped at the network-network interfaces for the purpose of enforcing bi-lateral
service level agreements between providers.

As with any type of differentiated service mechanism, it is assumed that the network pro-
vides incentives that would prevent users from continually requesting the highest level of service.
Usage-based pricing is an example of one such incentive mechanism. Many ISPs (Internet Service
Providers), such as UUNet, PSINet, and MCI, already provide services wherein users are charged
based on link utilization measured over fixed time intervals. It is rather simple to extend this pricing
model to levy higher prices for the high priority traffic. Such a pricing mechanism would encour-
age judicious use of priority service based on application requirements and usage policies. While
pricing is not the focus of this study, one of the key advantages of the proposed architecture is that it
can provide simple mechanisms for calculating near-optimal prices based on congestion costs [43].

In the following sections, the efficacy and the robustness of the proposed framework is demon-
strated. Using extensive simulations, the proposed architecture is shown to adapt with the traffic
dynamics in the Internet and can thus eliminate the risk of congestion collapse. When used in con-
junction with intelligent queue management, it can also identify and penalize non-adaptive and/or
malicious flows and hence provides sufficient incentives for applications to be well-behaved. Fi-

nally, a number of deployment issues are discussed.
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Figure 6.1: Packet marking scenarios

6.2 Service Model

This section presents a brief overview of the service architecture used. As mentioned earlier, the
objective of this work, in contrast to the work in Chapter 5, is to develop a differentiated services
framework without using end-to-end signaling and without enforcing explicit profiles on individual
traffic flows at the network boundaries. Towards this end, it is assumed that the network is able to
supporttwo traffic types: priority and best-effort as embodied by the AF proposaliitireln this
proposal, priority information is carried in the DS field (DSCP) of thbeader and that by default,
all packets are initially sent with their DS field cleared (best-effort). For reasons of simplicity, these
packets are referred to as unmarked packets. Consequently, priority traffic is referred to as marked
traffic. While there is no guaranteed service level associated with an AF setting, it is assumed that
the higher priority generally translates into a better quality of service. In line with the Internet design
philosophy and the FFSERV architecture, most of the intelligence in this architecture is at the
edges of the network. The routers and gateways provide only modest functionality to support service
discrimination, namely support for the AF PHB. Figure 6.1 shows a picture of this architecture.

Given this service model, the goal is to develop packet marking schemes which can be deployed
at the host-network interface that will allow an individual connection or a connection group to

achieve a target throughput specified by the user or network administrator. For example, a user
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may request a specific target rate for a particular connection or an aggregate rate for a group of
connections. The objective of the packet marking scheme is to monitor the throughput received
by the connection or connection group and appropriately adjust the packet marking so that the
sustained rate is maintained satisfying all the policy constraints. Due to the particular nature of
the service model, at times it may not be possible to sustain the requested target rate due to over-
commitment of resources. Such lapses may also be caused by partial deploymerit SERY
mechanisms or oversubscription. A significant part of the effort goes into detecting such cases and
taking appropriate actions whenever required.

In this service architecture, traffic flows are monitored and packets are marked at the host-
network interface. However, the service architecture allows for packets to be re-markeltigiemu
points along the path in order to enforce different policies and service contracts. Consider for
example, a campus or enterprise environment where applications running at different hosts may
mark packets at certain rates to achieve their respective target throughputs. Packets may be re-
marked at the boundary between the internal network and external network to enforce the service
agreement with the network service provider. Similar re-marking may also occur in order to enforce
a bi-lateral agreement between service providers when traffic crosses provider boundaries. While
this scheme can adapt in an environment where packets are marked at multiple points, this chapter
considers scenarios where packets are marked only once. The impact of packet re-marking is under
investigation and will be addressed in future work.

Marking mechanisms of two different flavors are considered: (1) where the marking engine is
transparent and potentially external to the host, and (2) where the marking engine is integrated with
the host. In either case, the packet marking engmee] maintains local state that includes the
target throughput requested for a connection or a group of connections. It passively monitors the
throughput of a connection or the aggregate throughput of a group of connections and adjusts packet
marking in order to achieve the target throughput requested by the user. Placimgetbrternal to
the host has significant deployment benefits since it can be deployed transparently to the hosts. On
the other hand, integrating tire1e with the host protocol engine can provide a solution that adapts
better with the flow and congestion control mechanisms used at the transport layer. In particular,
the integration of the@MEe and theTcp control mechanisms is considered. The rest of this chapter

focuses orrcp as the transport protocol of choice. However, the proposed schemes can be easily
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generalized to any transport protocol that is responsive to congestion in the network.

6.3 Source Transparent Marking

A PME snoops on connections passing through it and measures their observed throughputs.
If the measured throughput is sufficiently close to the requested target rate, it takes the role of a
passive monitor. However, if the observed throughput of a connection is lower than its requested
target, theeME takes a more active role and starts marking packets belonging to the connection or
connection group. The fraction of marked packets varies from 0 to 1 depending upon the measured
and target throughputs. Selective marking essentially upgrades a fraction of the packets belonging
to the connection to the higher priority level. Thee continually adjusts the fraction of packets
to be marked in order to sustain a bandwidth close to the requested target rate, while keeping the
number of marked packets as low as possible.

One of the important tasks performed bynae is measuring the throughput seen by connections
passing through it. This is fed into the packet marking process that has to adapt to the changes in
observed throughput caused by variations in network load. While the overall measure of network
performance from an application’s point of view is goodput, #tve used in the experiments in
this chapter only measures the local bandwidth consumed by a connection. It counts bandwidth
against a connection or connection group when it receives a packet from it, even though the packet
may be dropped later on in the transit path. One of the reasons for measuring local throughput,
instead of end-to-end goodput, is simplicity. TiE does not have to understand the transport
layer protocol semantics in order to determine whether or not the application’s data was actually
delivered. In some cases, even if ek is well aware of the transport layer semantics, it may not
have access to the stream of acknowledgments from the receiver to compute goodput. This may be
the case when the forward and the return paths of connections are different. The most important
reason for counting local throughput is to give incentive for end hosts to send packets which have a
good chance of being delivered. Thus, a malicious or non-responsive source has its packets counted
against itself regardless of whether they have been delivered.

The local throughput seen by a connection can be measured in several ways. One simple tech-

nique is to measure the amount of data transferred with a sliding window and to use the average
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Every update interval:
scale = 1 — =
if (B, < By)
Park = Poork + scalex increment
else
Pourk = Poari — Scalex increment

Figure 6.2:Tcpindependent algorithm

bandwidth received over this window as a measure of the observed bandwidth. If the window is
small, the measured throughput is biased towards the more recent observations. If window is large,
the computed throughput converges to the long-term average bandwidth seen by the connection.
While this is a fairly accurate and tunable measure of the observed throughput, it requires a win-
dow’s worth of information stored for each connection. For the experiments reported in this study, a
lightweight alternative mechanism is used. The throughput seen by a connection over a small time
window is first measured and the observed bandwidth is then computed as a weighted average of

this measured throughput and the current value of observed bandwidth.

6.3.1 TCP-independent marking

The most important task of eME is to adaptively adjust the packet marking rate based on
the measured throughput. In this chapter, a probabilistic marking scheme where the packets are
marked randomly as they pass through e is considered. The marking probability{..«)
is periodically updated depending on the observed bandwiglth 4nd the corresponding target
bandwidth B;). Figure 6.2 shows a simple algorithm designed for this purpose. As seen from the
algorithm, when the observed bandwidth is less than the target bandwijdth, is incremented in
steps. SimilarlyF,,...x is decremented in steps if the observed throughput exceeds the target rate.
Note that both increments and decrement&jp .., are scaled by the difference between observed
and target throughputs. That is, the changeBin,. get smaller as the observed bandwidth nears
the target bandwidth. This scaling damps the amplitude of oscillations of the marking probability.

In order to understand the effect of packet marking, a simple scenario is evaluateds.§ieg.

As shown in Figure 6.3, the simulated network consists of six nedetroughn5, and five links
connecting them. Each link is labeled with its respective link bandwidth and has a transmission

delay of10ms. In order to support AF-style priority marking RED queues are used within;;, of
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Figure 6.3: Network topology.

10K B, maxy, of 80K B, and an initial drop probability of 0.05 for unmarked packets. Three con-
nections are then simulated between nod&and»5: an infinite best-efforrcp connection C1),
a second infinitercp connection C2) with a4 M bs target bandwidth, and a thimtp connection
(C3) that toggles on and off every 50 seconds and has a throughput requiremént ofvhen it is
on. The observed throughputs and marking probabilities are updatedi©deny.

In this network configuration, when ontyl andC2 are active, the bottleneck link bandwidth of
10M bs is shared evenly between them and thus, no packet marking is requit@d foachieve its
target of4 M bs. However, wherC3is active, an even share of the bottleneck bandwigl8B(}/bs)
does not satisfy the target throughput requestedCByand C3. The PME has to mark packets
belonging toC2 andC3 in order for them to obtain the higher throughput. Figure 6.4(a) shows
the throughputs received 2 and C3 over time. In this experiment?,,.» is adjusted in steps
of 0.01. As the figure show£32 is slow in reacting to changes in the network. When all of the
sources are on, it is consistently below4t® bs target bandwidth. It takes a significant amount of
time to build upP,,.x in response to the changes in the network load. Figure 6.4(a) also shows
the marking rate for connectidd2. As expected, the marking rate lags behind the changes in the
network load, slowly rising in response to an increased traffic load and slowly falling in response
to a decreased traffic load. To examine the other end of the spectrum, the experiment was repeated
while allowing P,,,.-+ to be updated in steps of 1.0. That is, when more bandwidth is needed, all
packets are marked. Otherwise, packet marking is turned off. Figure 6.4(b) shows the results from
this experiment. As expected, in this experimdhy,,.» adapts very quickly to the changes in the
network load, thus allowin€2 to achieve its target rate during periods of increased traffic load.
This rapid response also allows theiE to turn off packet marking quickly when it detects that
the available bandwidth is sufficient to satisfy the target rate. While adapting quickly to changes
in network conditions has its benefits, it can also cause significant burstiness in both marked and
unmarked packet streams. For example, if packet marking is turned on for a connection with a

relatively high target throughput, it may cause large spikes in the number of marked packets in the

105



8.0

8.0

0——=0 C3 4Mbs (total) 0——=0 C3 4Mbs (total)
—— C2 4Mbs (total) —— C2 4Mbs (total)
- -~- C2 4Mbs (marked) - -~- C2 4Mbs (marked)

6.0 6.0

4.0 4.0

Bandwidth (Mbs)
Bandwidth (Mbs)

2.0 2.0 ffh 4

0000 £ 18004 L o LOO0-00—=< L0000 0500 L0000 L L L
0.0 100.0 200.0 300.0 400.0 0.0 100.0 200.0 300.0 400.0

Time (s) Time (s)
(@) Pparr increment =0.01 (bPark increment = 1.00

Figure 6.4: Effect of external packet marking.

network. Similarly, when packet marking is turned off, a spike of unmarked packets may be injected
into the the network.

Figure 6.5(a) shows a sample packet trace of a connection using this algorithm. The figure plots
the number of marked and unmarked packets sent. As the figure shows, as soon as the connection
reaches its target, timmEe quickly cuts down the number of marked packets sent and starts sending
a large amount of unmarked packets. In the simulations performed, the impact from the bursts of
marked and unmarked packets was relatively minor. This is due to the fact thatrloengestion
control algorithm controls the combined stream of marked and unmarked packets in a very network-
friendly fashion. The use of a common queue for marked and unmarked packets also adds to the
stability. Even when theme changes’,,.« in large steps, the overall impact is a mere replacement
of marked packets by an equal number of unmarked packets or vice versa. However, in situations
where not all of the sources usep or where not all queues areRED queues, large swings in the

number of marked and unmarked packets can potentially lead to network instability.

6.3.2 TCP-friendly marking

In order to minimize the chances of triggering such instability in the networkp theeshould
update marking probabilities in a manner that is more netvfiaekdly, while maintaining the abil-

ity to react to the changes in network load. To address the potential shortcoming of the algorithm
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presented in Figure 6.2, Figure 6.6 shows an algorithm that updaigs. in a more network-

friendly manner. This algorithm draws on the windowing mechanisms usedrmand tries to

ensure that the number of marked (or unmarked) packets in the network increases by no more than

1 per round-trip time. This is in some sense similar to the linear increase algorithm for congestion

avoidance used bycp [34]. As shown in Figure 6.6, an estimated number of marked packets in

flight (PWND) is computed by taking the estimated congestion window given as the product of the

observed bandwidth and the estimated round-trip ti&[) and multiplying it by the marking

probability. At every update epoch, if the observed bandwidth is less than the targetwate,

is incremented Iinearlydm). This ensures that the number of marked packets increases by no

more than one in every round-trip time. Similarly, when the observed bandwidth is higher than

the target rate, the decrease in the number of marked packets (and hence increase in the number

of unmarked packets) is limited to one every round-trip time. Figure 6.5(b) shows the packet trace

of the modified scheme. Unlike the previous trace, this time the connection slowly increases and

decreases the number of marked and unmarked packets sent. Figure 6.7(a) shows the result from the

same experiment with tremME implementing the packet marking algorithm presented in Figure 6.6.

As seen from the graph, the marking algorithm is very reactive to changes in the network load and

hence observed throughput. Consequently, conne@Bbmaintains an average throughput at or

above its4 M bs target most of the time. However, it changs, . in a more network-friendly

fashion and reduces the risk of network instability.
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Every acknowledgment:
PWND = P 0rr X B, X RTT)
if (B, < By)
PWND = PWND + =wND

else

PWND = PWND — sWwND

P _ PWND
mark = B W RTT

Figure 6.6:Tcp-friendly algorithm for changind’,, .«

6.3.3 Marking aggregates

While the previous experiments show how per-connection target throughputs can be achieved,
PME can also meet the throughput target of an aggregation of connections. As in the case of individ-
ual connections, it simply monitors the throughput of the connection group and adjusts the marking
rate based on the observed throughput and requested target. Figure 6.7(b) shows the results of an
experiment where aMmE controls two sets of connections sharing(a/bs bottleneck link. The
first set of connections requires at le@&f bs of bandwidth at all times while the other set is simply
treated as best-effort. In this simulation, there are 3 identical connections in the first set and 4 iden-
tical connections in the second set. Initially, only the three connections of the first set are active.
Thus, the aggregate bandwidth seen is the entire link bandwidth with each source receiving a third
of the bandwidth. Note that the marking rate for the connection group is zero as there is enough
bandwidth available to meet the target service level.t At 100s, one best-effort connection is
started. Since an even split of the bandwidth gives each connection approxithatelys, the
three connections in the first set get a total afM bs without any packet marking. At = 200s,
the other three best-effort connections are started. In this case, an even split of the bandwidth across
all connections is not sufficient to sustain the target ratéidbs for the first set. Thus, theme
begins to mark packets in order to sustain the target raéétfs. As the figure shows, the mark-
ing increases to a level sufficient to maintain the target rate. The best-effort connections then get an
equal share of the leftovan{bs. Finally, att = 300s, all connections of the first set are terminated.

As the figure shows, the best-effort connections get the eriitébs with each g#ing a fair share

of it.
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Figure 6.7: Performance atcp-friendly algorithm.
6.4 Source Integrated Marking

One of the problems with having tlrvEe external and transparent to the source is that it has
little control on the flow and congestion control mechanisms exercised by the source. This lack
of control can have detrimental impact on performance. For example, while a source-transparent
PME is fairly effective in maintaining the observed throughput close to the target bandwidth, it often
marks more packets than required. In an ideal scenario, a connection that stripes its packets across
two priorities shouldeceive a fair share of the best-effort bandwidth iniadd to the bandwidth
received due to priority packets. Acp source oblivious of the packet marking fails to compete
fairly with best-effort connections for its share of best-effort bandwidth. Consequentlgpie
marks more packets than it should have, had the connection received its fair share of the best-effort
bandwidth.

Figure 6.8(a) presents results from an experiment that demonstrates this. In this experiment, a
connectionC1 with a target bandwidth o3Abs, and 5 best-effort connection€2, C3, C4, C5,

C6) between nodes0 andn»5 are simulated. Figure 6.8 shows the marking rate, the best-effort
bandwidth, and the total bandwidth received@y/along with the total bandwidth received B2,

one of the 5 identical best-effort connections. As shown in the figltgets a much smaller share

of the best-effort bandwidth tha®2. Thus, it must mark a larger portion of its packets than it should

in order to maintain the desired level of performance. This phenomenon can be easily explained if
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Figure 6.8: Bandwidth sharing using source-transparent marking

the window trace of tha M bs connection is examined. Figure 6.8(b) plots both the priority and best-
effort portions of the connection’s congestion window. As the figure shows, when the application
requires additional bandwidth it must send priority packetglace of best-effort packets. Thus,
when the connection sends priority packets, it cannot compete fairly for the available best-effort
bandwidth.

In order to address this problempale which is integrated with th&cp sender is considered.
Figures 6.9 and 6.10 show the new algorithm. In this scheme, the congestion wiadow)
maintained by acp source is splitinto two parts: (1) a priority windowyND) which is a measure
of the number of marked packets that are in the network, and (2) a best-effort wisdovo] that
reflects the number of unmarked packets that are outstanding. Upon a loss, the sender determines
whether the lost packet was sent as a marked or an unmarked packet. The loss of a marked packet
is an indication of severe congestion in the network. Consequently, both the priority and best-effort
windows are reduced. However, the loss of an unmarked packet is an indication of congestion
potentially only in the best-effort service class and hence only the best-effort window is reduced.
The procedure for opening the congestion window is also modified. The connection keeps track of
two additional thresholds values, namelysTHRESHandBSSTHRESHwWhich are updated whenever
the connection experiences a priority and a best-effort loss, respectively. When a connection is
below its target bandwidth, it opens up both the priority and best-effort windows. If either one

of the windows is below its respective threshokd$§ THRESHand BSSTHRESH), it is in the slow
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After every acknowledgment (opencwnd)
PWND = P,k X CWND
BWND = (1-P,,4,%) X CWND

if (B, < By)
if (PWND < PSSTHRESH
PWND = PWND + EWND
else

PWND = PWND + m
if (BWND < BSSTHRESH
BWND = BWND + EWNB

else
BWND = BWND + =WND
else
if (PWND > 0)
if (BWND < BSSTHRESH
PWND = PWND — E{VNB
else
PWND = PWND — =WwND
else

if (BWND < BSSTHRESH

BWND = BWND + EWRB

else
BWND = BWND + =WND
if (PWND < 0) PWND =0
CWND = PWND + BWND

P — PWND
mark = CWND

Figure 6.9: Customizetdcp congestion window opening.

start mode. Note that the increases are scaled so that the overall congestion window does not grow
any faster than that in an unmodifiedp. Scaling these increases is slightly conservative, since

it temporarily hinders the source from growing its best-effort window as quickly as other best-
effort sources. However, the conservative behavior aids in avoiding congestion collapse scenarios.
When either window is above its threshold, it increases linearly (i.e., one segment per round-trip
time). Note that whilecwND grows by two segments every round-trip time, the best-effort part of
the window BWND) only grows as quickly as thewND of a best-effort connection. While this
modified windowing algorithm is essential in obtaining a fair share of the best-effort bandwidth in

a network that supports service differentiation, it essentially behaves like two fairly independent
connections. In a network that does not support end-to-end service differentiation,source
modified in this manner may receive twice as much bandwidth as compared to unmodified

sources. Additional modifications to address this aspect are discussed in Section 6.5. Figure 6.11
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After every segment loss from dupack (closecw
PWND = P,k X CWND
BWND = (1-P,,4r%) X CWND
if (priority loss)
cwnp = EWND
PSSTHRESHF,, 4,k X CWND
BSSTHRESH(1-F,,4r1) X CWND
else
pwnp = BWND
BSSTHRESH= BWND

CWND = PWND + BWND

P — PWND
mark = CWND

=

d)

Figure 6.10: Customizedcp congestion window closing.

shows results from the experiment presented in Figure 6.8 using the algorithm described above. In
contrast to Figure 6.8(a), the amount of best-effort bandwidth received I3the source closely
matches the bandwidth received by the best-effort sources. Figure 6.11(b) shows the priority and
best-effort windows of th8 M bs connection. In contrast to Figure 6.8(b), the connection is able to
compete for best-effort bandwidth independent of the priority marking.

By taking a closer look at the packet marking rate and its deviation from the theoretically com-
puted optimal marking rate, the issue of fair bandwidth sharing can be further examified
computation of ideal marking rates is quite straightforward. For example, consider a network with a
bottleneck link of bandwidti3. Assume that connections with targetrates 8f,: = 1,2, ..., n,
are passing through it. Let be the optimal marking rate of the connection with a target rate of
R;, and letb be share of best-effort bandwidth received by all connections. A connettidth
R; < b, is essentially a best-effort connection with= 0. The following set of equations capture

the system constraints:

ri+b=R;
Yo yri+nb=B

Figure 6.12 shows the results of an experiment with two connec@dnsnd C2 with target
rates of3Mbs and2Mbs, respectively, and six best-effort connections sharing a bottleneck link of

10Mbs. The connection€1 andC2 start at timef = 0s, followed by two best-effort connections

!Note that when optimal marking is achieved, accurate congestion-based pricing can be done using the marking rate
of a connection.
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Figure 6.11: Bandwidth sharing using source-integrated marking

att = 100s, another two at = 200s, and the last two at = 300s. Figure 6.12(a) shows the
bandwidth received b1 andC2 and three of the best-effort connections. Figure 6.12(b) shows
the marking rate of bot@1 andC2, as well as their calculated ideal marking rates. At tirae0s,
when only two connections are on-line, a fair split of the bandwidth satisfies target rates @flboth
andC2. Thus, neither source marks any of their packets and each gets approximately half of the
bottleneck bandwidth. At = 100s, two best-effort connections are added. At this pdiitpeeds
to mark at ab.67Mbs rate and each of the sources should 88 M bs of the excess best-effort
bandwidth. Sinc&C2's share of best-effort bandwidth is more than its target rate, it need not mark
any of its packets. As Figure 6.12 shows, the marking rate and total bandwidth graphs reflect the
change. At = 200s, two more best-effort connections are added. NGWhas to mark at a rate
of 1.75Mbs while C2 needs to mark at at a rate @f75M bs. This leaves each sourd¢e5M bs of
the excess bandwidth. As the total bandwidth graph shows, the best-effort connections get about
1.25Mbs while C1 andC2 get their respective target bandwidths. The marking rat€xlandC2
also adapt to this change, increasing to the optimal marking rates. Finalbg a00s, the last two
best-effort sources are added. This tir@4,needs to mark at.17Mbs while C2 needs to mark at
1.17Mbs. Each connection now gelis3 M bs of the excess bandwidth. Again, as the graphs show,
both the priority and best-effort connections perform as expected.

To examine the impact that the windowing modifications have, the same set of experiments with

a source-transpareAME was performed. Figure 6.13 shows the total bandwidth and marking rate
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Figure 6.12:T1cpwith integrated packet marking

for different connections. Sincecp windowing restricts connectiorGl andC2 from competing

for the excess bandwidth, tirvE consistently overmarks its packets as shown in Figure 6.13(b).
Increased marking can potentially fill th&kED queue with marked packets, making it behave more
like a regular D queue. As Figure 6.13(a) shows, loss of priority packets causes periods of time

where throughputs of connectio@4 andC2 drop significantly below their target rates.

6.5 Deployment Issues

The Internet is a conglomeration of a large number of heterogeneous devices. Because of this,
deployment of any proposed architecture is difficult. In this section, a number of important de-
ployment issues are addressed. In particular, the performance of the proposed architecture in over-
subscribed situations, in the presence of non-responsive flows, and in a network of heterogeneous

routers and sources is considered.

6.5.1 Handling oversubscription

One of the key advantages of using an adaptive packet marking scheme is that it obviates the
need for a signaling protocol. However, since there is no resource reservation, the service guarantees
it provides are necessarily soft. In aRBvP-based architecture, when demand for service continually

exceeds the capacity, admission control is used to denti@ual connections access to the network
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Figure 6.13:Tcp with transparent packet marking

in order to maintain the service levels of the current set of connections. In networks where no
reservations or admission control is in place, the network must instead offer degraded service at
times of overload. In both cases, pricing and access policies in conjunction with capacity planning
must be used to balance the supply and the demand of network resources. This section describes
how oversubscription is handled in the proposed service model.

When aggregate demand exceeds capacity, all connections with non-zero target rates carry only
marked packets. Consequently, they only compete for priority bandwidth andrtbe dtieue at
the bottleneck degenerates into tadRkqueue serving only priority traffic. In the case of a source-
transparen®ME, since the underlyingcpwindowing algorithmis not changed, the requested target
bandwidth does not influence the throughput a source receives. Consequently, each source receives
an equal fair share of the bottleneck bandwidth.

Oversubscription results in the same outcome whermtheis integrated within the source. In
this case, since the algorithms for growing and shrinking the priority window are independent of
the bandwidth demand, the windowing algorithm simply behaves as naxralThis adaptation
in presence of overload prevents possible congestion collapse. Figure 6.14(a) shows an example
scenario with four connectiortsl, C2, C3, andC4 spanning the network. The connectid@tand
C2have atarget rate 6f\/ bs each while connectiorS83andC4 aim at a target rate dfd M bs. As
the figure shows, by using the integrated marking scheme, each connection gets a fair share of the

bottleneck bandwidth when the demandesds the capacity.
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Figure 6.14: Oversubscription

Another approach to handle oversubscribscriptionis to provide weighted bandwidth sharing de-
pending on the target rates or the importance of the connections or connection groups. Since the pro-
posed scheme uses only a single priority bit, it cannot itself be used to provide weighted bandwidth
sharing in times of oversubscription. However, it is possible to implement weighted bandwidth
sharing by using additional priority levels which give the network an indication of the connection’s
target rate and/or importance. For example, consider a more elaborate service architecture where
additional priority bits are used to direct traffic into differerriEb queues. These queues are then
served using any one of various proposed queueing disciplines, such as weighted-fair queueing,
class-based queueing, or even strict priority queueing. Figure 6.15(a) shows an example scenario
in which an additional bit is used to select separate queues in a class-based queue [27]. In this
example, the class-based queue is configured to provide applications and/or hosts in one class (A)
with at least 70 percent of the allocated bandwidth. The remaining 30 percent of the bandwidth is
allocated to the other class (B). When the applications in class A (Al and A2) and class B (B1 and
B2) request more bandwidth than is available, the additional priority encoding allows the network

to maintain weighted bandwidth sharing between the two classes as shown in Figure 6.15(b).

6.5.2 Dealing with non-responsive flows

One of the potential risks in an adaptive approach to service differentiation is that proliferation of

applications which do not adapt to network dynamics can lead to severe performance degradation
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Figure 6.15: Oversubscription and multiple priorities

and even congestion collapse. Thus, an important issue in deploying the proposed scheme is the
protection of the network against non-responsive flows [16, 41]. A salient feature of this scheme is
that it provides performance incentives for applications to adapt to network dynamics and help avoid
congestion collapse. When used in conjunction with intelligent queue management mechanisms, it
can also penalize non-responsive flows.

Figure 6.16 shows a network configuration which consists of far connections{’1, 72,
T3, and7'4) which are competing for bandwidth with a non-responsive fldéi | across d 0 M bs
link. The aggregate target rate for tliep connections i Mbs. The target rate for the non-
responsive flow i8 M bs. Initially, only the TCP sources are active and each competes fairly for the
link bandwidth. The non-responsive flow starts transmitting/dts at¢ = 100s, and at3 M bs at
t = 200s. As shown in the figure, the aggregate throughput ofribeconnections drops when the
non-responsive flow becomes active, but remains at a rate clasgte. At ¢ = 300s, the non-
responsive flow increases its transmission ratelths, thus exceeding its allocated rate3af/bs.
As shown in the figure, the marking rate of this flow immediately drops to zero and the loss rate
increases to approximately the difference between the transmission rate and the allocated rate. The
reason why this happens is that the@e observes that the non-responsive flow is sending packets
at a rate which is higher than its given rate. In order to encourage sources to send packets which
are deliverable, theMmE counts every packet it receives for a particular flow against its allocation.

The non-responsive flow further increases its transmission ratéfies at¢ = 400s. Again, the
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throughput observed by the flow remains fairly constant near its allocated radd iof, while the
amount of packets which are dropped increases at the same rate as the transmission rate. Thus, the
non-responsive flow gains little by transmitting any amount above its allocated rate.

In the previous experiment, the non-responsive flow does, in fact, have a negative impact on the
TCP connections. As Figure 6.17(a) shows, the aggregate marking rate of ft@nnections ap-
proaches the aggregate transmission rate, since the unmarked packets from the non-responsive flow
dominates any of the excess bandwidth available. In effect, the non-responsive flow obtains all of
the available best-effort bandwidth while shutting out all other well-behaved connections. In order
to provide better fairness between connections competing for best-effort bandwidth, the bottleneck
ERED queue is enhanced with additional fairness mechanisms baserbEm[#1]. Figure 6.17(b)
shows the results of the experiment. As the figure shows, when the non-responsive flow begins
transmitting at a rate higher thad/bs, the PME reduces its marking to zero as described earlier.
Since the flow does not respond to congestion signals given by the bottleneck queue and continues

to send an inordinate amount of unmarked packets, the faDEjueue detects the flow and limits
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Figure 6.17: Non-responsive flows

its throughput to a fair share of the best-effort bandwidth. In this case, a fair share of the bandwidth
is 2Mbs. Thus, by sending over its target rate3f/bs without regard to congestion in the net-
work, the non-responsive flow reduces its own observed throughpdtts. Note that given a fair

share of the best-effort bandwidth, thep flows can now maintain theitM bs aggregate target rate
without marking any packets. This is in contrast to Figure 6.17(a), wheredh#ows are forced

to have all of their packets marked in order to maintain their target rate. Thus, the non-responsive
flow hurts itself while helping other flows as it sends over its target rate without regard to network

congestion.

6.5.3 Handling heterogeneity

The Internet is a highly heterogeneous and slowly evolving networking environment. It is im-
practical to assume that all routers in the Internet will handle priority packets in the same way. As
a matter of fact, it is quite likely that only a fraction of them will support service differentiation
between packets of different priorities. In order to becassful in this environment, it is impor-
tant that any packet marking scheme proposed is capable of handling heterogeneity in the network.
More specifically, it should be able to operate in an environment where all routers do not support
service differentiation between priority and best-effort packets.

One of the salient features of the proposed scheme is its ability to operate in a network that

does not provide service differentiation. When thee is transparent to the source;p transmis-
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Figure 6.18: Performance over an all drop-tail network

sion control mechanisms are not affected as a result of packet marking. Thus, the lack of service
differentiation simply makes the packet marking ineffective andritresources behave as if they
are operating in a best-effort network. When thee is integrated with the source, the situation is
little different. In this case, there are essentially two connections with differing priorities. Hence,
in absence of service differentiation, this scheme can potentially be twice as aggressive as a regular
TcP connection. While such behavior may be justified when a user is charged for marked packets, it
may be desirable to turn off marking when service differentiation is not supported by the network.
To address this, a simple mechanism for turning off the marking and modified windowing when
the network does not support end-to-end service differentiation is implemented. Note that the bot-
tleneck of a connection may shift from a link that supports service differentiation to one that does
not, and vice versa. Hence detection of service differentiation on a connection path is not a one-time
process; it requires constant monitoring. To minimize the cost of monitoring and, at the same time,
remain reactive to changes in the network dynamics, an exponential back-off algorithm is used to
determine monitoring intervals. In particular, the source keeps track of the inter-drop times for both
priority and best-effort packets. In a network which supports service discrimination, the number
of priority packets transmitted betweencsassive priority packet drops is expected to be substan-
tially greater than the number of best-effort packets transmitted betweeessive non-priority
packet drops. When this is not the case, the source simply turns off the marking and the windowing

algorithm, reverting back to normakp. After a preset interval, marking is turned on again and
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Figure 6.19: Effects of heterogeneity

the source monitors inter-drop intervals to detect service differentiation. If it fails to detect service
differentiation, it shuts down marking for twice the duration it had before. If the source observes
that service differentiation is supported by the network, the connection continues using the modified
windowing algorithm and resets the back-off interval to its initial (smaller) value.

Figure 6.18(a) shows the throughput observed by five connecB8dn€2, C3, C4, andC5
going fromn0to n5when all of the queues in the network are drop-tail queues with no support for
service differentiation. Connectiddl has a target rate afAMbs. All other connections are best-
effort. A source-transpareRME is used to mark packets in this example. As expected, bottleneck
bandwidth is shared fairly among all five connections. Note that the packets are continually being
marked even though the network does not honor their DS marking. This is becawsesthannot
determine that the DS field in the packets is being ignored unless it keeps additional information.
Since the connection is always below its target bandwidthptesimply marks all of its packets.
Figure 6.18(b) shows the same experimental setup as before. However, in this exampies the
is integrated within the source. As the figure sho@s backs off its marking as it detects that the
network does not support any service differentiation. Thus, the connection competes fairly with all
of the other best-effort connections for the excess bandwidth.

The back-off mechanisms used when e is integrated into the source adapt quickly to the
changes in the network. This helps the source adapt its windowing and marking strategy as the bot-

tleneck link shifts from non-priority to priority queues in a heterogeneous network. Figure 6.19(a)
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shows a network with 4 nodes wha® implements the EED queueing mechanism whité and

r2 are simple drop-tail gateways. In this network, two priority connecti©handC2 with 4 M bs

target bandwidths and several transient best-effort connections are simulated. The transient connec-
tions are used to move the bottleneck link frobar2 to r2-r3. Figure 6.19(b) shows the throughputs
seen by different sources as the bottleneck moves from one link to another. Initially, conn€dtions
andC2 going fromr0 to r3 are active. In the absence of any other connections, neither connection
needs to mark any of their packets in order to achieve their target ratés=A00s, a best-effort
connection is spawned betwedhandrl. Since a fair share of the bottleneck bandwidth@i{ bs

does not satisfy the target rates of connectiGdsand C2, they both mark their packets at a rate

of 2Mbs. From the equations outlined in Section 6.4, this is the optimal marking rate in this sce-
nario. Each connection also recei&¥ bs of the leftover best-effort bandwidth. At= 200s, the
best-effort connection terminates and two new best-effort connections are started betweefh nodes
andr3. At this time, the bottleneck link is betweeh andr3 which happens to be a drop-tail queue
with no support for service differentiation. In this case, even thdtiyandC2 fail to sustain their
target rates, they back off their marking and revert back to the original windowing algorithm. Con-
sequently, all four connections now receive an equal share of tileteck bandwidth of 0M bs.

At t = 300s, the best-effort connections terminate and a new best-effort connection is spawned
between noded andrl. At this point, the bottleneck shifts to the lin@-r2 which supports service
differentiation. This change is detected®§ andC2 and they turn on marking to reach their target
rate of4 M bs. Finally, att = 400s, the best-effort connection terminates, leaving the network in its
initial state. The connectior8l andC2 once again turn off their marking since they can support

their target throughput without packet marking.

6.6 Conclusions

In this chapter, a number of adaptive packet marking algorithms for providing soft bandwidth
guarantees over the Internet have been proposed and analyzed. Marking algorithms that are external
and transparent to the source and algorithms that are integrated with the congestion and flow control
mechanisms at the source have been examined. Both sets of algorithms have advantages and disad-

vantages from the standpoint of performance and deployment issues. The results presented in this

122



chapter clearly demonstrate that simple service differentiation, and when used in conjunction with
adaptive source control, can be an effective means to provide quality of service in the Internet.
This work can be extended in several ways. For example, the impact of marking packets at
multiple places in the network is being investigated. Also under investigation is the interaction and
interoperability of the proposed schemes with alternative mechanisms to support quality of service
in the Internet. As described in Chapter 5, enhancements .t Bor performing service differ-
entiation are also being considered. Finally, generalization of the two priority scheme to multiple

priorities is being examined.
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CHAPTER 7

CONCLUSION

This thesis has focused on solving two extremely important challenges to today’s Internet: sup-
porting an explosion in the number of users and supporting a myriad of new applications which
require more out of the network than the best-effort service that the Internet currently provides. To
this end, a number of modifications to the basic congestion control and queue management algo-

rithms of the Internet have been examined. More specifically, this thesis has:

1. Shown that even witECN, current active queue management mechanisms suciEmsie
ineffective because they are not sensitive to the level of congestion in the network. To ad-
dress this problem, an adaptive modification ®oRvhich allows it to manage congestion
more effectively has been developed, implemented and evaluated. In addition, this thesis has
demonstrated the inherent weakness in all current active queue management mechanisms in
that they rely on queue lengths to do congestion control. To address this prohlem, 8
gueue management algorithm based on the history of queue behavior has been developed, im-
plemented and evaluatedLBe outperforms all current active queue management algorithms

by a large margin in terms of packet loss rates and buffer space requirements.

2. Analyzedrcpin order to show weaknesses in its congestion control algorithms when a large
number of connections are present. To address this, a modificati@Ptwongestion control
which allows sources to fully utilize network capacity without packet loss in the presence
of an arbitrarily large number of connections has been developed and evaluated. When used
in conjunction with adaptive queue management mechanisms, these modifications have been

shown to maximize network efficiency even with an extremely limited amount of network
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buffers.

3. Developed and analyzexkB, a novel mechanism for scalably enforcing fairness between a

large number of connections using a very small amount of buffer space and state.

4. Developed and analyzed a new form of providing QoS over the Internet based on priority
marking. This was one of the first pieces of work in differentiated services (Summer 1996)
and eventually led to the formation of theTF's DIFFSERV working group in early 1998.

This work addresses the problem of having disjunct rate control mechanisms in the network:
Tcp and priority marking. In addition, it has shown how such marking can be ineffective due
to Tcp dynamics. To address this problem, a number of modificationstowhich allow

TCP to take advantage of the priority mechanisms in the network have been proposed and

evaluated.

5. Developed an architecture for providing soft bandwidth guarantees in an easily deployable
manner. As part of this architecture, a number of novel mechanisms for integrating packet
marking into end hosts has been proposed and evaluated. These mechanisms allow optimal
marking rates to be obtained between sources and allow hosts to scalably detect heterogeneity

and lack of service differentiation in the network.

With the rapid increase in users and applications caused by the successwafheit is im-
perative that the infrastructure in place in the Internet be able to meet these new challenges. While
this thesis has examined a large number of issues and has provided a number of solutions, there are
still several open issues which need to be addressed. As part of on-going work, several key aspects

of this dissertation are being extended. They include:

1. Parameterizing AdaptiveE® and BLUE to current Internet traffic. By understanding how In-
ternet traffic changes over a range of time scales, the performance of both queue management
schemes can be optimized. In addition, a number of ways to predictively and pre-emptively
set the parameters of AdaptiveRand BLUE are being considered. Since routers often have
access to more detailed information on the number of flows which are currently active, it is

possible to make these queue management algorithms even more proactive.
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2. Developing more protective and adaptive queue management algorithms for supporting dif-
ferentiated services. In particular, techniques for makingsBpriority-aware are currently
being examined. By usinglBE queue management instead cfR differentiated services

can be supported with a minimal amount of buffer space.

3. Extending priority-aware congestion control beyarab by usingrTP over ubp. While a
large number of applications usepr, the growing number of applications, and in particular,

streaming audio and video applications do not.

4. Developing additional mechanisms for detecting whether or not service differentiation is be-
ing done on packets of a flow. Given the diversity of the Internet infrastructure, the ability to

detect service differentiation is essential for both service providers and end users.

Given this additional work and the modifications described in this thesis, it is possible to sig-
nificantly improve network efficiency in times of heavy congestion as well as provide a variety of
predictable services to emerging applications. By maximizing network efficiency across a large
range of loads, congestion collapse can be effectively prevented and the lifetime of many of the net-
work links and routers currently in place can be extended. By providing mechanisms for scalably
supporting service differentiation between flows in the Internet, the widespread deployment of a
large class of bandwidth-sensitive applications can be enabled. Together, they will allow the Inter-

net to continue to provide robust services to its users and applications well into the next century.
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