
BLUE: A New Class of Active Queue Management Algorithms

Wu-chang Fengy Dilip D. Kandlurz Debanjan Sahaz Kang G. Shiny

yDepartment of EECS zNetwork Systems Department
University of Michigan IBM T.J. Watson Research Center
Ann Arbor, MI 48105 Yorktown Heights, NY 10598

Phone: (313) 763-5363 Fax: (313) 763-4617 Phone: (914) 784-7194 Fax: (914) 784-6205
fwuchang,kgshing@eecs.umich.edu fkandlur,debanjang@watson.ibm.com

Abstract

In order to stem the increasing packet loss rates caused by an exponential increase in network traffic,
theIETF is considering the deployment of active queue management techniques such as RED [13]. While
active queue management can potentially reduce packet loss rates in the Internet, this paper shows that
current techniques are ineffective in preventing high loss rates. The inherent problem with these queue
management algorithms is that they all use queue lengths as the indicator of the severity of congestion.
In light of this observation, a fundamentally different active queue management algorithm called BLUE

is proposed. BLUE uses packet loss and link idle events to manage congestion. Using simulation and
controlled experiments, BLUE is shown to perform significantly better than RED both in terms of packet
loss rates and buffer size requirements in the network. As an extension to BLUE, a novel technique for
enforcing fairness among a large number of flows is described. In particular, this paper proposes and
evaluates Stochastic Fair BLUE (SFB), a queue management algorithm which can identify and rate-limit
non-responsive flows using a very small amount of state information.

Keywords:Congestion control, Internet,TCP, RED, queue management

1

1 Introduction

It is important to avoid high packet loss rates in the Internet. When a packet is dropped before it reaches its
destination, all of the resources it has consumed in transit are wasted. In extreme cases, this situation can
lead to congestion collapse [17]. Improving the congestion control and queue management algorithms in the
Internet has been one of the most active areas of research in the past few years. While a number of proposed
enhancements have made their way into actual implementations, connections still experience high packet
loss rates. Loss rates are especially high during times of heavy congestion, when a large number of connec-
tions compete for scarce network bandwidth. Recent measurements have shown that the growing demand
for network bandwidth has driven loss rates up across various links in the Internet [23]. In order to stem
the increasing packet loss rates caused by an exponential increase in network traffic, theIETF is considering
the deployment of explicit congestion notification (ECN) [11, 24, 25] along with active queue management
techniques such as RED (Random Early Detection) [2, 11]. WhileECN is necessary for eliminating packet
loss in the Internet [10], this paper shows that RED, even when used in conjunction withECN, is ineffective
in preventing packet loss.

The basic idea behind RED queue management is to detect incipient congestionearlyand to convey con-
gestion notification to the end-hosts, allowing them to reduce their transmission rates before queues in the
network overflow and packets are dropped. To do this, RED maintains an exponentially-weighted moving
average of the queue length which it uses to detect congestion. When the average queue length exceeds a
minimum threshold (minth), packets are randomly dropped or marked with an explicit congestion notifica-
tion (ECN) bit. When the average queue length exceeds a maximum threshold, all packets are dropped or
marked. While RED is certainly an improvement over traditional drop-tail queues, it has several shortcom-
ings. One of the fundamental problems with RED and all other known active queue management techniques
is that they rely on queue lengths as an estimator of congestion. While the presence of a persistent queue
indicates congestion, its length gives very little information as to the severity of congestion, that is, the
number of competing connections sharing the link. In a busy period, a single source transmitting at a rate
greater than the bottleneck link capacity can cause a queue to build up just as easily as a large number of
sources can. Since the RED algorithm relies on queue lengths, it has an inherent problem in determining
the severity of congestion. As a result, RED requires a wide range of parameters to operate correctly under
different congestion scenarios. While RED can achieve an ideal operating point, it can only do so when it
has a sufficient amount of buffer space and is correctly parameterized [5, 29].

In light of the above observation, this paper proposes BLUE, a fundamentally different active queue
management algorithm which uses packet loss and link utilization history to manage congestion. BLUE

maintains a single probability, which it uses to mark (or drop) packets when they are queued. If the queue
is continually dropping packets due to buffer overflow, BLUE increments the marking probability, thus
increasing the rate at which it sends back congestion notification. Conversely, if the queue becomes empty
or if the link is idle, BLUE decreases its marking probability. Using simulation and experimentation, this
paper demonstrates the superiority of BLUE to RED in reducing packet losses even when operating with a
smaller buffer. Using mechanisms based on BLUE, a novel mechanism for effectively and scalably enforcing
fairness among a large number of flows is also proposed and evaluated.

The rest of the paper is organized as follows. Section 2 gives a description of RED and shows why it is
ineffective at managing congestion. Section 3 describes BLUE and provides a detailed analysis and evalua-
tion of its performance. Section 4 describes and evaluates Stochastic Fair BLUE (SFB), an algorithm based
on BLUE which scalably enforces fairness amongst a large number of connections. Section 5 comparesSFB

to other approaches which have been proposed to enforce fairness amongst connections. Finally, Section 6
concludes with a discussion of future work.

2

Sources SinksA

Sources SinksA

Sources SinksA

Sending rate > L Mbs Queue increases some more
Sinks generate DupAcks or ECN

Sources SinksA

Sending rate > L Mbs Queue increases some more

DupAcks/ECN travel back

Sources SinksA

7

Queue increases some more
Queue overflows, max_th triggeredSources detect loss/ECN

Sending rate < L Mbs

Sources SinksA

Sources

Sending rate increases above L Mbs

Sinks
L Mbs

A B

Sending rate > L Mbs Queue increases

Sending rate > L Mbs
EWMA increases to trigger RED
Queue increases some more

Sending rate < L Mbs
Sustained packet loss
 and ECN observed

Queue clears but period of
 underutilization imminent due to
 sustained packet loss and ECN

2

1

3

4

5

6

Figure 1: RED example

2 Background

One of the biggest problems withTCP’s congestion control algorithm over drop-tail queues is that the sources
reduce their transmission rates only after detecting packet loss due to queue overflow. Since considerable
amount of time may elapse between the packet drop at the router and its detection at the source, a large num-
ber of packets may be dropped as the senders continue transmission at a rate that the network cannot support.
RED alleviates this problem by detecting incipient congestionearly and delivering congestion notification
to the end-hosts, allowing them to reduce their transmission rates before queue overflow occurs. In order
to be effective, a RED queue must be configured with a sufficient amount of buffer space to accommodate
an applied load greater than the link capacity from the instant in time that congestion is detected using the
queue length trigger to the instant in time that the applied load decreases at the bottleneck link in response
to congestion notification. RED also must ensure that congestion notification is given at a rate which suf-
ficiently suppresses the transmitting sources without underutilizing the link. Unfortunately, when a large
number ofTCP sources are active, the aggregate traffic generated is extremely bursty [7, 10]. Bursty traffic
often defeats the active queue management techniques used by RED since queue lengths grow and shrink
rapidly, well before RED can react. Figure 1 shows a simplified pictorial example of how RED functions
under this congestion scenario.

The congestion scenario presented in Figure 1 occurs when a large number ofTCP sources are active

3

L Mbs
A B SinksSources

Sending rate = L Mbs

Queue drops and/or ECN-marks exactly
 the correct amount of packets to keep
 sending rate of sources at L Mbs

Sinks generate DupAcks or ECN

Figure 2: Ideal scenario

and when a small amount of buffer space is used at the bottleneck link. As the figure shows, att = 1, a
sufficient change in aggregateTCP load (due toTCP opening its congestion window) causes the transmission
rates of theTCP sources to exceed the capacity of the bottleneck link. At t = 2, the mismatch between
load and capacity causes a queue to build up at the bottleneck. Att = 3, the average queue length exceeds
minth and the congestion-control mechanisms are triggered. At this point, congestion notification is sent
back to the end hosts at a rate dependent on the queue length and marking probabilitymaxp. At t = 4,
theTCP receivers either detect packet loss or observe packets with theirECN bits set. In response, duplicate
acknowlegdements and/orTCP-basedECN signals are sent back to the sources. Att = 5, the duplicate
acknowlegements and/orECN signals make their way back to the sources to signal congestion. Att = 6,
the sources finally detect congestion and adjust their transmission rates. Finally, att = 7, a decrease in
offered load at the bottleneck link is observed. Note that it has taken fromt = 1 until t = 7 before the
offered load becomes less than the link’s capacity. Depending upon the aggressiveness of the aggregateTCP

sources [7, 10] and the amount of buffer space available in the bottleneck link, a large amount of packet
loss and/or deterministicECN marking may occur. Such behavior leads to eventual underutilization of the
bottleneck link.

One way to solve this problem is to use a large amount of buffer space at the RED gateways. For
example, it has been suggested that in order for RED to work well, an intermediate router requires buffer
space that amounts to twice the bandwidth-delay product [29]. This approach, in fact, has been taken by
an increasingly large number of router vendors. Unfortunately, in networks with large bandwidth-delay
products, the use of a large amounts of buffer adds considerable end-to-end delay and delay jitter. This
severely impacts the ability to run interactive applications. In addition, the abundance of deployed routers
which have limited memory resources makes this solution undesirable.

Figure 2 shows how an ideal queue management algorithm works. In this figure, the congested gateway
delivers congestion notification at a rate which keeps the aggregate transmission rates of theTCP sources at
or just below the clearing rate. While RED can achieve this ideal operating point, it can do so only when it
has a sufficiently large amount of buffer space and is correctly parameterized.

3 BLUE

In order to remedy the shortcomings of RED, this section proposes and evaluates a fundamentally different
queue management algorithm called BLUE. Using both simulation and experimentation, BLUE is shown to

4

Upon packet loss (orQlen > L) event:
if ((now - last update) > freezetime) then

pm = pm + d1

last update = now
Upon link idle event:

if ((now - last update) > freezetime) then
pm = pm - d2
last update = now

Figure 3: The BLUE algorithm

overcome many of RED’s shortcomings. RED has been designed with the objective to (1) minimize packet
loss and queueing delay, (2) avoid global synchronization of sources, (3) maintain high link utilization, and
(4) remove biases against bursty sources. This section shows how BLUE either improves or matches RED’s
performance in all of these aspects. The results also show that BLUE converges to the ideal operating point
shown in Figure 2 in almost all scenarios, even when used with very small buffers.

3.1 The algorithm

The key idea behind BLUE is to perform queue management based directly on packet loss and link utiliza-
tion rather than on the instantaneous or average queue lengths. This is in contrast to all known active queue
management schemes which use some form of queue occupancy in their congestion management. BLUE

maintains a single probability,pm, which it uses to mark (or drop) packets when they are enqueued. If the
queue is continually dropping packets due to buffer overflow, BLUE incrementspm, thus increasing the rate
at which it sends back congestion notification. Conversely, if the queue becomes empty or if the link is idle,
BLUE decreases its marking probability. This effectively allows BLUE to “learn” the correct rate it needs to
send back congestion notification. Figure 3 shows the BLUE algorithm. Note that the figure also shows a
variation to the algorithm in which the marking probability is updated when the queue length exceeds a cer-
tain value. This modification allows room to be left in the queue for transient bursts and allows the queue to
control queuing delay when the size of the queue being used is large. Besides the marking probability, BLUE

uses two other parameters which control how quickly the marking probability changes over time. The first is
freezetime. This parameter determines the minimum time interval between two successive updates ofpm.
This allows the changes in the marking probability to take effect before the value is updated again. While
the experiments in this chapter fixfreezetime as a constant, this value should be randomized in order to
avoid global synchronization [12]. The other parameters used, (d1 andd2), determine the amount by which
pm is incremented when the queue overflows or is decremented when the link is idle. For the experiments
in this paper,d1 is set significantly larger thand2. This is because link underutilization can occur when
congestion management is either too conservative or too aggressive, but packet loss occurs only when con-
gestion management is too conservative. By weighting heavily against packet loss, BLUE can quickly react
to a substantial increase in traffic load. Note that there are a myriad of ways in whichpm can be managed.
While the experiments in this paper study a small range of parameter settings, experiments with additional

5

A B C

n5

n6

n7

n8

n9

n1

n0

n2

n3

n4

45Mbs 45Mbs

10ms10ms

20ms

20ms

5ms

5ms

1ms

20ms

1ms

5ms

5ms

20ms

100Mbs100Mbs

Figure 4: Network topology

Configuration wq

R1 0.0002
R2 0.002
R3 0.02
R4 0.2

Table 1: RED configurations

parameter settings and algorithm variations have also been performed with the only difference being how
quickly the queue management algorithm adapts to the offered load. While BLUE seems extremely simple,
it provides a significant performance improvement even when compared to a RED queue which has been
reasonably configured.

3.2 Packet loss rates using RED and BLUE

In order to evaluate the performance of BLUE, a number of experiments were run usingns [19] over a
small network shown in Figure 4. Using this network, Pareto on/off sources with mean on-times of 2
seconds and mean off-times of 3 seconds were run from one of the leftmost nodes (n0; n1; n2; n3; n4) to one
of the rightmost nodes (n5; n6; n7; n8; n9). In addition, all sources were enabled withECN support, were
randomly started within the first second of simulation, and used1KB packets. Packet loss statistics were
then measured after 100 seconds of simulation for 100 seconds. Loss statistics were also measured for RED

using the same network and under identical conditions. For the RED queue,minth andmaxth were set
to 20% and 80% of the queue size, respectively. RED’s congestion notification mechanism was made as
aggressive as possible by settingmaxp to 1. For these experiments, this is the ideal setting ofmaxp since it
minimizes both the queueing delay and packet loss rates for RED [10]. Given these settings, a range of RED

configurations are studied which vary the value ofwq, the weight in the average queue length calculation

6

Configuration freeze time d1 d2

B1 10ms 0.0025 0.00025
B2 100ms 0.0025 0.00025
B3 10ms 0.02 0.002
B4 100ms 0.02 0.002

Table 2: BLUE configurations

0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay)

0.0

5.0

10.0

15.0

20.0

P
er

ce
nt

 P
ac

ke
t L

os
s

B1
B2
B3
B4
R1
R2
R3
R4

0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay)

70.0

75.0

80.0

85.0

90.0

95.0

100.0

P
er

ce
nt

 L
in

k
U

til
iz

at
io

n
B1
B2
B3
B4
R1
R2
R3
R4

(a) Loss Rates (1000 sources) (b) Link Utilization (1000 sources)

0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay)

0.0

10.0

20.0

30.0

40.0

P
er

ce
nt

 P
ac

ke
t L

os
s

B1
B2
B3
B4
R1
R2
R3
R4

0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay)

70.0

75.0

80.0

85.0

90.0

95.0

100.0

P
er

ce
nt

 L
in

k
U

til
iz

at
io

n

B1
B2
B3
B4
R1
R2
R3
R4

(c) Loss Rates (4000 sources) (d) Link Utilization (4000 sources)

Figure 5: Packet loss rates of RED and BLUE

for RED. It is interesting to note that aswq gets smaller, the impact of queue length on RED’s congestion
management algorithm gets smaller. For extremely small values ofwq, RED’s algorithm becomes decoupled
from the queue length and thus acts more like BLUE. Table 1 shows the configurations used for RED. For
the BLUE experiments,d1 andd2 are set so thatd1 is an order of magnitude larger thand2. Using these
values, thefreeze time is then varied between10ms and100ms. Additional simulations using a wider
range of values were also performed and showed similar results.

7

Figure 5 shows the loss rates observed over different queue sizes using both BLUE and RED with 1000
and 4000 connections present. In these experiments, the queue at the bottleneck link betweenA andB is
sized from100KB to1000KB. This corresponds to queueing delays which range from17:8ms and178ms
as shown in the figure. As Figure 5(a) shows, with 1000 connections, BLUE maintains zero loss rates over all
queue sizes even those which are below the bandwidth-delay product of the network [29]. This is in contrast
to RED which suffers double-digit loss rates as the amount of buffer space decreases. An interesting point
in the RED loss graph shown in Figure 5(a) is that it shows a significant dip in loss rates at a buffering
delay of around80ms. This occurs because of a special operating point of RED when the average queue
length stays abovemaxth all the time. At several points during this particular experiment, the buffering
delay and offered load match up perfectly to cause the average queue length to stay at or abovemaxth. In
this operating region, the RED queue marks every packet, but the offered load is aggressive enough to keep
the queue full. This essentially allows RED to behave at times like BLUE with a marking probability of 1
and a queueing delay equivalent tomaxth. This unique state of operation is immediately disrupted by any
changes in the load or round-trip times, however. When the buffering delay is increased, the corresponding
round-trip times increase and cause the aggregateTCP behavior to be less aggressive. Deterministic marking
on this less aggressive load causes fluctuations in queue length which can increase packet loss rates since
RED undermarks packets at times. When the buffering delay is decreased, the corresponding round-trip
times decrease and cause the aggregateTCP behavior to be more aggressive. As a result, packet loss is often
accompanied with deterministic marking. When combined, this leads again to fluctuations in queue length.
At a load which is perfectly selected, the average queue length of RED can remain atmaxth and the queue
can avoid packet loss and prevent queue fluctuations by marking every packet. Figure 5(b) shows the link
utilization across all experiments. As the figure shows, the link remains fully utilized for both RED and
BLUE regardless of the parameter settings.

As Figure 5(c) shows, when the number of connections is increased to 4000, BLUE still significantly
outperforms RED. Even with an order of magnitude more buffer space, RED still cannot match BLUE’s
loss rates using17:8ms of buffering at the bottleneck link. It is interesting to note that BLUE’s marking
probability remains at 1 throughout the duration of all of these experiments. Thus, even though every packet
is being marked, the offered load can still cause a significant amount of packet loss. The reason why this
is the case is that theTCP sources being used do not invoke a retransmission timeout upon receiving an
ECN signal with a congestion window of 1. Section 3.4 shows how this can significantly influence the
performance of both RED and BLUE. Figure 5(d) shows the link utilization for all of the 4000 connection
experiments. Again, regardless of the parameter settings, both RED and BLUE achieve full link utilization.

The most important consequence of using BLUE is that congestion control can be performed with a
minimal amount of buffer space. This reduces the end-to-end delay over the network, which in turn, im-
proves the effectiveness of the congestion control algorithm. In addition, smaller buffering requirements
allow more memory to be allocated to high priority packets [4, 15], and frees up memory for other router
functions such as storing large routing tables. Finally, BLUE allows legacy routers to perform well even with
limited memory resources.

3.3 Understanding BLUE

To fully understand the difference between the RED and BLUE algorithms, Figure 6 compares their queue
length plots in an additional experiment using theB4 configuration of BLUE and theR2 configuration of
RED. In this experiment, a workload of infinite sources is changed by increasing the number of connections
by 200 every 20 seconds. As Figure 6(a) shows, RED sustains continual packet loss throughout the experi-
ment. In addition, at lower loads, periods of packet loss are often followed by periods of underutilization as
deterministic packet marking and dropping eventually causes too many sources to reduce their transmission

8

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0

40

80

120

160

200
A

ct
ua

l Q
ue

ue
 L

en
gt

h
(K

B
)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0

40

80

120

160

200

A
ct

ua
l Q

ue
ue

 L
en

gt
h

(K
B

)

(a) RED (b) BLUE

Figure 6: Queue length plots of RED and BLUE

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0

40

80

120

160

200

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h
(K

B
)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ar

ki
ng

 P
ro

ba
bi

lit
y

(a)Qave (b) pb
1�count�pb

Figure 7: Marking behavior of RED

rates. In contrast, as Figure 6(b) shows, since BLUE manages its marking rate more intelligently, the queue
length plot is more stable. Congestion notification is given at a rate which neither causes periods of sustained
packet loss nor periods of continual underutilization. Only when the offered load rises to 800 connections,
does BLUE sustain a significant amount of packet loss.

Figure 7 plots the average queue length (Qave) and the marking probability (pb
1�count�pb

) of RED through-

out the experiment. The average queue length of RED contributes directly to its marking probability sincepb
is a linear function ofQave (pb =maxp �

Qave�minth
maxth�minth

). As shown in Figure 7(a), the average queue length
of RED fluctuates considerably as it follows the fluctuations of the instantaneous queue length. Because of
this, the marking probability of RED, as shown in Figure 7(b), fluctuates considerably as well. In contrast,
Figure 8 shows the marking probability of BLUE. As the figure shows, the marking probability converges to
a value that results in a rate of congestion notification which prevents packet loss and keeps link utilization
high throughout the experiment. In fact, the only situation where BLUE cannot prevent sustained packet

9

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ar

ki
ng

 P
ro

ba
bi

lit
y

Figure 8: Marking behavior of BLUE (pm)

loss is when every packet is being marked, but the offered load still overwhelms the bottleneck link. As
described earlier, this occurs att = 60s when the number of sources is increased to 800. The reason why
packet loss still occurs when every packet isECN-marked is that for these sets of experiments, theTCP im-
plementation used does not invoke an RTO when anECN signal is received with a congestion window of 1.
This adversely affects the performance of both RED and BLUE in this experiment. Note that the comparison
of marking probabilities between RED and BLUE gives some insight as to how to make RED perform better.
By placing a low pass filter on the calculated marking probability of RED, it may be possible for RED’s
marking mechanism to behave in a manner similar to BLUE’s.

While low packet loss rates, low queueing delays, and high link utilization are extremely important,
the queue length and marking probability plots allow us to explore the effectiveness of RED and BLUE in
preventing global synchronization and in removing biases against bursty sources. RED attempts to avoid
global synchronization by randomizing its marking decision and by spacing out its marking. Unfortunately,
when aggregateTCP load changes dramatically as it does when a large amount of connections are present,
it becomes impossible for RED to achieve this goal. As Figure 7(b) shows, the marking probability of RED

changes considerably over very short periods of time. Thus, RED fails to mark packets evenly over time and
hence cannot remove synchronization among sources. As Figure 8 shows, the marking probability of BLUE

remains steady. As a result, BLUE marks packets randomly and evenly over time. Consequently, it does a
better job in avoiding global synchronization.

Another goal of RED is to eliminate biases against bursty sources in the network. This is done by limiting
the queue occupancy so that there is always room left in the queue to buffer transient bursts. In addition,
the marking function of RED takes into account the last packet marking time in its calculations in order
to reduce the probability that consecutive packets belonging to the same burst are marked. Using a single
marking probability, BLUE achieves the same goal equally well. As the queue length plot of BLUE shows
(Figure 6), the queue occupancy remains below the actual capacity, thus allowing room for a burst of packets.
In addition, since the marking probability remains smooth over large time scales, the probability that two
consecutive packets from a smoothly transmitting source are marked is the same as with two consecutive
packets from a bursty source.

10

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0

40

80

120

160

200
A

ct
ua

l Q
ue

ue
 L

en
gt

h
(K

B
)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0

40

80

120

160

200

A
ct

ua
l Q

ue
ue

 L
en

gt
h

(K
B

)

(a) RED (b) BLUE

Figure 9: Queue length plots of RED and BLUE with ECN timeouts

3.4 The effect ofECN timeouts

All of the previous experiments useTCP sources which supportECN, but do not perform a retransmission
timeout upon receipt of anECN signal with a congestion window of 1. This has a significant, negative impact
on the packet loss rates observed for both RED and BLUE especially at high loads. Figure 9 shows the queue
length plot of RED and BLUE using the same experiments as in Section 3.2 withTCP sources enabled
with ECN timeouts. Figure 9(a) shows that by deterministically marking packets atmaxth, RED oscillates
between periods of packet loss and periods of underutilization as described in Section 2. Note that this is in
contrast to Figure 6(a) where withoutECN timeouts,TCP is aggressive enough to keep the queue occupied
when the load is sufficiently high. An interesting point to make is that RED can effectively prevent packet
loss by setting itsmaxth value sufficiently far below the size of the queue. In this experiment, a small
amount of loss occurs since deterministicECN marking does not happen in time to prevent packet loss.
While the use ofECN timeouts allows RED to avoid packet loss, the deterministic marking eventually causes
underutilization at the bottleneck link. Figure 9(b) shows the queue length plot of BLUE over the same
experiment. In contrast to RED, BLUE avoids deterministic marking and maintains a marking probability
that allows it to achieve high link utilization while avoiding sustained packet loss over all workloads.

Figure 10 shows the corresponding marking behavior of both RED and BLUE in the experiment. As the
figure shows, BLUE maintains a steady marking rate which changes as the workload is changed. On the other
hand, RED’s calculated marking probability fluctuates from 0 to 1 throughout the experiment. When the
queue is fully occupied, RED overmarks and drops packets causing a subsequent period of underutilizationas
described in Section 2. Conversely, when the queue is empty, RED undermarks packets causing a subsequent
period of high packet loss as the offered load increases well beyond the link’s capacity.

Figure 11 shows howECN timeouts impact the performance of RED and BLUE. The figure shows
the loss rates and link utilization using the 1000 and 4000 connection experiments in Section 3.2. As
the figure shows, BLUE maintains low packet loss rates and high link utilization across all experiments.
The figure also shows that the use ofECN timeouts allows RED to reduce the amount of packet loss in
comparison to Figure 5. However, because RED often deterministically marks packets, it suffers from poor
link utilization unless correctly parameterized. The figure shows that only an extremely small value ofwq

(ConfigurationR1) allows RED to approach the performance of BLUE. As described earlier, a smallwq

value effectively decouples congestion management from the queue length calculation making RED queue

11

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

ar
ki

ng
 P

ro
ba

bi
lit

y

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ar

ki
ng

 P
ro

ba
bi

lit
y

(a) pb
1�count�pb

of RED (b) pm of BLUE

Figure 10: Marking behavior withECN timeouts

management behave more like BLUE.

3.5 Implementation

In order to evaluate BLUE in a more realistic setting, it has been implemented in FreeBSD 2.2.7 using
ALTQ [3]. In this implementation,ECN uses two bits of the type-of-service (ToS) field in the IP header [25].
When BLUE decides that a packet must be dropped or marked, it examines one of the two bits to determine
if the flow is ECN-capable. If it is notECN-capable, the packet is simply dropped. If the flow isECN-
capable, the other bit is set and used as a signal to theTCP receiver that congestion has occurred. TheTCP

receiver, upon receiving this signal, modifies theTCP header of the return acknowledgment using a currently
unused bit in theTCP flags field. Upon receipt of aTCP segment with this bit set, theTCP sender invokes
congestion-control mechanisms as if it had detected a packet loss.

Using this implementation, several experiments were run on the testbed shown in Figure 12. Each
network node and link is labeled with the CPU model and link bandwidth, respectively. Note that all links
are shared Ethernet segments. Hence, the acknowledgments on the reverse path collide and interfere with
data packets on the forward path. As the figure shows, FreeBSD-based routers using either RED or BLUE

queue management on their outgoing interfaces are used to connect the Ethernet and Fast Ethernet segments.
In order to generate load on the system, a variable number ofnetperf [22] sessions are run from theIBM
PC 360and theWinbook XLto theIBM PC 365and theThinkpad 770. The router queue on the congested
Ethernet interface of theIntellistation Zprois sized at50KB which corresponds to a queueing delay of
about40ms. For the experiments with RED, a configuration with aminth of 10KB, amaxth of 40KB, a
maxp of 1, and awq of 0.002 was used. For the experiments with BLUE, ad1 of 0:01, a d2 of 0:001 and
a freeze time of 50ms was used. To ensure that the queue management modifications did not create a
bottleneck in the router, the testbed was reconfigured exclusively with Fast Ethernet segments and a number
of experiments between network endpoints were run using the BLUE modifications on the intermediate
routers. In all of the experiments, the sustained throughput was always above80Mbs.

Figures 13(a) and (b) show the throughput and packet loss rates at the bottleneck link across a range
of workloads. The throughput measures the rate at which packets are forwarded through the congested
interface while the packet loss rate measures the ratio of the number of packets dropped at the queue and

12

0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay)

0.0

1.0

2.0

3.0

4.0

5.0
P

er
ce

nt
 P

ac
ke

t L
os

s
B1
B2
B3
B4
R1
R2
R3
R4

0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay)

70.0

75.0

80.0

85.0

90.0

95.0

100.0

P
er

ce
nt

 L
in

k
U

til
iz

at
io

n

B1
B2
B3
B4
R1
R2
R3
R4

(a) Loss rates (1000 sources) (b) Link utilization (1000 sources)

0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay)

0.0

1.0

2.0

3.0

4.0

5.0

P
er

ce
nt

 P
ac

ke
t L

os
s

B1
B2
B3
B4
R1
R2
R3
R4

0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay)

70.0

75.0

80.0

85.0

90.0

95.0

100.0

P
er

ce
nt

 L
in

k
U

til
iz

at
io

n

B1
B2
B3
B4
R1
R2
R3
R4

(c) Loss rates (4000 sources) (d) Link utilization (4000 sources)

Figure 11: Performance of RED and BLUE with ECN timeouts

the total number of packets received at the queue. In each experiment, throughput and packet loss rates
were measured over five 10-second intervals and then averaged. Note that theTCP sources used in the
experiment do not implementECN timeouts. As Figure 13(a) shows, both the BLUE queue and the optimally
configured RED queue maintain relatively high levels of throughput across all loads. However, since RED

periodically allows the link to become underutilized, its throughput remains slightly below that of BLUE. As
Figure 13(b) shows, RED sustains increasingly high packet loss as the number of connections is increased.
Since aggregateTCP traffic becomes more aggressive as the number of connections increases, it becomes
difficult for RED to maintain low loss rates. Fluctuations in queue lengths occur so abruptly that the RED

algorithm oscillates between periods of sustained marking and packet loss to periods of minimal marking
and link underutilization. In contrast, BLUE maintains relatively small packet loss rates across all loads. At
higher loads, when packet loss is observed, BLUE maintains a marking probability which is approximately
1, causing it to mark every packet it forwards.

13

Intellistation Intellistation

WinBookXL

10Mbs

233 MHz/32 MB 266 MHz/64 MB

Thinkpad 770

IBM PC 365

200 MHz/64 MB

ZProMPro

IBM PC 360

150 MHz/64 MB

400 MHz/128 MB 200 MHz/64 MB

100Mbs100Mbs

Figure 12: Experimental testbed

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0
Number of Connections

9.00

9.10

9.20

9.30

9.40

T
hr

ou
gh

pu
t (

M
bs

)

Blue
RED

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0
Number of Connections

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

P
er

ce
nt

 P
ac

ke
t L

os
s

Blue
RED

(a) Throughput (b) Percent packet loss

Figure 13: Queue management performance

4 Stochastic Fair BLUE

Up until recently, the Internet has mainly relied on the cooperative nature ofTCP congestion control in order
to limit packet loss and fairly share network resources. Increasingly, however, new applications are being
deployed which do not useTCP congestion control and are not responsive to the congestion signals given
by the network. Such applications are potentially dangerous because they drive up the packet loss rates
in the network and can eventually cause congestion collapse [17, 23]. In order to address the problem of
non-responsive flows, a lot of work has been done to provide routers with mechanisms for protecting against
them [6, 18]. The idea behind these approaches is to detect non-responsive flows and to limit their rates so
that they do not impact the performance of responsive flows. This section describes and evaluatesStochastic
Fair BLUE (SFB), a novel technique for protectingTCP flows against non-responsive flows using the BLUE

algorithm.SFB is highly scalable and enforces fairness using an extremely small amount of state and a small

14

B[l][n]: L x N array of bins (L levels, N bins per level)
enque()

Calculate hash function valuesh0, h1, ...,hL�1;
Update bins at each level
for i = 0 toL� 1

if (B[i][hi]:qlen > bin size)
B[i][hi]:pm += delta;
Drop packet;

else if (B[i][hi]:qlen == 0)
B[i][hi]:pm -= delta;

pmin = min(B[0][h0]:pm .. B[L][hL]:pm);
if (pmin == 1)

ratelimit()

else
Mark/drop with probabilitypmin;

Figure 14:SFB algorithm

amount of buffer space.

4.1 The algorithm

Figure 14 shows the basicSFB algorithm. SFB is a FIFO queueing algorithm that identifies and rate-limits
non-responsive flows based on accounting mechanisms similar to those used with BLUE. SFB maintains
N � L accounting bins. The bins are organized inL levels withN bins in each level. In addition, SFB

maintains (L) independent hash functions, each associated with one level of the accounting bins. Each hash
function maps a flow into one of theN accounting bins in that level. The accounting bins are used to keep
track of queue occupancy statistics of packets belonging to a particular bin. This is in contrast to Stochastic
Fair Queueing [20] (SFQ) where the hash function maps flows into separate queues. Each bin inSFB keeps a
marking/dropping probabilitypm as in BLUE, which is updated based on bin occupancy. As a packet arrives
at the queue, it is hashed into one of theN bins in each of theL levels. If the number of packets mapped to
a bin goes above a certain threshold (i.e., the size of the bin),pm for the bin is increased. If the number of
packets drops to zero,pm is decreased.

The observation which drivesSFB is that a non-responsive flow quickly drivespm to 1 in all of theL
bins it is hashed into. Responsive flows may share one or two bins with non-responsive flows, however,
unless the number of non-responsive flows is extremely large compared to the number of bins, a responsive
flow is likely to be hashed into at least one bin that is not polluted with non-responsive flows and thus has
a normalpm value. The decision to mark a packet is based onpmin, the minimumpm value of all bins to
which the flow is mapped into. Ifpmin is 1, the packet is identified as belonging to a non-responsive flow
and is then rate-limited. Note that this approach is akin to applying a Bloom filter on the incoming flows. In

15

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

h0 h h h1 L-2 L-1

0

Non-responsive
Flow

TCP Flow

P=0.3

P=0.2

P=1.0

P=1.0

P=1.0

P=1.0

P=0.2

minP =0.2

P =1.0min

B-1

Figure 15: Example ofSFB

this case, the dictionary of messages or words is learned on the fly and consists of the IP headers of the non-
responsive flows which are multiplexed across the link [1]. When a non-responsive flow is identified using
these techniques, a number of options are available to limit the transmission rate of the flow. In this paper,
flows identified as being non-responsive are simply limited to a fixed amount of bandwidth. This policy
is enforced by limiting the rate of packet enqueues for flows withpmin values of 1. Figure 15 shows an
example of howSFB works. As the figure shows, a non-responsive flow drives up the marking probabilities
of all of the bins it is mapped into. While theTCP flow shown in the figure may map into the same bin
as the non-responsive flow at a particular level, it maps into normal bins at other levels. Because of this,
the minimum marking probability of theTCP flow is below 1.0 and thus, it is not identified as being non-
responsive. On the other hand, since the minimum marking probability of the non-responsive flow is 1.0, it
is identified as being non-responsive and rate-limited.

Note that just as BLUE’s marking probability can be used inSFB to provide protection against non-
responsive flows, it is also possible to apply Adaptive RED’s maxp parameter to do the same. In this case, a
per-binmaxp value is kept and updated according to the behavior of flows which map into the bin. As with
RED, however, there are two problems which make this approach ineffective. The first is the fact that a large
amount of buffer space is required in order to get RED to perform well. The second is that the performance
of a RED-based scheme is limited since even a moderate amount of congestion requires amaxp setting of
1. Thus, RED, used in this manner, has an extremely difficult time distinguishing between a non-responsive
flow and moderate levels of congestion. In order to compare approaches, Stochastic Fair RED (SFRED) was
also implemented by applying the same techniques used forSFB to RED.

4.2 Evaluation

Usingns , theSFB algorithm was simulated in the same network as in Figure 4 with the transmission delay
of all of the links set to10ms. TheSFB queue is configured with200KB of buffer space and maintains two
hash functions each mapping to 23 bins. The size of each bin is set to 13, approximately 50% more than
1

23

rd
of the available buffer space. Note that by allocating more than1

23

rd
the buffer space to each bin,SFB

effectively “overbooks” the buffer in an attempt to improve statistical multiplexing. Notice that even with

16

2Mbs non-responsive flow 45Mbs non-responsive flow
Packet Loss (Mbs) SFB RED SFRED SFQ+RED SFB RED SFRED SFQ+RED

Total 1.86 1.79 3.10 3.60 44.85 13.39 42.80 46.47
Non-responsive flow 1.85 0.03 0.63 1.03 44.84 10.32 40.24 43.94

All TCP flows 0.01 1.76 2.57 2.47 0.01 3.07 2.56 2.53

Table 3:SFB loss rates inMbs (one non-responsive flow)

overbooking, the size of each bin is quite small. Since BLUE performs extremely well under constrained
memory resources,SFB can still effectively maximize network efficiency. The queue is also configured to
rate-limit non-responsive flows to0:16Mbs.

In the experiments, 400TCP sources and one non-responsive, constant rate source are run for 100 sec-
onds from randomly selected nodes in (n0; n1; n2; n3; n4) to randomly selected nodes in (n5; n6; n7; n8; n9).
In one experiment, the non-responsive flow transmits at a rate of2Mbs while in the other, it transmits at a
rate of45Mbs. Table 3 shows the packet loss observed in both experiments forSFB. As the table shows, for
both experiments,SFB performs extremely well. The non-responsive flow sees almost all of the packet loss
as it is rate-limited to a fixed amount of the link bandwidth. In addition, the table shows that in both cases,
a very small amount of packets fromTCP flows are lost. Table 3 also shows the performance of RED. In
contrast toSFB, RED allows the non-responsive flow to maintain a throughput relatively close to its original
sending rate. As a result, the remainingTCP sources see a considerable amount of packet loss which causes
their performance to deteriorate.SFRED, on the other hand, does slightly better at limiting the rate of the
non-responsive flow, however, it cannot fully protect theTCP sources from packet loss since it has a difficult
time discerning non-responsive flows from moderate levels of congestion. Finally, the experiments were
repeated usingSFQwith an equivalent number of bins (i.e., 46 distinct queues) and a buffer more than twice
the size (414KB), making each queue equally sized at9KB. For each bin in theSFQ, the RED algorithm
was applied withminth andmaxth values set at2KB and8KB, respectively. As the table shows,SFQ

with RED does an adequate job of protectingTCP flows from the non-responsive flow. However, in this case,
partitioning the buffers into such small sizes causes a significant amount of packet loss to occur. Additional
experiments show that as the amount of buffer space is decreased even further, the problem is exacerbated
and the amount of packet loss increases considerably.

To qualitatively examine the impact that the non-responsive flow has onTCP performance, Figure 16(a)
plots the throughput of all 400TCP flows usingSFB when the non-responsive flow sends at a45Mbs rate.
As the figure shows,SFB allows eachTCP flow to maintain close to a fair share of the bottleneck link’s
bandwidth while the non-responsive flow is rate-limited to well below its transmission rate. In contrast,
Figure 16(b) shows the same experiment using normal RED queue management. The figure shows that the
throughput of allTCPflows suffers considerably as the non-responsive flow is allowed to grab a large fraction
of the bottleneck link bandwidth. Figure 16(c) shows that whileSFRED does succeed in rate-limiting the
non-responsive flow, it also manages to drop a significant amount of packets fromTCP flows. This is due to
the fact that the lack of buffer space and the ineffectiveness ofmaxp combine to causeSFRED to perform
poorly as described in Section 4.1. Finally, Figure 16(d) shows that whileSFQ with RED can effectively
rate-limit the non-responsive flows, the partitioning of buffer space causes the fairness between flows to
deteriorate as well. The large amount of packet loss induces a large number of retransmission timeouts
across a subset of flows which causes significant amounts of unfairness [21]. Thus, through the course of
the experiment, a fewTCP flows are able to grab a disproportionate amount of the bandwidth while many of
the flows receive significantly less than a fair share of the bandwidth across the link. In addition to this,SFQ

17

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
T

hr
ou

gh
pu

t (
M

bs
)

Non−responsive Flow Throughput = 0.16 Mbs

Fair Share

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T
hr

ou
gh

pu
t (

M
bs

)

Non−responsive Flow Throughput = 34.68 Mbs

Fair Share

(a) SFB (b) RED

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T
hr

ou
gh

pu
t (

M
bs

)

Non−responsive Flow Throughput = 4.76 Mbs

Fair Share

0 100 200 300 400
Flow Number

0.00

0.20

0.40

0.60

0.80

1.00

1.20

T
hr

ou
gh

pu
t (

M
bs

)

Non−responsive Flow Throughput = 0.10 Mbs

Fair Share

(c) SFRED (d) SFQ+RED

Figure 16: Bandwidth ofTCP flows (45Mbs non-responsive flow)

with RED allows 1

46

th
of the 400 flows to be mapped into the same queue as the non-responsive flow. Flows

that are unlucky enough to map into this bin receive an extremely small amount of the link bandwidth.SFB,
in contrast, is able to protect all of theTCP flows in this experiment.

4.3 Limitations of SFB

While it is clear that the basicSFB algorithm can protectTCP-friendly flows from non-responsive flows with-
out maintaining per-flow state, it is important to understand how it works and its limitations.SFB effectively
usesL levels withN bins in each level to createNL virtual buckets. This allowsSFB to effectively identify
a single non-responsive flow in anNL flow aggregate usingO(L �N) amount of state. For example, in the
previous section, using two levels with 23 bins per level effectively creates 529 buckets. Since there are only
400 flows in the experiment,SFB is able to accurately identify and rate-limit a single non-responsive flow
without impacting the performance of any of the individualTCP flows. As the number of non-responsive
flows increases, the number of bins which become “polluted” or havepm values of 1 increases. Conse-
quently, the probability that a responsive flow gets hashed into bins which are all polluted, and thus becomes

18

0 10 20 30 40 50 60 70 80 90
Number of Non−Responsive Flows

0

0.2

0.4

0.6

0.8

1
P

ro
ba

bi
lit

y
of

 M
is

cl
as

si
fic

at
io

n
L=1
L=2
L=3

0 100 200 300 400 500 600 700 800 900
Number of Non−Responsive Flows

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

of
 M

is
cl

as
si

fic
at

io
n

L=1
L=2
L=3

(a) 90 bins (b) 900 bins

Figure 17: Probability of misclassification

misclassified, increases. Clearly, misclassification limits the ability ofSFB to protect well behavedTCP

flows.

Using simple probabilistic analysis, Equation (1) gives a closed-form expression of the probability that
a well-behavedTCP flow gets misclassified as being non-responsive as a function of number of levels (L),
the number of bins per level (B), and the number of non-responsive/malicious flows (M), respectively.

p = [1� (1�
1

B
)M]L (1)

In this expression, whenL is 1, SFB behaves much likeSFQ. The key difference is thatSFB using one level
is still a FIFO queueing discipline with a shared buffer whileSFQ has separate per-bin queues and partitions
the available buffer space amongst them.

Using the result from Equation (1), it is possible to optimize the performance ofSFB given a priori
information about its operating environment. Suppose the number of simultaneously active non-responsive
flows can be estimated (M) and the amount of memory available for use in theSFB algorithm is fixed (C).
Then, by minimizing the probability function in Equation (1) with the additional boundary condition that
L � N = C, SFB can be tuned for optimal performance. To demonstrate this, the probability for misclas-
sification across a variety of settings is evaluated. Figure 17(a) shows the probability of misclassifying a
flow when the total number of bins is fixed at 90. Figure 17(b) shows the same probability function when
the total number of bins is fixed at 900. In these figures, the number of levels used inSFB along with the
number of non-responsive flows are varied. As the figures show, when the number of non-responsive flows
is small compared to the number of bins, the use of multiple levels keeps the probability of misclassifi-
cation extremely low. However, as the number of non-responsive flows increases past half the number of
bins present, the single levelSFB queue affords the smallest probability of misclassification. This is due to
the fact that when the bins are distributed across multiple levels,each non-responsive flow pollutes a larger
number of bins. For example, using a single levelSFB queue with 90 bins, a single non-responsive flow pol-
lutes only one bin. Using a two-levelSFB queue with each level containing 45 bins, the number of effective
bins is 45�45 (2025). However, a single non-responsive flow pollutes two bins (one per level). Thus, the
advantage gained by the two-levelSFB queue is lost when additional non-responsive flows are added, as a
larger fraction of bins become polluted compared to the single-level situation.

19

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30
T

hr
ou

gh
pu

t (
M

bs
)

Non−responsive Flows Throughput = 0.18 Mbs

Fair Share

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

T
hr

ou
gh

pu
t (

M
bs

)

Non−responsive Flows Throughput = 0.21 Mbs

Fair Share

(a) 4 non-responsive flows (b) 8 non-responsive flows

Figure 18: Bandwidth ofTCP flows usingSFB

In order to evaluate the performance degradation ofSFBas the number of non-responsive flows increases,
Figure 18 shows the bandwidth plot of the 400TCP flows when 4 and 8 non-responsive flows are present.
In these experiments, each non-responsive flow transmits at a rate of5Mbs. As Equation (1) predicts, in an
SFB configuration that contains two levels of 23 bins,2:65% of the TCP flows (11) are misclassified when
4 non-responsive flows are present. Similarly, when 8 non-responsive flows are present,8:96% (36) of the
TCP flows are misclassified. When the number of non-responsive flows approachesN , the performance of
SFB deteriorates quickly as an increasing number of bins at each level becomes polluted. In the case of
8 non-responsive flows, approximately 6 bins or one-fourth of the bins in each level are polluted. As the
figure shows, the number of misclassified flows matches the model quite closely. Note that even though a
larger number of flows are misclassified as the number of non-responsive flows increases, the probability of
misclassification in a two-levelSFB still remains below that ofSFQ or a single-levelSFB. Using the same
number of bins (46), the equation predicts thatSFQand a single-levelSFBmisclassify8:42% of theTCP flows
(34) when 4 non-responsive flows are present and16:12% of theTCP flows (64) when 8 non-responsive are
present.

4.4 SFB with moving hash functions

In this section, two basic problems with theSFB algorithm are addressed. The first, as described above, is
to mitigate the effects of misclassification. The second is to be able to detect when non-responsive flows
become responsive and to reclassify them when they do.

The idea behindSFB with moving hash functions is to periodically or randomly reset the bins and change
the hash functions. A non-responsive flow will continually be identified and rate-limited regardless of the
hash function used. However, by changing the hash function, responsiveTCP flows that happen to map
into polluted bins will potentially be remapped into at least one unpolluted bin. Note that this technique
effectively creates virtual bins across time just as the multiple levels of bins in the original algorithm creates
virtual bins across space. In many ways the effect of using moving hash functions is analogous to channel
hopping in CDMA [16, 28] systems. It essentially reduces the likelihood of a responsive connection being
continually penalized due to erroneous assignment into polluted bins.

To show the effectiveness of this approach, the idea of moving hash functions was applied to the exper-

20

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30
T

hr
ou

gh
pu

t (
M

bs
)

Non−responsive Flow Throughput = 3.85 Mbs

Fair Share

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

T
hr

ou
gh

pu
t (

M
bs

)

Non−responsive Flow Throughput = 0.19 Mbs

Fair Share

(a) Moving hash (b) Double buffered moving hash

Figure 19: Bandwidth ofTCP flows using modifiedSFB algorithms

iment in Figure 18(b). In this experiment, 8 non-responsive flows along with 400 responsive flows share
the bottleneck link. To protect against continual misclassification, the hash function is changed every two
seconds. Figure 19(a) shows the bandwidth plot of the experiment. As the figure shows,SFB performs
fairly well. While flows are sometimes misclassified causing a degradation in performance, none of the
TCP-friendly flows are shut out due to misclassification. This is in contrast to Figure 18 where a significant
number ofTCP flows receive verylittle bandwidth.

While the moving hash functions improve fairness across flows in the experiment, it is interesting to note
that every time the hash function is changed and the bins are reset, non-responsive flows are temporarily
placed on “parole”. That is, non-responsive flows are given the benefit of the doubt and are no longer
rate-limited. Only after these flows cause sustained packet loss, are they identified and rate-limited again.
Unfortunately, this can potentially allow such flows to grab much more than their fair share of bandwidth
over time. For example, as Figure 19(a) shows, non-responsive flows are allowed to consume3:85Mbs of
the bottleneck link. One way to solve this problem is to use two sets of bins. As one set of bins is being used
for queue management, a second set of bins using the next set of hash functions can be warmed up. In this
case, any time a flow is classified as non-responsive, it is hashed using the second set of hash functions and
the marking probabilities of the corresponding bins in the warmup set are updated. When the hash functions
are switched, the bins which have been warmed up are then used. Consequently, non-responsive flows are
rate-limited right from the beginning. Figure 19(b) shows the performance of this approach. As the figure
shows, the double buffered moving hash effectively controls the bandwidth of the non-responsive flows and
affords theTCP flows a very high level of protection.

One of the advantages of the moving hash function is that it can quickly react to non-responsive flows
which becomeTCP-friendly. In this case, changing the hash bins places the newly reformed flow out on
parole for good behavior. Only after the flow resumes transmitting at a high rate, is it again rate-limited. To
show this, an additional experiment was run using the same experimental setup as above. In this experiment,
one non-responsive flow with a transmission rate of5Mbs and one oscillating flow is run between network
endpoints. The oscillating flow transmits at5Mbs from t = 10s to t = 30s and fromt = 50s to t = 70s.
At all other times, the flow transmits at0:10Mbs, approximately a fair share of the bottleneck link. Table 4
shows the packet loss rates in the experiment. As the table shows, the first non-responsive flow sees a
sustained packet loss rate throughout the experiment which effectively limits its throughput to well below

21

Loss Rates (inMbs)
10s-30s 30s-50s 50s-70s 70s-100s

TCP Flows 0.402 0.358 0.260 0.324

Non-responsive Flow 4.866 4.849 4.898 4.863

Oscillating Flow 4.871 0.025 4.845 0.017

Total 10.139 5.232 10.003 5.204

Table 4:SFB loss rates (One non-responsive, One oscillating flow)

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

T
hr

ou
gh

pu
t (

M
bs

)

Non−responsive Flow Throughput = 0.23 Mbs

Fair Share

Figure 20: Bandwidth ofTCP flows (One non-responsive, one oscillating flow)

its transmission rate. The table also shows that when the second flow transmits at5Mbs, it observes a
sustained packet loss rate as a large fraction of its packets are dropped by the queue. When the second flow
cuts its transmission rate to a fair share of the link’s bandwidth, it is reclassified and a very small fraction
of its packets are dropped. Finally, the table shows that all 400TCP flows see a minimal amount of packet
loss throughout the experiment. Figure 20 shows the bandwidth plot for theTCP flows in the experiment.
As shown in the figure,SFB protects theTCP flows from the non-responsive flows, thus allowing them to
maintain close to a fair share of the bottleneck link.

4.5 Round-trip time sensitivity

The previous experiments withSFB use a network topology in which all of the connections have approx-
imately the same round-trip time. When a large number of connections with varying round-trip times are
used withSFB, fairness between flows can deteriorate. It has been shown thatTCP connections with smaller
round-trip times can dominate the bandwidth on the bottleneck link since their window increases are clocked
more frequently. When a small number of such connections are present,SFBcan mitigate this problem some-
what. Similar to the non-responsive flow cases above,TCP connections with small round-trips slowly drive
the marking probability of their bins higher. Thus, whenpmin is calculated, they receive a larger fraction
of congestion notification. However, when a large number ofTCP flows with varying round-trip times are
present, this mechanism breaks down just asSFB breaks down with a large number of non-responsive flows.

22

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30
T

hr
ou

gh
pu

t (
M

bs
)

Fair Share

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

T
hr

ou
gh

pu
t (

M
bs

)

Fair Share

(a) RED (b) SFB

Figure 21: Bandwidth ofTCP flows over varying round-trip times.

Figure 21 shows the performance of RED andSFB using the original network shown in Figure 4. Using
this network, 400 sources are randomly started between network end points. As the figure shows, both RED

andSFB show biases towards connections with smaller round-trip times. However, since all of the flows still
useTCP, the amount of unfairness between flows is limited.

5 Comparisons to Other Approaches

SFB provides one particular solution for identifying and rate-limiting non-responsive flows, thereby enforc-
ing fairness. This section comparesSFB to other related approaches.

5.1 RED with Penalty Box

The RED with penalty box approach takes advantage of the fact that high bandwidth flows see proportionally
larger amounts of packet loss. By keeping a finite log of recent packet loss events, this algorithm identifies
flows which are non-responsive based on the log [19]. Flows which are identified as being non-responsive
are then rate-limited using a mechanism such as class-based queueing [14]. While this approach may be
viable under certain circumstances, it is unclear how the algorithm performs in the face of a large number
of non-responsive flows. Unless the packet loss log is large, a single set of high bandwidth flows can poten-
tially dominate the loss log and allow other, non-responsive flows to go through without rate-limitation. In
addition, flows which are classified as non-responsive remain in the “penalty box” even if they subsequently
become responsive to congestion. A periodic and explicit check is thus required to move flows out of the
penalty box. Finally, the algorithm relies on aTCP-friendliness check in order to determine whether or not a
flow is non-responsive. Withouta priori knowledge of the round-trip time of every flow being multiplexed
across the link, it is difficult to accurately determine whether or not a connection isTCP-friendly.

23

5.2 FRED

Another proposal for using RED mechanisms to provide fairness is Flow-RED (FRED) [18]. The idea behind
FRED is to keep state based on instantaneous queue occupancy of a given flow. If a flow continually occupies
a large amount of the queue’s buffer space, it is detected and limited to a smaller amount of the buffer space.
While this scheme provides rough fairness in many situations, since the algorithm only keeps state for flows
which have packets queued at the bottleneck link, it requires a large amount of buffers to work well. Without
sufficient buffer space, it becomes hard for FRED to detect non-responsive flows since they may not have
enough packets continually queued to trigger the detection mechanism. In addition, non-responsive flows
are immediately re-classified as being responsive as soon as they clear their packets from the congested
queue. For small queue sizes, it is quite easy to construct a transmission pattern which exploits this property
of FRED in order to circumvent its protection mechanisms. Note thatSFB does not directly rely on queue
occupancy statistics, but rather long-term packet loss and link utilization behavior. Because of this,SFB

is better suited for protectingTCP flows against non-responsive flows using a minimal amount of buffer
space. Finally, as with the packet loss log approach, FRED also has a problem when dealing with a large
number of non-responsive flows. In this situation, the ability to distinguish these flows from normalTCP

flows deteriorates considerably since the queue occupancy statistics used in the algorithm become polluted.
By not using packet loss as a means for identifying non-responsive flows, FRED cannot make the distinction
betweenN TCP flows multiplexed across a link versusN non-responsive flows multiplexed across a link.

5.3 RED with per-flow Queueing

A RED-based, per-active flow approach has been proposed for providing fairness between flows [27]. The
idea behind this approach is to do per-flow accounting and queueing only for flows which are active. The
approach argues that since keeping a large amount of state is feasible, per-flow queueing and accounting is
possible even in the core of the network. The drawbacks of this approach is that it provides no savings in the
amount of state required. IfN flows are active,O(N) amount of state must be kept to isolate the flows from
each other. In addition, this approach does not address the large amount of legacy hardware which exists in
the network. For such hardware, it may be infeasible to provide per-flow queueing and accounting. Because
SFB provides considerable savings in the amount of state and buffers required, it is a viable alternative for
providing fairness efficiently.

5.4 Stochastic Fair Queueing

Stochastic Fair Queueing (SFQ) is similar to anSFB queue with only one level of bins. The biggest difference
is that instead of having separate queues,SFB uses the hash function for accounting purposes. Thus,SFB

has two fundamental advantages overSFQ. The first is that it can make better use of its buffers.SFB gets
some statistical multiplexing of buffer space as it is possible for the algorithm to overbook buffer space to
individual bins in order to keep the buffer space fully utilized. As described in Section 4.2, partitioning the
available buffer space adversely impacts the packet loss rates and the fairness amongstTCP flows. The other
key advantage is thatSFB is aFIFO queueing discipline. As a result, it is possible to change the hash function
on the fly without having to worry about packet re-ordering caused by mapping of flows into a different set
of bins. Without additional tagging and book-keeping, applying the moving hash functions toSFQcan cause
significant packet re-ordering.

24

5.5 Core-Stateless Fair Queueing

Core-Stateless Fair Queueing [26] (CSFQ) is a highly scalable approach for enforcing fairness between
flows without keeping any state in the core of the network. The approach relies on per-flow accounting
and marking at the edge of the network in conjunction with a probabilistic dropping mechanism in the core
of the network. The idea behindCSFQ is to estimate the rate of the flow at the ingress of the network or
network cloud and to attach an estimate of the flow’s sending rate toeverypacket that the flow sends. Given
this label, intermediate routers at congested links in the network calculate a dropping probability which is
derived from an estimate of a fair share of the bottleneck link capacity and the rate of the flow as identified
in the label.

While CSFQ provides an elegant and efficient solution to providing fairness, it relies on the use of
additional information that is carried in every packet of the flow. Thus, the scheme trades off overhead
in the packet header at every network link for resource management overhead at the bottleneck router. In
addition, it requires that both intermediate routers and edge devices adhere to the same labeling and dropping
algorithm. A misconfigured or poorly implemented edge device can significantly impact the fairness of the
scheme. SFB, on the other hand, does not rely on coordination between intermediate routers and edge
markers and can peform well without placing additional overhead in packet headers.

6 Conclusion and Future Work

This paper has demonstrated the inherent weakness of current active queue management algorithms which
use queue occupancy in their algorithms. In order to address this problem, a fundamentally different queue
management algorithm called BLUE has been designed and evaluated. BLUE uses the packet loss and link
utilization history of the congested queue, instead of queue lengths to manage congestion. In addition to
BLUE, this paper has proposed and evaluatedSFB, a novel algorithm for scalably and accurately enforcing
fairness amongst flows in a large aggregate. UsingSFB, non-responsive flows can be identified and rate-
limited using a very small amount of state.

As part of on-going work, several extensions toSFB are being considered. In particular, additional
mechanisms for managing non-responsive flows are being examined. In this paper, non-responsive flows
were rate-limited to a fixed amount of bandwidth across the bottleneck link. However, it is possible to
rate-limit non-responsive flows to a fair share of the link’s capacity. One way to do this is to estimate both
the number of non-responsive flows and the total number of flows going through the bottleneck. Using this
information, the rate-limiting mechanism can be setaccordingly. Another possible mechanism to find the
number of “polluted” bins and use it to derive the fraction of flows which are non-responsive. Assuming
perfect hash functions, this can be directly derived from simple analytical models ofSFB as described in
Section 4. Finally, the development of an “enhanced” BLUE queue management algorithm which is similar
to “enhanced” RED [8, 9] is being considered. By using BLUE, the buffer requirements needed to support
differentiated services can be greatly reduced.

References

[1] B. Bloom. Space/time Trade-offs in Hash Coding with Allowable Errors.Communications of the
ACM, 13(7), July 1970.

[2] R. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. Minshall,
C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang. Recommenda-

25

tions on Queue Management and Congestion Avoidance in the Internet.RFC 2309, April 1998.

[3] K. Cho. A Framework for Alternate Queueing: Towards Traffic Management by PC-UNIX Based
Routers.USENIX 1998 Annual Technical Conference, June 1998.

[4] I. Cidon, R. Guerin, and A. Khamisy. Protective Buffer Management Policies.IEEE/ACM Transactions
on Networking, 2(3), June 1994.

[5] S. Doran. RED Experience and Differentiated Queueing. InNANOG Meeting, June 1998.

[6] K. Fall and S. Floyd. Router Mechanisms to Support End-to-End Congestion Control.
ftp://ftp.ee.lbl.gov/papers/collapse.ps, February 1997.

[7] W. Feng, D. Kandlur, D. Saha, and K. Shin. Techniques for Eliminating Packet Loss in Congested
TCP/IP Networks. InUM CSE-TR-349-97, October 1997.

[8] W. Feng, D. Kandlur, D. Saha, and K. Shin. Understanding TCP Dynamics in an Integrated Services
Internet. InProc. of NOSSDAV ’97, May 1997.

[9] W. Feng, D. Kandlur, D. Saha, and K. Shin. Adaptive Packet Marking for Providing Differentiated
Services in the Internet. InProc. of ICNP ’98, October 1998.

[10] W. Feng, D. Kandlur, D. Saha, and K. Shin. A Self-Configuring RED Gateway. InProc. IEEE
INFOCOM, March 1999.

[11] S. Floyd. TCP and Explicit Congestion Notification.Computer Communication Review, 24(5):10–23,
October 1994.

[12] S. Floyd and V. Jacobson. On Traffic Phase Effects in Packet-Switched Gateways.Internetworking:
Research and Experience, 3(3):115–156, September 1992.

[13] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoidance.ACM/IEEE
Transactions on Networking, 1(4):397–413, August 1993.

[14] S. Floyd and V. Jacobson. Link-sharing and Resource Management Models for Packet Networks.
IEEE/ACM Transactions on Networking, 3(4), August 1995.

[15] R. Guerin, S. Kamat, V. Peris, and R. Rajan. Scalable QoS Provision Through Buffer Management. In
Proceedings of ACM SIGCOMM, September 1998.

[16] IEEE 802.11 Working Group. IEEE 802.11 Standard, June 1997.

[17] V. Jacobson. Congestion Avoidance and Control. InProceedings of ACM SIGCOMM, pages 314–329,
August 1988.

[18] D. Lin and R. Morris. Dynamics of Random Early Detection. InProc. of ACM SIGCOMM, September
1997.

[19] S. McCanne and S. Floyd. http://www-nrg.ee.lbl.gov/ns/. ns-LBNL Network Simulator, 1996.

[20] P. McKenney. Stochastic Fairness Queueing. InProc. IEEE INFOCOM, March 1990.

[21] R. Morris. TCP Behavior with Many Flows. InProc. IEEE International Conference on Network
Protocols, October 1997.

26

[22] Netperf. The Public Netperf Homepage: http://www.netperf.org/. The Public Netperf Homepage,
1998.

[23] V. Paxson. End-to-End Internet Packet Dynamics. InProc. of ACM SIGCOMM, September 1997.

[24] K. K. Ramakrishan and R. Jain. A Binary Feedback Scheme for Congestion Avoidance in Computer
Networks. ACM Transaction on Computer Systems, 8(2):158–181, May 1990.Review: Computing
Reviews, December 1990.

[25] K. Ramakrishnan and S. Floyd. A Proposal to Add Explicit Congestion Notification (ECN) to IP.RFC
2481, January 1999.

[26] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing: A Scalable Architecture to Ap-
proximate Fair Bandwidth Allocations in High Speed Networks. InProceedings of ACM SIGCOMM,
September 1998.

[27] B. Suter, T. V. Lakshman, D. Stiliadis, and A. Choudhury. Design Considerations for Supporting TCP
with Per-flow Queueing.Proc. IEEE INFOCOM, March 1998.

[28] V. K. Garg and K. Smolik and J. E. Wilkes. Applications Of CDMA In Wireless/Personal Communi-
cations. Prentice Hall Professional Technical Reference, October 1996.

[29] C. Villamizar and C. Song. High Performance TCP in ANSNET.Computer Communication Review,
24(5):45–60, October 1994.

27

