
Implementing a Low Power
TDMA Protocol Over 802.11

Jim Snow, Wu-chi Feng, Wu-chang Feng
(jsnow, wuchi, wuchang)@cs.pdx.edu

Portland State University
Systems and Networking Lab

Abstract— A wireless network of remotely located, self-
powered video sensors must make efficient use of limited network
capacity and power. An ideal media-access protocol for such a
network would fully utilize available throughput while using no
more power than necessary and maintaining a reasonable level
of fairness.

To accomplish these goals, this paper proposes and evaluates
a time-division multiple-access protocol that may run on top of
unmodified 802.11 hardware. Our protocol uses an 802.11 access
point as a controller for a set of 802.11 clients. The controller
allocates timeslots to its clients, during which the clients may
send to and receive from the controller. Each client may turn its
radio off during other clients’ timeslots to save power that would
otherwise be wasted contending for a busy channel.

We compare and contrast our protocol to other wireless power-
saving mechanisms, then discuss the design and implementation
of our protocol and its performance compared to standard 802.11
in terms of throughput, power, and fairness. We conclude that our
protocol offers a significant reduction in power consumption and
improved fairness. Finally, we show throughput of our protocol
to be similar to standard 802.11.

I. INTRODUCTION

While most traditional sensor networks measure simple low
bit-rate scalar values such as temperature, velocity, and salin-
ity, some environmental observation and security surveillance
applications require sensors to gather high bit-rate video data
as well. Unfortunately, it is often impractical to connect sen-
sors to the power grid or wired networks. Two main obstacles
to video-based sensor network deployment are limited avail-
able power and limited network capacity. Such sensors must
use limited battery, solar, or wind energy to power themselves
and their wireless network interface. The availability of low-
power sensor platforms with fast processors has allowed us to
build sensors capable of compressing reasonable quality video
from a USB webcam in real time prior to transmission using
no more than a few watts [1]. However, the network interface
on these sensors consumes a third or more of the total power.

In a wireless network scenario, having no network cable
limits our throughput, while having no electrical cable limits
available power. Our application, however, requires us to
fully utilize a power-hungry network adapter. Therein lies
the conflict for which this paper hopes to find a reasonable

This material is based upon work supported by the National Science
Foundation under Grants ANI-0087761, EIA-0130344, and ITR-0121475.

Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

compromise. We would like a wireless MAC protocol that
adheres to the following constraints:

• The wireless network interface consumes no more energy
than necessary,

• The available data throughput is near full capacity,
• The protocol is easy to implement on commodity hard-

ware, and
• Latency may be high, but not more than a few seconds.
In this paper, we will discuss current approaches to power

conservation in sensor networks. We then propose and evaluate
an energy conserving media access protocol that may be used
on top of 802.11 (or similar protocols). This protocol reduces
the amount of idle listening by scheduling traffic in advance,
and periodically broadcasting this schedule to all stations.
Stations may save power by turning their receivers off when it
is not their turn to transmit or receive. Later, we compare the
throughput, fairness, and power savings of an 802.11b network
with and without this protocol.

II. RELATED WORK IN ENERGY-CONSERVING WIRELESS

Many researchers have investigated a wide variety of tech-
niques to limit the power consumption of wireless network
interfaces. Feeney and Nilsson [2] show that an Orinoco Silver
802.11 card consumes, on average, 47.4 mW with the receiver
turned off (sleeping), 739.4 mW while listening to an idle
channel, 900.6 mW while receiving data, and 1346.2 mW
while transmitting. Their results show us that unnecessary
transmissions are costly, but so is leaving the receiver on
when it is not receiving anything. Unfortunately, once we
have compressed our video, there is little we can do to reduce
network transmissions without sacrificing quality. Therefore,
we will attempt to reduce idle listening.

A. Listening less

Many techniques attempt a significant reduction in power
usage by leaving the radio in the sleeping state as much as
possible. However, this has an unavoidable negative impact
on access latency, since a sleeping station is deaf to all
network traffic. Periodically, a sleeping station will wake up to
exchange information with its access point (in an infrastructure
network) or neighbors (in an ad-hoc mesh).

Ye, Heidemann, and Estrin introduce S-Mac [3], a media
access control algorithm for low power sensors which trades
latency and throughput for a reduction in power consumption.

In S-Mac, neighboring sensors are synchronized to turn on
and off at the same time to save power. While on, sensors
contend for the channel using a CSMA-CA protocol similar
to 802.11. S-Mac may significantly increase battery-powered
sensor lifetime, but it incurs a throughput penalty proportional
to power savings.

The 802.11 standard employs a different approach to energy
conservation with its Power-Save Mode (PSM) [4, section
11.2]. 802.11 provides a mechanism by which a power-
constrained client may notify its access point that it is about
to enter PSM. It may then switch off its radio, briefly turning
it back on at a regular interval to receive a Traffic Indication
Map (TIM) broadcast by the AP. If the TIM indicates that the
AP is buffering data for the client, the client must retrieve its
data by polling the AP.

Self-tuning power management (STPM), introduced by
Anand, Nightingale, and Flinn, [5] is an algorithm to
adaptively switch between 802.11 PSM and the default
continuously-aware mode. It bases its decisions on network
access patterns, the energy savings expected from PSM, the
time and power required to change modes, and the total power
consumption of the device.

Though PSM is a good method for idle clients to save
power, it offers no benefits for busy stations, which must
leave their radios on to contend for the channel. PAMAS,
introduced by Singh and Raghavendra, [6], reduces power
when the network is used at full capacity as well. PAMAS
is an adaptation of MACA, requiring two radios for each
station: One low-power, low-throughput signaling radio and
one high-throughput, high-power radio used for data transfer.
The signaling radio is used to send request-to-send (RTS) and
clear-to-send (CTS) packets. Each station may leave it’s high-
throughput radio off until another station sends it an RTS
packet.

B. Wireless TDMA Protocols

In some situations throughput may be the first thing we
sacrifice. However, some applications may require reduced
power consumption while maintaining high throughput, and
the second radio required by techniques like PAMAS may
be impractical. Time-division multiple-access media access
protocols fit these requirements nicely. By requiring pre-
scheduled channel access, stations may switch their receivers
off while it isn’t their turn to participate. This takes advantage
of the fact that if n stations are trying to send data to an access
point over a shared channel, each station will only receive on
average 1

n
of the bandwidth, and will not be doing anything

useful the other n−1

n
of the time. If the MAC protocol allows

the clients to leave their radios off for that n−1

n
of the time,

they are likely to save a considerable amount of energy.
Sharma et al. introduce Wireless Rether [7], an 802.11

adaptation of Rether [8], which is, in turn, a token ring
protocol for ethernet. They determined that token passing
directly from one client to the next was unreliable in a wireless
network, so they used a central controller to broadcast tokens.
The purpose of their protocol was to enforce QoS, rather

than conserve power. Their design required a token to be
broadcast between each timeslot. Also, stations may complete
their transmissions and terminate their time slots before they
expire. Unfortunately, the other stations must always be awake
because they could receive the next token at any time.

E2Mac [9] and ECMac [10] are proposed reservation-based
TDMA MACs. Similar protocols have been used in commer-
cial products, such as MMDS, wireless DOCSIS, and 802.16.
In these protocols, all stations within a wireless network
connect to a single base station that decides traffic schedules
and broadcasts that information back to its client stations.
Since stations know their traffic schedules in advance, they
may leave their radios off most of the time. In most respects,
our TDMA protocol is similar to these protocols but may
be implemented using inexpensive, unmodified commodity
wireless hardware such as 802.11.

C. Why not use PCF?

The 802.11 [4] standard includes an optional protocol
extension called the Point-Coordinated Function (PCF) [4,
sections 9.3 and 11.2.1.5]. Similar to Wireless Rether, the
access point polls each client station in some order, inquiring
if each has data to send. This is in contrast to 802.11’s default
mode, Distributed Coordination Function (DCF), in which
each station competes for the channel using random backoffs.
Since PCF client stations do not know when they will be polled
by the AP, they must leave their radios on at all times, unless
they are in Power-Save Mode.

Similarly to DCF PSM, the AP buffers all traffic to PCF
PSM clients, and notifies them by periodically broadcasting
a TIM. Unlike DCF, a PSM client with data to send cannot
quickly gain access to the channel, because the AP is not
allowed to poll a sleeping client. Fortunately, the client will
not have to wait forever, since a PCF network periodically
enters a contention period, where all the usual DCF rules
apply.1 If we were to use PCF with PSM, only traffic from
the AP to the clients would benefit from PSM. In a video
sensor network, however, most of the traffic would be from the
clients to the AP, and only be transmitted during the contention
period, leaving the contention-free period underutilized.

III. 802.11 WITH TIME-DIVISION MULTIPLE-ACCESS
PROTOCOL DESCRIPTION

To address the inefficient use of power by 802.11 due to idle
listening and contention, we propose a time division multiple
access protocol that may be run on unmodified commodity
802.11 hardware. In our protocol, there is a controlling station
and a group of clients, all within range of the controlling
station. The controlling station periodically transmits a broad-
cast packet containing start times and durations of time slots
for each of its clients (hereafter referred to as a Schedule
Frame or SF). A client may send or receive packets only
during its time slot. Contention between the controller and the
client is handled by 802.11’s regular CSMA/CA algorithm.

1Alternating a contention period with a contention free period also allows
stations to communicate even when they don’t directly support PCF.

Outside their timeslots, clients may turn their radios off to
conserve power. Any traffic between clients must be buffered
and retransmitted by the controller since clients will not be on
at the same time. For this reason, it is usually most convenient
to make the AP act as controller and gateway.

The AP has the option of dynamically tuning the length of
each client’s timeslot. If a client uses its whole time slot, the
controller could give it a larger slot next time. If a client’s
traffic volume is light, it could give it a smaller time slot.
There is also an optional idle time slot, during which no client
is allowed to transmit. This allows the controlling station to
turn off its receiver when its available power is low or the
network is being utilized at less than capacity.

All time slots advertised in the SF are listed in units of time
relative to when the schedule frame was sent. Thus, there is
no need for clients to synchronize their clocks to any absolute
time (if the propagation delay is negligible relative to time slot
length). The sum of the time slot lengths yields the time until
the next schedule frame. Each client must turn its radio back
on before then. If, for some reason, it misses the SF, it need
only leave its receiver on and wait for the next one.

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

����
����
����
����
����
����

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

Timeslot 1 Timeslot 2 Timeslot 3

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�������
�������
�������

�������
�������
�������

�����
�����
�����
�����

 � �
 � �
 � �
 � �

SF

AP

Client 1

Client 2

Client 3

Idle Slot

Time

Radio ON, receive only Receive and Transmit

Fig. 1. Example timeslot allocation for a controller and three clients.

A. When to Transmit Scheduling Information

Some additional power and channel time is consumed by
the schedule frame. There are many options of when and how
often to send this frame, and how far in advance the schedule
should be determined. One option is to send a SF prior to
each time slot containing the duration of the single slot and
the identifier of the station that should use the channel. This
approach gives the controller maximum flexibility, because it
only has to make decisions one time slot in advance. This
approach has two disadvantages, however: every station must
wake up after every time slot to find out if they’re next, and a
large proportion of time and energy is consumed by SFs. As
we mentioned earlier, this approach is used by the PCF mode
of 802.11 [4] and Wireless Rether [7].

Another option is to send a SF once every n time slots,
containing the schedule for the next n time slots. A reasonable
choice of n might be the number of clients, so an SF would
contain the schedule for a complete cycle (assuming a round-
robin scheduler).

In some cases, it may be advantageous for a SF containing
scheduling data for n time slots to be broadcast several times
every n time slots instead of once to increase reliability2 or
to reduce the number of radio state changes required on each
client (for instance, by ignoring SFs not sent adjacent to its
timeslots when it knows it will have some future timeslot
adjacent to a SF).

When deciding which method to use, there is a trade
off between sleep time and flexibility to be considered. If
the scheduler broadcasts a schedule a long time in advance,
stations will have the opportunity to turn their receivers off for
a long time. However, the scheduler is stuck with its decision.
If a station’s bandwidth requirements increase dramatically in
the short term, it will accumulate a large backlog of data, thus
increasing latency. On the other hand, if a station’s bandwidth
requirements drop suddenly, its time slot will go underutilized.
In addition to wasted bandwidth, the client and receiver will
both waste power by leaving their receivers on longer than
necessary. Scheduling too far into the future to save power
may be self-defeating if the bandwidth requirements change
too quickly for the controller to react.

There is a similar trade off when choosing time slot lengths.
Long time slots minimize the schedule frame overhead, min-
imize the number of state changes, and ammortize the effects
of inaccurate timing. However, they also add considerable
communications latency.

B. Connection Requests

To allow clients to come and go as they please, we added a
simple connection request mechanism: if a client has data to
send, but the last SF doesn’t contain a slot for that client, it will
transmit a connection request that includes a station identifier
and a number of timeslots. This request can be sent at any
time (except the idle slot), and the 802.11 MAC will prevent
collisions. By requesting a specific number of timeslots, the
controller will eventually stop allocating a slot for that client
if it turns itself off for a long period of time. Alternatively,
the client may politely leave the network by requesting zero
timeslots.

C. Implementation

For our experiments, we used an 802.11b network in infras-
tructure mode. All stations were personal computers running
a Linux 2.4 kernel with Prism 2.5 based 802.11b cards. The
controller used the HostAP [11] wireless ethernet driver in
Master mode (enabling it to function as an access point). The
other three used HostAP in Managed mode (allowing them to
act as clients).

2Remember that the schedule frame is broadcast. In 802.11, broadcast
packets are considerably less reliable than unicast packets because they do
not employ immediate acknowledgment and retransmission.

In video sensor networks, it may be acceptable for data
transmission to lag a second or two behind real time. In
addition, we can buffer out short-term variations in available
throughput.3. Therefore, for our purposes, we can use long
time slots of hundreds of milliseconds or even seconds.

Implementation of the protocol requires a method of trans-
mitting and receiving schedule frames, and a method to control
the radio. The first is easily accomplished with a simple user
space daemon on the controller and each client. The second,
controlling radio power states and data transmission times, is
more difficult.

On each client, the radio has three states: on (Tx and Rx
allowed), sleeping (no Tx or Rx), and receive-only (Rx but no
Tx). On is the common case, nothing unusual needs to be done.
Setting the radio to the sleeping state is easily accomplished
with the Linux wireless tools 4. Receive-only is harder to
implement, as there is no easy way to prevent a network
interface that is up from transmitting.

We tried several techniques to prevent a client from send-
ing. The first was purely at the application layer: the client
application checks with a network scheduling daemon to
see if it is allowed to send before writing to its socket.
This approach, while simple, suffers from low accuracy. The
operating system buffers a great deal of data, resulting in
a significant lag between when the client stops writing and
the network stops sending, typically in the range of 50-100
milliseconds. This lag may be reduced somewhat by limiting
the size of the application’s socket buffer, and by limiting the
network device’s packet queue.

Reducing the device’s packet queue can result in unexpected
behavior, though. In Linux, the kernel maintains a socket
buffer for each TCP or UDP socket, and a queue of packets for
each device. The TCP implementation keeps the socket buffer
separate from the device queue. The UDP implementation,
however, does not maintain a socket buffer independent of the
device queue. When an application writes to a UDP socket,
new packets are appended immediately to the device queue.
If there is no room on the queue, the data is discarded and
the OS returns control to the sending application as though
the send had succeeded. Though this behavior is somewhat
controversial [12], it has been allowed to persist. To avoid
this problem, the socket buffer ought to be smaller than the
device’s packet queue so the program blocks rather than write
large volumes of data that will never be sent.

A second alternative is to use a traffic shaper, 5 and manually
switch the allowed throughput back and forth between zero
and infinity. Unfortunately, none of the traffic shapers we
tried reacted quickly enough to configuration changes, often
requiring several seconds or more before changes took effect.

3Our current software[1] compresses video frames from a USB webcam
as jpegs, which can be dropped in any order when throughput is limited.
Currently, the USB link is the bottleneck, allowing us to generate usable
video with a bit-rate of approximately 1mbps.

4iwconfig wlan0 txpower off
5In the kernel and associated routing documentation, these are called

queuing disciplines, or qdiscs.

As a third option, we tried modifying the network stack
directly. We added an extra bit to the network device’s state
indicating whether transmission was allowed or not. This bit
was toggled via a system call. The network scheduling code
was modified to check this bit before handing a packet off
to the network device’s driver. This option performed better
than the traffic shaper, but did not give us quite the precision
we hoped for. In effect, it performed similarly to the pure
application-layer solution. Our current hypothesis is that the
network device contains a large buffer that does not drain
immediately.

The controller requires a more elaborate mechanism than
the client, as it must be able to selectively transmit to one
client at a time. This can be done in the application layer, as
well. An in-kernel solution is likely to require a custom traffic
shaper.

Another limitation on timeslot accuracy is timer latency.
Timers in linux 2.4 are accurate to within 10 milliseconds in
ideal situations, but under heavy load can be much worse. This
can be improved by using a higher interrupt timer frequency
or using a high precision timing mechanism [13]. In our
experiments, 10 millisecond average latency was tolerable, but
it could be a problem if timeslots are much shorter.

IV. EXPERIMENTS

In the following experiments, we configured three Linux
clients with 802.11 cards to send data at their maximum rate
to the access point for thirty seconds. Data throughput (not
including headers) was measured at the AP.

A. Standard 802.11b Experiments

We measured the UDP and TCP throughput of the three
clients in figures 2 and 3, respectively. Initially, we were
surprised by the low throughput of 802.11b networks. It turns
out that 802.11 headers, immediate acknowledgments, and
interframe spacing impose a high per-packet cost on both the
data packets and, in the case of TCP, TCP ACKs. For instance,
one way TCP throughput can be no more than 5.78 mbps, and
in practice it is somewhat less, due to random back off, lost
packets, and hardware, firmware, and driver inefficiencies. The
highest average TCP throughput we have observed thus far is
5.29 mbps. This is similar to the results of others [14].

Fairness is not well achieved by either of these tests. It is not
guaranteed by 802.11, nor by UDP. 802.11b’s unpredictable
round trip time seems to interfere with TCP’s congestion
window size calculations, preventing competing stations from
converging on a fair proportion of available throughput.

B. TDMA Experiments

For the next set of experiments, we used our TDMA
protocol, with a simple round-robbin schedule. A SF is sent
every third timeslot, containing a schedule for the next three
timeslots. These were sent as broadcast UDP packets, and a
process on each client received the SF and enabled or disabled
transmission at the appropriate times. In these experiments, we
controlled transmission purely from user space. In our UDP

 0
 1
 2
 3
 4
 5
 6
 7

 0 2 4 6 8 10

m
bp

s

seconds

host1
host2
host3

Fig. 2. UDP Throughput. Host 1 receives a larger proportion of the network capacity than
the others.

Host Throughput (mbps)
1 2.216
2 1.500
3 1.085

Total 4.802
Standard deviation 0.572

 0
 1
 2
 3
 4
 5
 6
 7

 0 2 4 6 8 10

m
bp

s

seconds

host 1
host 2
host 3

Fig. 3. TCP throughput. TCP ACKs degrade throughput somewhat. Traffic is burstier, likely
due to an erratic round-trip-time estimate.

Host Throughput (mbps)
1 1.432
2 1.345
3 0.422

Total 3.200
Standard deviation 0.560

 0
 1
 2
 3
 4
 5
 6
 7

 0 2 4 6 8 10

m
bp

s

seconds

host1
host2
host3

Fig. 4. UDP TDMA throughput with 12kB buffer. Throughput is close to regular UDP, with
greater fairness.

Host Throughput (mbps)
1 1.507
2 1.447
3 1.394

Total 4.347
Standard deviation 0.057

 0
 1
 2
 3
 4
 5
 6
 7

 0 2 4 6 8 10

m
bp

s

seconds

host 1
host 2
host 3

Fig. 5. TCP TDMA throughput with 20kB buffer. There is some minor overlap between
timeslots.

Host Throughput (mbps)
1 1.182
2 1.153
3 1.033

Total 3.368
Standard deviation 0.079

Host Throughput Schedule SF miss Receiver On Receiver Off Receiver On
(mbps) Frames rate (seconds) (seconds) Ratio

Controller 3.671 405 sent n/a Always Never 1.00
1 1.233 373 received 0.0791 242.959 369.447 0.3967
2 1.180 361 received 0.1086 255.413 356.834 0.4172
3 1.258 374 received 0.0765 238.594 372.680 0.3903

Fig. 6. Throughput and receiver utilization of TCP traffic for approximately 10 minutes.

tests, the application stopped calling send 100 milliseconds
before the end of the timeslot, to allow any buffered packets
to drain. For TCP, we used 50 milliseconds. In addition, in
both tests, the application limited the size of its socket buffer.
In the UDP case (figure 4), we set the device’s packet queue to

hold at least as many packets as would fit in the socket buffer
(set to 12kB), to prevent the kernel from discarding packets.
In the TCP case (figure 5), the kernel does not discard data, so
we set the device queue as small as we could without affecting
performance. We found 6 packets, with a 20kB buffer, to work

well. In both cases, timeslots were fixed at 500 milliseconds
with no idle time slot.

We have not yet measured power savings directly. However,
we have instrumented our clients to measure the amount of
time they spend in the on or receive-only states versus the
sleeping state, and count the number of schedule frames they
receive. The controller was also instrumented to count the
number of schedule frames it sent. We ran a TCP throughput
test for approximately 10 minutes. The results are shown in
figure 6.

In this test, there were a fair number of missed schedule
frames. Station 2, which missed the most schedule frames,
was also on the most and had the lowest throughput. This
is an expected result, since a station that misses a schedule
frame must stay on, without transmitting data, until the next
schedule frame arrives. All stations were able to turn their
radios off more than half of the time while maintaining
throughput comparable to unmodified 802.11. From these
results, it is reasonable to conclude that our protocol would
achieve considerable power savings over an 802.11b network
without power-save mode, in which all stations leave their
receivers on at all times.

V. CONCLUSIONS AND FUTURE WORK

We have shown that our TDMA protocol can achieve
substantial power savings and improved fairness compared to
standard 802.11b, without significantly affecting throughput,
and can be implemented with relative ease. These gains come
at the cost of high communications latency.

Lower communications latency will require smaller, more
accurately controlled time slots. The main obstacle to achiev-
ing accurate timeslot enforcement is the difficulty of abruptly
stopping transmission.

Our current implementation is limited to a one-hop
wireless network. Larger multi-hop networks could be built of
overlapping single-hop clusters. Since our protocol falls back
on 802.11 for collision avoidance, it is not strictly necessary to
ensure that nodes in multiple clusters do not have overlapping
schedules. Other techniques such as GAF[15] and CEC[16]
identify nodes with similar sets of in-range nodes, which take
turns switching off to reduce redundancy while maintaining
connectivity at all times (if possible).

REFERENCES

[1] Wu chi Feng, Brian Code, Ed Kaiser, Mike Shea, Wu chang Feng, and
Louis Bavoil. Panoptes: scalable low-power video sensor networking
technologies. In Proceedings of the eleventh ACM international confer-
ence on Multimedia, pages 562–571. ACM Press, 2003.

[2] Laura Marie Feeney and Martin Nilsson. Investigating the energy
consumption of a wireless network interface in an ad hoc networking
environment. In IEEE INFOCOM, 2001.

[3] Wei Ye, John Heidemann, and Deborah Estrin. An energy-efficient mac
protocol for wireless sensor networks, 2002.

[4] IEEE Computer Society. ANSI/IEEE Standard 802.11, 1999.
[5] Manish Anand, Edmund B. Nightingale, and Jason Flinn. Self-tuning

wireless network power management. In Proceedings of the 9th annual
international conference on Mobile computing and networking, pages
176–189. ACM Press, 2003.

[6] Suresh Singh and C.S. Raghavendra. Pamas: Power aware multi-access
protocol with signalling for ad hoc networks. In (to appear) ACM
ComputerCommunications Review, 1999.

[7] Srikant Sharma, Kartik Gopalan, Ningning Zhu, Gang Peng, Pradipta
De, and Tzi cker Chiueh. Implementation experiences of bandwidth
guarantee on a wireless LAN. In ACM/SPIE Multimedia Computing
and Networking (MMCN 02), 2002.

[8] Tzi cker Chiueh and Chitra Venkatramani. Design, implementation,
and evaluation of a software-based real-time ethernet protocol. ACM
SIGCOMM, 1995.

[9] Paul J.M. Havinga and Gerard J.M. Smit. Emac: an energy efficient
mac protocol for multimedia traffic.

[10] Krishna M. Sivalingam, Jyh-Cheng Chen, Prathima Agrawal, and
Mani B. Srivastava. Design and analysis of low-power access protocols
for wireless and mobile ATM networks. Wireless Networks, 6(1):73–87,
2000.

[11] Jouni Malinen. Host ap driver. http://hostap.epitest.fi.
[12] Chris Friesen. Want opinions on possible glitch in 2.4 network

error reporting. Linux Kernel Mailing List, February 6, 2002,
http://www.ussg.iu.edu/hypermail/linux/kernel/0202.0/1175.html.

[13] Ashvin Goel, Luca Abeni, Charles Krasic, Jim Snow, and Jonathan
Walpole. Supporting time-sensitive applications on general-purpose
operating systems. In Proceedings of the Fifth USENIX Symposium
on Operating Systems Design and Implementation, December 2002.

[14] James C Chen and Jeffrey M Gilbert. Measured performance
of 5-ghz 802.11a wireless lan systems. Atheros Communications,
http://www.atheros.com/pt/papers.html.

[15] Ya Xu, John Heidemann, and Deborah Estrin. Geography-informed
energy conservation for ad hoc routing. In Proceedings of the ACM/IEEE
International Conference on Mobile Computing and Networking, pages
70–84, Rome, Italy, July 2001. USC/Information Sciences Institute,
ACM.

[16] Y. Xu, S. Bien, Y. Mori, J. Heidemann, and D. Estrin. Topology control
protocols to conserve energy in wireless ad hoc networks, 2003.

