
Forensix: A Robust, High-Performance Reconstruction System∗

Ashvin Goel†, Wu-chang Feng, David Maier, Wu-chi Feng, Jonathan Walpole

†University of Toronto Portland State University
ashvin@eecg.toronto.edu {wuchang,maier,wuchi,walpole}@cs.pdx.edu

Abstract

When computer intrusions occur, one of the most costly,
time-consuming, and human-intensive tasks is the analysis
and recovery of the compromised system. At a time when
the cost of human resources dominates the cost of CPU, net-
work, and storage resources, we argue that computing sys-
tems should, in fact, be built with automated analysis and
recovery as a primary goal. Towards this end, we describe
the design, implementation, and evaluation of Forensix: a
robust, high-precision reconstruction and analysis system
for supporting the computer equivalent of “TiVo”.

Forensix uses three key mechanisms to improve the accu-
racy and reduce the human overhead of performing forensic
analysis. First it performs comprehensive monitoring of the
execution of a target system at the kernel event level, giv-
ing a high-resolution, application-independent view of all
activity. Second, it streams the kernel event information, in
real-time, to append-only storage on a separate, hardened,
logging machine, making the system resilient to a wide vari-
ety of attacks. Third, it uses database technology to support
high-level querying of the archived log, greatly reducing the
human cost of performing forensic analysis.

1 Introduction

The goal of Forensix is to build a system that supports
reliable reconstruction of all computer system activity for
forensic purposes. Forensics is concerned with the capture,
analysis and reconstruction of system activities in order to
determine, post-facto, how or whether a machine was com-
promised. While one of the goals of forensics is to gen-
erate evidence that can be used in a court of law, forensic
analysis also enables system administrators to troubleshoot
problems, track down suspicious behavior, and determine
the extent of damage to compromised machines. It can
even be used to prove or disprove claims of penetration by

∗This material is supported by the National Science Foundation under
grant NSF ANI-0230960.

blackmailers, although in this paper, we will focus only on
the discovery and analysis of intrusions. To be effective, a
forensics system must gather an accurate, high-resolution
image of system activities, sufficient for identifying a wide
range of intrusions and answering questions such as “where
did the attack come from” and “what security hole was ex-
ploited?” The forensic evidence should be gathered in a
tamper-resistant way, so that intruders cannot modify it or
remove it to obscure their tracks, and the collection mech-
anism should not render the target system more vulnerable
to non-intrusion based assaults such as denial of service at-
tacks. Ideally, the system should also have a small effect
on the performance of the target system, and should be af-
fordable in terms of its resource requirements. Finally, it
should facilitate efficient and effective post-facto analysis,
a process that is currently ad-hoc, time-intensive, manual
and error-prone. In order to support such properties, this
paper describes the design and implementation of Forensix:
a high-resolution, analysis and reconstruction tool.

2 Motivation

Currently, when a system is compromised, investigators
must manually sift for clues based on the current state of the
system and the remaining log files of the system after the
attack. This operation method is inherently “lossy”, in that
vital information about where the hacker connected from,
how the hacker entered and what the hacker did after he
entered was not collected or may have been deleted by the
hacker. Consider a compromise in which the hacker has
modified sensitive files such as .ssh/authorized keys

or .rhosts to gain a backdoor into the system. Upon dis-
covery, it would be ideal if the system administrator could
issue simple queries to the forensic system such as:

Query 1: Generate a list of sessions and processes that
have written to the compromised file.

Query 2: Generate a system activity log for each session
that was generated from Query 1.

In another scenario, if system administrators want to dis-
cover whether intrusions are happening, they could issue a
pre-canned list of queries that identify suspicious behavior
such as:

Query 3: Generate a list of all sessions that opened
/var/log/wtmp or /var/log/lastlog in read-
write mode (versus append mode).

Query 4: Generate an activity log of each session listed in
Query 3.

There are many approaches for logging and auditing sys-
tem usage, including application and system log files, pro-
cess accounting mechanisms, network traffic traces, and file
system checkers. While each has its strengths, none of
them provide enough information by themselves to accu-
rately recreate what happened in the system. For example,
application and system log files only track events based on
what the applications and system administrators think are
necessary to log. Process accounting mechanisms only pro-
vide information as to how commands are executed and can
fail to track what programs are doing internally. If a hacker
downloads a binary onto the system and executes it, process
accounting alone will not be able to show what the binary
has done. For example, in the well-documented Mitnick
case, a program called zap2 was downloaded and compiled
on the compromised system. The program was then exe-
cuted multiple times in order to delete login entries from
the system [8]. Network traffic traces alone are also prob-
lematic in that sessions are typically encrypted. In addition,
even when they are not encrypted, they are targets for inser-
tion and evasion attacks, thus making what has happened
ambiguous. It is also difficult to correlate network informa-
tion directly to higher-level application behavior that elu-
cidates the actual damage done to the target system. Fi-
nally, file system activity logs can only detect modifications
to files and thus are unable to address attacks in which run-
ning processes are compromised directly.

3 Design Goals

To adequately perform forensic analysis, the following
goals must be met:

1. Completeness: The system should collect and log
enough information to completely capture user activ-
ity in order to reconstruct all currently known attacks
and all future attacks. The system should also be able
to glue the who (the user) and the what (all of the user’s
activities) together. To support deniability claims and
to limit liability, such a system needs to ensure that all
activity is logged independent of system load to show
certain actions did not happen. In addition, the system

should be able to support fail-closed operation when
logging is compromised or disabled in order to prevent
loss of any necessary logging information.

2. Authenticity: Since no one should be able to spoof
logging messages or tamper with the logging facility,
a strong authenticated relationship must be built be-
tween the logging facility and the storage system for
the log data. In addition, the system should support
logging immutability that prevents history from being
rewritten. As seen in many cases, log files can be al-
tered, which allows a hacker to change logging history.

3. Reproducibility: The forensic system should allow
users to accurately determine who and what for a wide
variety of system activities such as incoming and out-
going network connections, and files read or written
by processes. It should allow correlating data based on
time as well as system abstractions such as processes
or sessions. The reconstruction process should be fast
and should be independent of the length of time the
system has been running.

4. Efficiency: The amount of data collected and its
encoding size should be minimized. Although one
method for achieving the previous goal of complete-
ness is a simple brute-force log of everything, this ap-
proach can hinder the ability to perform accurate, high-
performance replay, even when the power and capac-
ity of current hardware and software systems is fully
leveraged.

4 The Forensix Approach

Figure 1 shows the architecture of Forensix, a system
that attempts to meet the design goals listed above. With
Forensix, the target system’s kernel is instrumented with a
logging facility. In its current implementation, the logging
facility streams system-call traces over a private network
interface to a highly-secure backend storage system. While
system call logging is prone to problems such as race condi-
tions, we are currently adapting our system architecture and
approach to incorporate other, more accurate forms of log-
ging such as logging within well-placed locations within the
kernel and virtual-machine based logging [3]. Our design is
driven by the observation that a successful attack can only
be caused by system-calls issued by processes running on
the attacked system (provided the system is built correctly).
Hence, if all system-call activity is captured and can be at-
tributed to users, processes or connections, then it should
be possible to accurately reconstruct all security incidents,
immaterial of the type of attack. As a result, this approach
helps satisfy our goal of completeness. In addition to com-
pleteness, system call logging provides compactness since

Processing
Batched Record

System
Target

Backend
Storage
System

Forensic Analysis

Authenticated System−Call
Logging Facility

Application Server

Operating System

Append−Only Files

Database backend

Logging Pinhole

Private network

Public network

Figure 1. Forensix system architecture.

Forensix does not record other, application-specific, events
that do not impact system state. Other methods for improv-
ing compactness include data compression and suppressing
system-call logging under certain conditions, such as reads
to load common shared libraries.

For tamper-proof and immutable operation, Forensix
logs system-call activity over a private network interface
to a separate, append-only backend storage system. Im-
mutability is achieved via the file system or via CD-R or
DVD-R burning while tamper-proof operation is achieved
by authenticating each target system at startup and by ex-
porting only a minimum set of network services needed for
securely logging system-call data. Specifically, the backend
authenticates the logging facility before storing any trace
data. It also supports a heartbeat mechanism to detect phys-
ical tampering of the logging facility. To further ensure the
integrity of the system and to improve the possibility of de-
tecting attacks, both the target and backend systems could
be locked down via LIDS in order to ensure safety.

To support efficient and flexible querying, the backend
periodically loads log data to a relational database. This
forms the basis for accurate and high-performance replay.
Queries are efficient because the database allows indexing
frequently queried fields such as the user ID and the com-
mand executing the system call and the starting time of the
system call. In essence, the database holds a data warehouse
for forensic analysis and query. While the amount of data
being collected can be large, we argue that the system is
feasible given the capacity of networking, CPU, and stor-
age capacity available today. As a result, sacrificing some
host and networking resources in order to add forensic capa-
bility will be a fairly attractive proposition. The following
subsections describe the logging facility and the backend
storage system in more detail.

4.1 Kernel Logging Facility

To address the problems associated with the piecemeal
logging approaches discussed in Section 2, Forensix logs
within the kernel. In its current implementation, all activ-
ity across the system-call interface is captured and logged.
By collecting all system-call activity and attributing this ac-
tivity to individual connections and sessions, the forensic
backend will be able to recreate security incidents in an ac-
curate, application and attack-independent manner. As at-
tacks and attack signatures change, capturing activity at this
point thus addresses the problem at a more fundamental,
unified level. If the system is built correctly, the hacker will
need to figure out a way to compromise a system without us-
ing a process, file, or connection in order to go undetected.
For accurately attributing system activity to users, processes
or connections, the key issue for the logging facility is the
type and the amount of information needed.

4.1.1 Attributing System Activity

The overall design of our logging system is founded on
the notion that all intrusions start with a network connec-
tion or a console login, are processed by a daemon (httpd,
in.telnetd, in.ftpd, sshd, login, etc.), and cascade
into multiple system activities including other processes,
file accesses, and outgoing connections. Our high-level goal
is to assign these system activities to the initiating session,
which helps to simplify and enhance the intrusion-analysis
process.

Figure 2 shows a diagram of various system activities
and their relationships. The basic idea for capturing these
relationships is to assign the identifier or the PID of the pro-
cess that executes the activity as ownership information to
each link of the graph. For example, incoming sessions, file
accesses and outgoing connections are all associated with a
process, while process creation via exec or fork is asso-
ciated with the parent process. Based on the observations
above, at a minimum, each system-call trace record has an
associated PID and a time-stamp that helps to construct the
activity relationship. Section 5 shows that this information
allows constructing powerful forensic queries. In the future,
we plan on examining other low-overhead mechanisms for
unambiguously assigning ownership of activities to individ-
ual sessions.

4.1.2 Trace Size

Unlike previous approaches, which only use short se-
quences of names of system calls for intrusion detec-
tion [2, 4, 6, 12], Forensix captures each system call and,
among other information, its timing, parameters, return val-
ues, the process issuing the call, and the owner of that pro-
cess, throughout the lifetime of the server. This type of in-

Connections

Connection
Network

Console
Login

Files

connect(), listen()
accept(), shutdown()
send(), recv()

open(), close()
read(), write()
link(), unlink()

Processes

exec()
fork()

Incoming
Session

Figure 2. Relationships of system activities.

formation is difficult to collect due to its size and semantic
content. However, it is absolutely necessary, as described in
the previous section, to recreate system activity.

It is clear that a limiting factor of our approach is the stor-
age space for information being collected. As the capacity
for processing and storing auditing information grows, the
capacity of the server being traced and its network connec-
tion will as well. Fortunately, given the massive amount of
unused local networking and storage resources and the abil-
ity to acquire such resources at relatively modest costs, we
believe that the amount of data being collected is manage-
able. In our current implementation, a $40 disk can store a
complete 6-month activity log of a relatively popular game
web site [9].

4.2 Backend Storage System

The main job of the backend is to receive trace data
from the network and store it in a form that allows issu-
ing forensic queries. A simple form of storage is log files.
While such log files will contain all information needed for
performing intrusion analysis, they will not necessarily be
in a form amenable for efficient searching and manipula-
tion. For example, we anticipate the need to make forensic
queries such as

• Show all user sessions that executed /bin/sh from
daemon processes other than sshd, telnetd, or
login and group sessions by user.

• Show all activity for a particular user session S, spec-
ified by a source IP address and port, a user ID, and a
connection timestamp.

To get some degree of efficiency, it is desirable to index data
and ideally provide complete DBMS query processing ca-
pabilities to run the types of queries described above. To
do so, Forensix stores the trace data in a relational database.
While the keys chosen for building indexes depend on the
types of queries that are likely to be executed, we have

identified three candidate keys, process ID, time and incom-
ing connection identifier, based on our model of attributing
ownership to activities, as described earlier in Section 4.1.1.

In addition to fast queries, the backend must provide high
throughput storage or else it can become a bottleneck for
the target system. The reason is that Forensix ensures that
logging information is not lost, i.e. fail-closed behavior,
by matching target system performance to the ability to log
data and blocking the target system when the backend is un-
able to keep up. A naive approach for building the backend
is to continually insert records from the log files into the
database. However, this approach places restrictive limits
on rates that log file data can be absorbed, particularly be-
cause of the indexing overhead typically seen on multiple,
small updates. To address this problem, we use bulk load-
ing facilities available in most DBMSs for inserting large
batches of traces with deferred indexing. Our experiments
show that this approach removes much of the cost of fine-
grain index updates. We are currently examining ways to
avoid copying data from the log file to the database during
loading by constructing log files so that they can be directly
mapped into the data space of specific DBMS. To keep the
database current for near-time intrusion analysis, we can use
time or space-based thresholds to start bulk loading. For ex-
ample, currently we load the database every 24 hours. If the
target system can generate more trace data than the backend
can handle in the long term, the backend has the ability to
exert back-pressure on the target system, throttling activity
to ensure completeness and correctness.

5 Implementation

Forensix has been implemented on Linux and is freely
available [1]. The implementation consists of 1) an auditing
module on the target system, 2) a receiver daemon and a
database injector running on the backend, and 3) database
queries and scripts that allow replay of system activities for
forensic purposes. Each is described below.

5.1 Target System

The auditing module of the target system consists of a
Linux kernel module that traps system calls and logs data
in a kernel buffer. The module code, which is derived
from the SNARE project [11], hijacks the system call ta-
ble and adds stub code around several system calls to cap-
ture the system call, its timing, its parameters, its return
value and the PID of the process making the call. Based
on our model of attributing system activity (see Figure 2),
the system calls traced fall broadly in the three categories:
networking, process management and file system. Network
calls include such calls as connect, accept, listen and
shutdown. Process management calls include fork, exec,

kill, exit and setuid. Important file system calls in-
clude open, read, write, close, symlink, link, mount,
unmount, dup and chown. Upon collecting the data in a
kernel buffer, the audit module periodically transmits the
records directly over a private network to the backend, thus
avoiding unnecessary data copies and context switches. For
fail-closed behavior, the auditing module stops system ac-
tivity when the kernel buffer becomes full.

While system call auditing allows the audit code to be
implemented as a separate module, it can introduce race
conditions that prevent system activity from being com-
pletely reconstructed [5]. For example, a race condition
exists between writing to a file A via a symbolic link and
modifying the symbolic link to point to a different file B.
Our stub approach may not accurately capture whether the
file A or the file B was written because the precise timing of
the two operations (writing the file and modifying the sym-
bolic link) is not known to the tracing system. A solution to
this problem is to capture the output of pathname resolution
while reading the symbolic link during the write operation.
While this solution is simple and similar techniques can in
principle be applied to resolve most timing-related race con-
ditions, the code will be more intrusive than our auditing
code.

5.2 Backend System

The receiver daemon on the backend is a small process
that reads data from the network and stores it to human-
readable, tab-separated, log files. Once every 24 hours, it
loads the log files into a database (currently MySQL). In
Forensix, the database is optimized for bulk loading (with
index generation) and for queries. In particular, data is read-
only after it has been loaded and thus transactional guaran-
tees are not essential. The database stores several tables for
the system call traces. The main table is called events,
which stores common attributes, such as id, time, PID and
return value, of every system call event. Data from system
calls that is unique to specific calls is stored in separate ta-
bles to reduce redundancy and to minimize the chances of
inconsistency. Examples of such tables include io, dup and
connections. The io table stores all reads and writes,
while the dup table stores file opens, closes and file de-
scriptor duplications. The connections table stores all
network-related system calls.

5.3 Queries

In order to be useful, a powerful set of queries must be
supported for post-facto analysis. One problem we faced
while implementing queries was uniquely identifying pro-
cesses based on their PID, which is a 16-bit quantity in
Linux that frequently rolls over. To resolve this problem, we

Active Processes(start time, end time) {
SELECT DISTINCT pid FROM event
WHERE date ¿= %1 AND date ¡= %2;

}

Immediate Children(PID) {
SELECT rc FROM event /* return code */
WHERE (syscall = 2 OR syscall = 120 OR syscall = 190) AND pid = %1;

/* fork() = 2 , clone() = 120, vfork() = 190 */
}

Immediate Parent(PID) {
SELECT pid FROM event
WHERE (syscall = 2 OR syscall = 120 OR syscall = 190) AND rc = %1;

}

FDs Written(PID, start time, end time) {
SELECT fd, date FROM io, event
WHERE io.parent = event.id

AND event.pid = %1 AND event.syscall = 4
AND event.date ¿ %2 AND event.date ¡ %3;

/* write() = 4 */

}

Figure 3. Pseudo-code for sample queries

augmented the PID with the process creation time. Table 1
lists some examples of queries we have implemented. Sim-
ple queries are implemented using SQL directly. For more
complex queries, which require conditionals or looping, we
use shell programming or code in C for performance. Fig-
ure 3 shows samples of SQL and pseudo-code that imple-
ment some of these queries. Much of the code should be
self-explanatory, which suggests that these queries can be
written relatively easily. Note that, the tables in our system
are not fully normalized. Doing so would reduce space us-
age at the expense of some queries taking longer. In terms
of performance, some of the queries presented require re-
peatedly issuing complex SQL sub-queries, which can be
expensive. It is possible to optimize the implementation by
changing the order of the queries and simplifying the sub-
queries. We have done so for the IO query, which we eval-
uate in the next section.

6 Evaluation

A viable auditing and replay system should have low au-
diting overhead, reasonable space requirements and should
be able to replay system activity in near-time. Hence, to
evaluate Forensix, we performed two types of experiments
that measure the performance and space overhead induced
by auditing and the time taken to run queries. To mea-
sure system overhead, we ran two benchmarks on the tar-
get system: 1) Linux kernel build and 2) Webstone. The
kernel build benchmark is mainly CPU bound and does not
stress the system much. However, it determines the viability
of Forensix when running similar applications in a regular
desktop environment. The second benchmark, Webstone,
stresses a web server and is representative of a loaded server
environment.

Query Name Arguments Output
Active Processes start time, end time List all active processes within a given time interval.
Immediate Children PID List all immediate children of a process.
Children PID List all children of a process.
Immediate Parent PID List immediate parent of a process.
Parents PID List all parents of a process.
FDs written PID, start time,

end time

List all file descriptors written by a process within a
given time interval and the time they were written.

All FDs PID, filename, fd list,

time

List all file descriptors that refer to a filename or to other
file descriptors in fd list at a given time.

Did Process Write PID, filename,

start time, end time

Did process write to filename within a given time inter-
val?

Writers filename, start time,

end time

List all processes that wrote to filename within a given
time interval.

IO PID, fd list List the timing and the data for I/O performed on file
descriptors in fd list by a process.

Replay Shell PID Run IO query on file descriptors 0, 1 and 2 for a shell
process.

Table 1. Examples of Forensix queries.

Our experiments were run on 1.8 GHz Intel Pentium-4
processors with 1 GB of memory. Both the target and the
backend machines had the same configuration. In addition,
for Webstone, the client process was run on a third simi-
lar machine. All the machines are connected with a Gigabit
network using a CISCO WS-C4006 switch. The connection
between the target machine and the backend machine was
on a separate VLAN so it was not affected by other traffic,
such as the client to target machine traffic during the Web-
stone benchmark. All machines run Redhat Linux 2.4.20
with the ext3 file system and the target machine runs the
Forensix auditing module. The backend machine uses the
MySQL version 3.23 database.

6.1 Target System

Table 2 shows the results of the kernel build benchmark.
The base result for building a kernel under Linux without
Forensix auditing corresponds to “No auditing”. “Auditing,
No network” shows the results when auditing is turned on in
the kernel, but the records are not streamed to the backend.
Finally “Auditing with network” shows the results when the
auditing is turned on and the audit data is streamed to the
backend and stored in log files. The numbers in the table
are generated by running the time command on the kernel
build process.

The table shows that the benchmark completion time in
our unoptimized implementation increases by 6% when au-
diting and by 8% when auditing and transmitting data. We
believe that this overhead is a small price to pay for the
ability to accurately and systematically reconstruct system

Total time System time
No auditing 233.2s 14.0s

Auditing, No network 247.1s 26.3s
Auditing with network 252.0s 30.7s

Table 2. Kernel build times.

Throughput (Mb/s)
No auditing 296.8

Auditing, No network 276.2
Auditing with network 186.9

Table 3. Webstone throughput.

state to capture the increasing number of system compro-
mises we see today. Note that, as expected, almost all the
additional time is spent in system activity.

The Webstone benchmark stresses a standard Apache
web server running on the target system by issuing back-
to-back client requests. Figure 3 presents the key results for
this benchmark, the throughput achieved by the web server.
All the Webstone tests were run for approximately 36 min-
utes. The “Auditing off” row is the base throughput un-
der Linux without Forensix auditing. The next row shows
the throughput when auditing data and retrieving it from
the kernel. The decrease in throughput in this case is 7%,
which is similar to the overhead observed earlier for the ker-
nel build benchmark.

The final row shows the result when data is also streamed
to the backend and stored in log files. In this case, the

throughput decreases by approximately 36%. Currently, we
are in the process of profiling the kernel to investigate the
reasons for this decreased throughput. However, we believe
that there are two obvious optimizations that will help im-
prove our results. First, our implementation is unoptimized
and uses a very simple memory allocation mechanism for
storing trace data. We expect that improving the auditing
module’s memory allocator will significantly reduce perfor-
mance overhead. Second, for simplicity, the auditing mod-
ule copies code from the kernel to the user space which is
then copied back to the kernel to be sent to the backend. To
minimize copies, data can be sent to the backend directly
from the kernel. This optimization will also help reduce
pressure on the memory subsystem.

6.2 Backend System

To evaluate the throughput of the database, we measured
the row insertion rate of the database, i.e. the actual number
of rows that can be inserted per second in the database. For
the Webstone log files, the MySQL database could be bulk
loaded at approximately 7400 rows/second. We also mea-
sured the row generation rate or the number of rows that
are generated per second as data is captured in log files in
real-time. For the Webstone test, the row generation rate
is 17900 rows/second. This result indicates that for near-
time intrusion analysis, where database loading takes less
time on average than data generation, the web server can be
heavily loaded for no more than 40% time during the day.
We expect that this limitation will not be a problem in prac-
tice because of typical diurnal server activity.

Next, we measured the space requirements of the com-
pressed log files for the kernel build and the Webstone
benchmarks. For the kernel build benchmark, the log files
grow at 8.8GB/day, while for the Webstone benchmark they
grow at 30GB/day. There are several reasons that these
numbers are significantly larger than comparable data gen-
erated by ReVirt [3]. The first is that, unlike Forensix, Re-
Virt does not log filesystem I/O, relying instead on periodic
checkpoints whose storage costs are not reported. More-
over, if checkpoints are infrequent, then replaying system
activity for forensic analysis can take a long time, as much
as the time period since the last checkpoint. The second
reason is that we use a Gigabit network in our Webstone
experiments and thus produce much more data than the 100
Mb/s network used in evaluating ReVirt. Normalizing for
network speed, the Webstone log-file growth rate for Foren-
six is comparable to ReVirt.

6.3 Queries

In order to be useful, queries must be efficiently sup-
ported in near real-time. For evaluation, the Webstone

benchmark was re-run and at the same time a user edited
the /etc/passwd file on the target machine. We executed
the Replay Shell query (which uses the IO query, see Ta-
ble 1) with the PID of the shell process in which the pass-
word file was modified. This complex query took 100 sec-
onds to run under MySQL, which we believe is a reasonable
time to replay this system activity.

7 Forensix in practice

In this section, we describe results from experiences in
using Forensix on a production web site as well as using
Forensix to analyze a variety of exploits.

7.1 Web Server Reconstruction

We installed Forensix on a web server of a popular,
Counter-Strike game community [9] for a week. Besides
serving approximately 1000 static pages a day, the web
server delivers dynamic content using PHP and MySQL
and runs a continuous player statistics aggregation ser-
vice (HLstats) for a heavily loaded Counter-Strike server
(cs.mshmro.com). System activity for the web server was
stored and loaded into a separate database daily. On the
backend, the database grew at a rate of 0.45+0.13 GB/day,
a rate that is reasonable for a medium-loaded server. Note
that the large deviation occurs since we have no control over
user accesses.

After collecting a one-week log of the web server, we
ran two queries over the entire database and timed their per-
formance. The first query determined whether there were
any ssh logins to the system during the week. The sec-
ond query replayed the complete system activity for one of
the logins using Replay Shell. Together, the queries took
708 seconds when no database indices were created. With
a PID index on the event table, the queries took 488 sec-
onds. While we expect to implement many more queries
and optimize our database for them, we believe that our ini-
tial implementation is usable.

7.2 Capturing Exploits

In order to demonstrate the utility of Forensix in an-
alyzing exploits, we ran several local privilege escala-
tion attacks on our target system. Local privilege es-
calation attacks allow a user with normal privileges to
gain and retain superuser privileges illegally. The first
attack, ptrace/kmod [7], exploits a race condition in
kernel/kmod.c that creates a kernel thread in an insecure
manner on behalf of a user process. The flaw allows an
unprivileged user process to use ptrace() to take control
over the privileged modprobe binary. The second attack,
mremap [10], exploits incorrect bound checking of page

Unprivileged seteuid 0(){
SELECT u id, g id, pid, ppid, name source path, pwd FROM event
WHERE syscall = 11 AND eu id = 0 AND u id ¡¿ 0 AND rc = 0

/* execve() = 11*/
}

Seteuid 0 to setuid 0(pid, ppid, name) {
SELECT name FROM event
WHERE (syscall = 23 OR syscall = 70 OR syscall = 164)

AND u id = 0 AND eu id = 0 AND pid = %1
AND ppid = %2 AND name = %3 AND rc = 0

/* setuid() = 23 ; setreuid = 70 ; setresgid = 164 */
UNION
SELECT name FROM event
WHERE (syscall = 46 OR syscall = 71 OR syscall = 170)

AND g id = 0 AND eg id = 0 AND pid = %1
AND ppid = %2 AND name = %3 AND rc = 0

/* setgid() = 23 ; setregid = 70 ; setresgid = 170 */

}

Figure 4. Local privilege escalation query

Time period analyzed 6 hours
of system calls 5875698
Size of database 0.6 GB

Time taken < 1s

Table 4. Performance of local privilege esca-
lation query

counters in the mremap() system call. The vulnerability
allows an attacking process to execute arbitrary code with
kernel level access.

In order to construct a query that identifies such attacks
regardless of the vulnerability they exploit, we use the fact
that such classes of attacks all follow a common pattern.
Specifically, through the use of an elevated effective user
ID (eu id) of 0 that they are temporarily granted via a se-
tuid binary, they illegally change their real user ID (u id)
permanently to spawn a root shell. Note that in its current
form, this query captures all successful occurrences of legit-
imate su invocations. This is necessary since a hacker can
easily rename all of his/her local exploits to su before invo-
cation if the system filtered escalations based on the name
of the setuid binary. Given this pattern and with the under-
standing that a local root exploit takes a user process with
normal privileges and converts it into a shell with superuser
privileges, we wrote the query shown in Figure 4 that suc-
cessfully returns only the PIDs of attacking processes that
have successfully executed the ptrace/kmod and mremap

exploits.
Because of its generality, the above query is executed

daily to identify and extract all local root exploits that have
occurred on the system. Table 4 shows the performance of
the query on a sample 6-hour trace in which both exploits
were successfully executed. As the table shows, the single
query which uncovers both exploits takes under a second to
execute.

8 Acknowledgments

The authors would like to thank Mike Shea, Kenneth Po,
Kamran Farhadi, Jin Choi, Sourabh Ahuja, Ho-Jeong An,
Gary Yeung, Miria Grunick, and Jennifer Johnson for their
contributions to the Forensix project.

References

[1] 4N6 Developers. The Forensix Project. http://
forensix.sourceforge.net/.

[2] M. Crosbie and B. Kuperman. A Building Block Approach
to Intrusion Detection. In Recent Advances in Intrusion
Detection (RAID 2001), Davis, California, October 2001.
Springer.

[3] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. Re-
Virt: Enabling Intrusion Analysis through Virtual-Machine
Logging and Replay. In Proceedings of OSDI, December
2002.

[4] E. Eskin, W. Lee, and S. Stolfo. Modeling System Calls for
Intrusion Detection with Dynamic Window Sizes. In Pro-
ceedings of DARPA Information Survivability Converence
and Exposition II, June 2001.

[5] T. Garfinkel. Traps and Pitfalls: Practical Problems in Sys-
tem Call Interposition Based Security Tools. In Proceedings
of the Network and Distributed System Security Symposium,
February 2003.

[6] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion De-
tection Using Sequences of System Calls. Journal of Com-
puter Security, 6(3):151–180, 1998.

[7] iSEC Security Research. Linux Kernel ptrace/kmod
Local Root Exploit. http://downloads.
securityfocus.com/vulnerabilities/
exploits/ptrace-kmod%.c, 2003.

[8] K. Mitnick. Takedown Transcripts: 1995 Feb 5
11:48:08. http://www.takedown.com/cgi-bin/
transcript.pl?4002, February 1995.

[9] mshmro.com. http://www.mshmro.com/.
[10] P. Starzetz. Linux kernel do mremap VMA

limit local privelege excalation vulnerability.
http://www.isec.pl/vulnerabilities/
isec-0014-mremap-unmap.txt, 2004.

[11] L. Purdie and G. Cora. SNARE - System iNtrusion
Analysis & Reporting Environment. http://www.
intersectalliance.com/projects/Snare/.
Viewed in Jan 2003.

[12] A. Somayaji and S. Forrest. Automated Response Using
System-Call Delays. In Proceedings of the USENIX Security
Symposium, pages 185–198, August 2000.

