TCPivo: A High-Performance Packet Replay Engine
Ashvin Goel, Wu-chang Feng, Abdelmajid Bezzaz, Wu-chi Feng, Jonathan Walpole

My router needs to perform so many functions!
- Queue management
- Packet classification
- Route caching
- Scheduling
- Buffer provisioning

Motivation: need a fast, inexpensive, reproducible, realistic method to test my router

Simulation is slow, doesn't capture timing
Emulation is expensive, unrealistic

Question: what if a trace-driven packet generator is used?
It could be fast, inexpensive, produce reproducible and realistic loads, address mixes, packet timing

My router needs to perform so many functions!

Simulation is slow, doesn't capture timing

I/O management of traces
- User-driven prefetching
- Double buffering
- Improves throughput and timing accuracy

Transmission efficiency
- Zeroed user-level payload
- Kernel/driver level payload
- Allows close to gigabit speeds

Trace-driven packet generator requirements:
- High throughput
 - Well understood
- High timing accuracy
 - For testing router's traffic modulation, buffer provisioning, packet dropping
 - For determining router's packet jitter, especially useful for interactive gaming

Challenges:
- High throughput
- I/O management of traces
- Transmission efficiency
- High timing accuracy
- Timing of packet send events
- Scheduling

TCPivo replays traffic at high speed with tight timing accuracy

Uses combination of
- User-driven prefetching
- Kernel support for efficient transmission
- Firm timers for precise, low-overhead timing
- Low-latency Linux for accurate scheduling

I/O management of traces
- User-driven prefetching
- Double buffering
- Improves throughput and timing accuracy

Transmission efficiency
- Zeroed user-level payload
- Kernel/driver level payload
- Allows close to gigabit speeds

TCPivo replays traffic at high speed with tight timing accuracy

Uses combination of
- User-driven prefetching
- Kernel support for efficient transmission
- Firm timers for precise, low-overhead timing
- Low-latency Linux for accurate scheduling

TCPivo replays traffic at high speed with tight timing accuracy

Uses combination of
- User-driven prefetching
- Kernel support for efficient transmission
- Firm timers for precise, low-overhead timing
- Low-latency Linux for accurate scheduling

CPU usage: 40%

CPU usage: 19%

Firm timers: (APIC, soft timers)

CPU usage: 19%

TCPivo replays traffic at high speed with tight timing accuracy

Uses combination of
- User-driven prefetching
- Kernel support for efficient transmission
- Firm timers for precise, low-overhead timing
- Low-latency Linux for accurate scheduling

CPU usage: 19%

CPU usage: 19%

TCPivo replays traffic at high speed with tight timing accuracy

Uses combination of
- User-driven prefetching
- Kernel support for efficient transmission
- Firm timers for precise, low-overhead timing
- Low-latency Linux for accurate scheduling

CPU usage: 19%

TCPivo replays traffic at high speed with tight timing accuracy

Uses combination of
- User-driven prefetching
- Kernel support for efficient transmission
- Firm timers for precise, low-overhead timing
- Low-latency Linux for accurate scheduling

CPU usage: 19%