BLUE: A New Class of Active Queue Management Algorithms

Wu-chang Feng Dilip D. Kandlur} Debanjan Saha Kang G. Shin
tDepartment of EECS INetwork Systems Department
University of Michigan IBM T.J. Watson Research Center
Ann Arbor, MI 48105 Yorktown Heights, NY 10598
Phone: (313) 763-5363 Fax: (313) 763-4617 Phone: (914) 784-7194 Fax: (914) 784-6205
{wuchang,kgshin@eecs.umich.edu {kandlur,debanjar@watson.ibm.com
Abstract

In order to stem the increasing packet loss rates caused by an exponential increase in network traffic,
thelETF is considering the deployment of active queue management techniques suEh [ASR While
active queue management can potentially reduce packet loss rates in the Internet, this paper shows that
current techniques are ineffective in preventing high loss rates. The inherent problem with these queue
management algorithms is that they all use queue lengths as the indicator of the severity of congestion.
In light of this observation, a fundamentally different active queue management algorithm called B
is proposed. BUE uses packet loss and link idle events to manage congestion. Using simulation and
controlled experiments, IBJE is shown to perform significantly better tha® both in terms of packet
loss rates and buffer size requirements in the network. As an extensiaru, B novel technique for
enforcing fairness among a large number of flows is described. In particular, this paper proposes and
evaluates Stochastic FaitLBE (SFB), a queue management algorithm which can identify and rate-limit
non-responsive flows using a very small amount of state information.

Keywords:Congestion control, Internetcp, RED, queue management

1 Introduction

It is important to avoid high packet loss rates in the Internet. When a packet is dropped before it reaches its
destination, all of the resources it has consumed in transit are wasted. In extreme cases, this situation can
lead to congestion collapse [17]. Improving the congestion control and queue management algorithms in the
Internet has been one of the most active areas of research in the past few years. While a number of proposed
enhancements have made their way into actual implementations, connections still experience high packet
loss rates. Loss rates are especially high during times of heavy congestion, when a large number of connec-
tions compete for scarce network bandwidth. Recent measurements have shown that the growing demand
for network bandwidth has driven loss rates up across various links in the Internet [23]. In order to stem
the increasing packet loss rates caused by an exponential increase in network trafficy teeonsidering

the deployment of explicit congestion notificatiarcfy) [11, 24, 25] along with active queue management
techniques such ase® (Random Early Detection) [2, 11]. WhilecN is necessary for eliminating packet

loss in the Internet [10], this paper shows th&oReven when used in conjunction witlt, is ineffective

in preventing packet loss.

The basic idea behinde® queue management is to detect incipient congesioly and to convey con-
gestion notification to the end-hosts, allowing them to reduce their transmission rates before queues in the
network overflow and packets are dropped. To do thip Raintains an exponentially-weighted moving
average of the queue length which it uses to detect congestion. When the average queue length exceeds a
minimum threshold+in,;), packets are randomly dropped or marked with an explicit congestion notifica-
tion (ECN) bit. When the average queue length exceeds a maximum threshold, all packets are dropped or
marked. While RD is certainly an improvement over traditional drop-tail queues, it has several shortcom-
ings. One of the fundamental problems witadRand all other known active queue management techniques
is that they rely on queue lengths as an estimator of congestion. While the presence of a persistent queue
indicates congestion, its length gives very little information as to the severity of congestion, that is, the
number of competing connections sharing the link. In a busy period, a single source transmitting at a rate
greater than the bottleneck link capacity can cause a queue to build up just as easily as a large number of
sources can. Since theeR algorithm relies on queue lengths, it has an inherent problem in determining
the severity of congestion. As a resulgRrequires a wide range of parameters to operate correctly under
different congestion scenarios. Whil&R can achieve an ideal operating point, it can only do so when it
has a sufficient amount of buffer space and is correctly parameterized [5, 29].

In light of the above observation, this paper proposes®B a fundamentally different active queue
management algorithm which uses packet loss and link utilization history to manage congestizn. B
maintains a single probability, which it uses to mark (or drop) packets when they are queued. If the queue
is continually dropping packets due to buffer overflow,Ug increments the marking probability, thus
increasing the rate at which it sends back congestion notification. Conversely, if the queue becomes empty
or if the link is idle, BLUE decreases its marking probability. Using simulation and experimentation, this
paper demonstrates the superiority afug to ReD in reducing packet losses even when operating with a
smaller buffer. Using mechanisms based awB, a novel mechanism for effectively and scalably enforcing
fairness among a large number of flows is also proposed and evaluated.

The rest of the paper is organized as follows. Section 2 gives a descripticgpofuitl shows why it is
ineffective at managing congestion. Section 3 descrihesBand provides a detailed analysis and evalua-
tion of its performance. Section 4 describes and evaluates StochasticLair(8FB), an algorithm based
on BLUE which scalably enforces fairness amongst a large number of connections. Section 5 c@rpares
to other approaches which have been proposed to enforce fairness amongst connections. Finally, Section 6
concludes with a discussion of future work.

DupAcks/ECN travel back

Sending rate > L Mbs Queue increases Sending rate > L Mbs Queue increases some more
Sending rate > L Mbs Queue increases some more Sending rate < L Mbs Queue increases some more

EWMA increases to trigger RED Sources detect loss’ECN Queue overflows, max_th triggered

oo Cona > Coone) (1)
Sending rate > L Mbs Queue increases some more Sendin ;
3 g rate< L Mbs Queue clears but period of
Sinks generate DupAcks or ECN Sustained packet loss underutilization imminent due to
and ECN observed sustained packet loss and ECN

Figure 1: RED example

2 Background

One of the biggest problems wititP's congestion control algorithm over drop-tail queues is that the sources
reduce their transmission rates only after detecting packet loss due to queue overflow. Since considerable
amount of time may elapse between the packet drop at the router and its detection at the source, a large num-
ber of packets may be dropped as the senders continue transmission at a rate that the network cannot support.
RED alleviates this problem by detecting incipient congestarly and delivering congestion notification

to the end-hosts, allowing them to reduce their transmission rates before queue overflow occurs. In order
to be effective, a RD queue must be configured with a sufficient amount of buffer space to accommodate

an applied load greater than the link capacity from the instant in time that congestion is detected using the
gueue length trigger to the instant in time that the applied load decreases at the bottleneck link in response
to congestion natification. B also must ensure that congestion notification is given at a rate which suf-
ficiently suppresses the transmitting sources without underutilizing the link. Unfortunately, when a large
number ofTcpP sources are active, the aggregate traffic generated is extremely bursty [7, 10]. Bursty traffic
often defeats the active queue management techniques usegibbgifite queue lengths grow and shrink
rapidly, well before RD can react. Figure 1 shows a simplified pictorial example of h@m Runctions

under this congestion scenario.

The congestion scenario presented in Figure 1 occurs when a large numtm sdurces are active

Sending rate = L Mbs Sinks generate DupAcks or ECN

Queue drops and/or ECN-marks exactly
the correct amount of packets to keep
sending rate of sourcesat L Mbs

Figure 2: Ideal scenario

and when a small amount of buffer space is used at the bottleneck link. As the figure shows,lata
sufficient change in aggregater load (due tarcp opening its congestion window) causes the transmission
rates of thercp sources to exceed the capacity of thétlemeck link. At: = 2, the mismatch between

load and capacity causes a queue to build up at the bottleneck=A the average queue length exceeds
minyg, and the congestion-control mechanisms are triggered. At this point, congestion notification is sent
back to the end hosts at a rate dependent on the queue length and marking probahilityAt ¢t = 4,

theTcp receivers either detect packet loss or observe packets witretbribits set. In response, duplicate
acknowlegdements and/ocpr-basedecCN signals are sent back to the sources.tAt 5, the duplicate
acknowlegements and/acN signals make their way back to the sources to signal congestioh.=A6,

the sources finally detect congestion and adjust their transmission rates. Finally, at a decrease in
offered load at the bottleneck link is observed. Note that it has taken#freml until ¢ = 7 before the
offered load becomes less than the link’s capacity. Depending upon the aggressiveness of the aggregate
sources [7, 10] and the amount of buffer space available in the bottleneck link, a large amount of packet
loss and/or deterministiecN marking may occur. Such behavior leads to eventual underutilization of the
bottleneck link.

One way to solve this problem is to use a large amount of buffer space atethey&eways. For
example, it has been suggested that in order flep B work well, an intermediate router requires buffer
space that amounts to twice the bandwidth-delay product [29]. This approach, in fact, has been taken by
an increasingly large number of router vendors. Unfortunately, in networks with large bandwidth-delay
products, the use of a large amounts of buffer adds considerable end-to-end delay and delay jitter. This
severely impacts the ability to run interactive applications. In addition, the abundance of deployed routers
which have limited memory resources makes this solution undesirable.

Figure 2 shows how an ideal queue management algorithm works. In this figure, the congested gateway
delivers congestion notification at a rate which keeps the aggregate transmission ratexcefdberces at
or just below the clearing rate. Whileg® can achieve this ideal operating point, it can do so only when it
has a sulfficiently large amount of buffer space and is correctly parameterized.

3 BLUE

In order to remedy the shortcomings oER this section proposes and evaluates a fundamentally different
gueue management algorithm calledu&. Using both simulation and experimentation, & is shown to

Upon packet loss (a@;., > L) event:
if ((now - last_update) > freezetime) then
P = P +d1
last _update = NOW
Upon link idle event:
if ((now - last_update) > freezetime) then
P = P - d2
last _update = NOW

Figure 3: The BUE algorithm

overcome many of RD’s shortcomings. RD has been designed with the objective to (1) minimize packet
loss and queueing delay, (2) avoid global synchronization of sources, (3) maintain high link utilization, and
(4) remove biases against bursty sources. This section shows hogvdsther improves or matcheseR’s
performance in all of these aspects. The results also show that Bonverges to the ideal operating point
shown in Figure 2 in almost all scenarios, even when used with very small buffers.

3.1 The algorithm

The key idea behind BJE is to perform queue management based directly on packet loss and link utiliza-
tion rather than on the instantaneous or average queue lengths. This is in contrast to all known active queue
management schemes which use some form of queue occupancy in their congestion manageosent. B
maintains a single probability,,,, which it uses to mark (or drop) packets when they are enqueued. If the
gueue is continually dropping packets due to buffer overflovyBincrements,,,, thus increasing the rate

at which it sends back congestion notification. Conversely, if the queue becomes empty or if the link is idle,
BLUE decreases its marking probability. This effectively allowsJB to “learn” the correct rate it needs to

send back congestion notification. Figure 3 shows theeBalgorithm. Note that the figure also shows a
variation to the algorithm in which the marking probability is updated when the queue lergibdsxa cer-

tain value. This modification allows room to be left in the queue for transient bursts and allows the queue to
control queuing delay when the size of the queue being used is large. Besides the marking probabity, B
uses two other parameters which control how quickly the marking probability changes over time. The first is
freezetime This parameter determines the minimum time interval between two successive upgates of
This allows the changes in the marking probability to take effect before the value is updated again. While
the experiments in this chapter fireezetime as a constant, this value should be randomized in order to
avoid global synchronization [12]. The other parameters ugddaridd?2), determine the amount by which

pm IS incremented when the queue overflows or is decremented when the link is idle. For the experiments
in this paperd1 is set significantly larger tha#2. This is because link undetlization can occur when
congestion management is either too conservative or too aggressive, but packet loss occurs only when con-
gestion management is too conservative. By weighting heavily against packetlogsc8n quickly react

to a substantial increase in traffic load. Note that there are a myriad of ways in whican be managed.

While the experiments in this paper study a small range of parameter settings, experiments with additional

100Mbs 100Mbs

Figure 4: Network topology

Configuration| w, |

R1 0.0002
R2 0.002
R3 0.02
R4 0.2

Table 1: ReD configurations

parameter settings and algorithm variations have also been performed with the only difference being how
quickly the queue management algorithm adapts to the offered load. While 8eems extremely simple,

it provides a significant performance improvement even when compared & ajieue which has been
reasonably configured.

3.2 Packetloss rates using BD and BLUE

In order to evaluate the performance ofuB, a humber of experiments were run usimg [19] over a

small network shown in Figure 4. Using this network, Pareto on/off sources with mean on-times of 2
seconds and mean off-times of 3 seconds were run from one of the leftmost npgdes ¢, n3, n4) to one

of the rightmost nodes, ng, n7, ng, ng). In addition, all sources were enabled witbN support, were
randomly started within the first second of simulation, and us€éd packets. Packet loss statistics were
then measured after 100 seconds of simulation for 100 seconds. Loss statistics were also measered for R
using the same network and under identical conditions. For #® qieue,min;, andmaz,, were set

to 20% and 80% of the queue size, respectivelfgDR congestion notification mechanism was made as
aggressive as possible by settingz, to 1. For these experiments, this is the ideal settingot, since it
minimizes both the queueing delay and packet loss ratesgor[R0]. Given these settings, a range &R
configurations are studied which vary the valueugf the weight in the average queue length calculation

Configuration‘ freeze_time ‘ dl ‘ d2
B1 10ms 0.0025| 0.00025
B2 100ms 0.0025| 0.00025
B3 10ms 0.02 0.002
B4 100ms 0.02 0.002

Table 2: B.UE configurations

Buffer Size (in ms of delay)

(c) Loss Rates (4000 sources)

20.0
o—oB1l 100.0 F 7
5—aB2
B3 95.0
A~—AB4 0r]
15.0 - R11
a »—x R2 5
S +—+R3 E 90.0 - B
E — R4 =
g 100 1 2
g £ 850Ff]
s 3 G—oB1
s g B—aB2
g 8 &—<B3
K3 ol]
5o |] g 8o &—AB4
‘ *——kR1
*—x R2
75.0 R3| 1
—— R4
| oa & a
0.0 oo = -5 o o 700 ‘ ‘ ‘
0.0 50.0 100.0 150.0 200.0 0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay) Buffer Size (in ms of delay)
(a) Loss Rates (1000 sources) (b) Link Utilization (1000 sources)
40.0 ;
1000 & & & = & I
95.0 |]
30.0 -
12 c
0 o
S 2 900 |]
= 5
S £
é o]
§ 200 1 £ 850 F 1
s 3 G—oB1
3 g 5—aB2
g 8 &—<B3
K3 ol]
g 8o A—AB4
100 *——kR1
*—x R2
75.0 R3| 1
—— R4
0.0 - L L 70.0 I . .
0.0 50.0 100.0 150.0 200.0 0.0 50.0 100.0 150.0 200.0

Buffer Size (in ms of delay)

(d) Link Utilization (4000 sources)

Figure 5: Packet loss rates oER and BL.UE

for RED. It is interesting to note that as, gets smaller, the impact of queue length oBDR congestion
management algorithm gets smaller. For extremely small valueg,d&ReD’s algorithm becomes decoupled
from the queue length and thus acts more likeyB. Table 1 shows the configurations used f@DR For
the BLUE experimentsd1 andd2 are set so thatl is an order of magnitude larger thd®. Using these
values, thefreeze_time is then varied betweehdms and 100ms. Additional simulations using a wider
range of values were also performed and showed similar results.

Figure 5 shows the loss rates observed over different queue sizes usinglb@taid R=p with 1000
and 4000 connections present. In these experiments, the queue at the bottleneck link Heandéhis
sized froml00 K B to 1000 K B. This corresponds to queueing delays which range fioi®m.s and178ms
as shown in the figure. As Figure 5(a) shows, with 1000 connectiang; Bhaintains zero loss rates over all
gueue sizes even those which are below the bandwidth-delay product of the network [29]. This is in contrast
to ReD which suffers double-digit loss rates as the amount of buffer space decreases. An interesting point
in the ReD loss graph shown in Figure 5(a) is that it shows a significant dip in loss rates at a buffering
delay of around0ms. This occurs because of a special operating pointeb Rhen the average queue
length stays aboverazy, all the time. At several points during this particular experiment, the buffering
delay and offered load match up perfectly to cause the average queue length to stay at er@bgven
this operating region, thee® queue marks every packet, but the offered load is aggressive enough to keep
the queue full. This essentially allow=R to behave at times like BJE with a marking probability of 1
and a queueing delay equivalenttaiz;;. This unique state of operation is immediately disrupted by any
changes in the load or round-trip times, however. When the buffering delay is increased, the corresponding
round-trip times increase and cause the aggregadehavior to be less aggressive. Deterministic marking
on this less aggressive load causes fluctuations in queue length which can increase packet loss rates since
ReED undermarks packets at times. When the buffering delay is decreased, the corresponding round-trip
times decrease and cause the aggregakdehavior to be more aggressive. As a result, packet loss is often
accompanied with deterministic marking. When combined, this leads again to fluctuations in queue length.
At a load which is perfectly selected, the average queue lengttepfdan remain atnaz;, and the queue
can avoid packet loss and prevent queue fluctuations by marking every packet. Figure 5(b) shows the link
utilization across all experiments. As the figure shows, the link remains fully utilized for bethaRd
BLUE regardless of the parameter settings.

As Figure 5(c) shows, when the number of connections is increased to 4008, $8ill significantly
outperforms RD. Even with an order of magnitude more buffer spacepRtill cannot match BUE’s
loss rates using7.8ms of buffering at the bottleneck link. It is interesting to note thatuB’s marking
probability remains at 1 throughout the duration of all of these experiments. Thus, even though every packet
is being marked, the offered load can still cause a significant amount of packet loss. The reason why this
is the case is that thecp sources being used do not invoke a retransmission timeout upon receiving an
ECN signal with a congestion window of 1. Section 3.4 shows how this can significantly influence the
performance of both BD and B.UE. Figure 5(d) shows the link utilization for all of the 4000 connection
experiments. Again, regardless of the parameter settings, lEmraRd B_.ue achieve full link utilization.

The most important consequence of usinguB is that congestion control can be performed with a
minimal amount of buffer space. This reduces the end-to-end delay over the network, which in turn, im-
proves the effectiveness of the congestion control algorithm. In addition, smaller buffering requirements
allow more memory to be allocated to high priority packets [4, 15], and frees up memory for other router
functions such as storing large routing tables. Finally)B allows legacy routers to perform well even with
limited memory resources.

3.3 Understanding B.UE

To fully understand the difference between theoRand BLUE algorithms, Figure 6 compares their queue
length plots in an additional experiment using th¢ configuration of RUE and theR2 configuration of

RED. In this experiment, a workload of infinite sources is changed by increasing the number of connections
by 200 every 20 seconds. As Figure 6(a) showsp Rustains continual packet loss throughout the experi-
ment. In addition, at lower loads, periods of packet loss are often followed by periods of underutilization as
deterministic packet marking and dropping eventually causes too many sources to reduce their transmission

200

H ”W 200 T T T e o

160 { 160
o o
< <
s s
S 120 S 120
(5] Q
- -
(] (]
= =
g g
o 80 o 80
© ©
2 2
< <

40 40

0 Il Il Il 0 Il Il Il Il Il Il Il

00 100 200 30.0 400 500 600 70.0 80.0 00 100 200 30.0 400 500 600 70.0 80.0

Time (s) Time (s)
(a) RED (b) BLUE

Figure 6: Queue length plots ofe® and B.UE

200

L

Marking Probability
o o
> »

o
w

Average Queue Length (KB)

40

o
N

o
=

0 L L L L L L L 00
0.0 10.0 20.0 30.0 400 50.0 60.0 70.0 80.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s) Time (s)
Py
(a) Qave (b) 1—countxXpy

Figure 7: Marking behavior of BD

rates. In contrast, as Figure 6(b) shows, sinceBmanages its marking rate more intelligently, the queue
length plotis more stable. Congestion notification is given at a rate which neither causes periods of sustained
packet loss nor periods of continual underutilization. Only when the offered load rises to 800 connections,
does B UE sustain a significant amount of packet loss.

Figure 7 plots the average queue lengih.(.) and the marking probability:{—L——) of RED through-

1>count X pg,
out the experiment. The average queue lengthexf Bontributes directly to its marking probability singe

is a linear function 0By, (py = max, x ;2e<="7ui) As shown in Figure 7(a), the average queue length
of RED fluctuates considerably as it follows the fluctuations of the instantaneous queue length. Because of
this, the marking probability of RD, as shown in Figure 7(b), fluctuates considerably as well. In contrast,
Figure 8 shows the marking probability of BE. As the figure shows, the marking probability converges to

a value that results in a rate of congestion notification which prevents packet loss and keeps link utilization

high throughout the experiment. In fact, the only situation whereBcannot prevent sustained packet

10 -

0.9

0.8

0.7

0.6

05

0.4

Marking Probability

0.3

0.2

0.1

0.0 I I I I I I I
0.0 100 200 30.0 400 500 60.0 70.0 80.0

Time (s)

Figure 8: Marking behavior of BUE (p,,,)

loss is when every packet is being marked, but the offered load still overwhelms the bottleneck link. As
described earlier, this occurstatE 60s when the number of sources is increased to 800. The reason why
packet loss still occurs when every packet@N-marked is that for these sets of experiments,tbe im-
plementation used does not invoke an RTO wheB@mr signal is received with a congestion window of 1.
This adversely affects the performance of bo#tDRand BLUE in this experiment. Note that the comparison

of marking probabilities between#® and BLUE gives some insight as to how to makerperform better.

By placing a low pass filter on the calculated marking probability eébRit may be possible for RD’s
marking mechanism to behave in a manner similar toBs.

While low packet loss rates, low queueing delays, and high link utilization are extremely important,
the queue length and marking probability plots allow us to explore the effectivenesnadiitl B_.UE in
preventing global synchronization and in removing biases against bursty soureesattBmpts to avoid
global synchronization by randomizing its marking decision and by spacing out its marking. Unfortunately,
when aggregatgcP load changes dramatically as it does when a large amount of connections are present,
it becomes impossible foré to achieve this goal. As Figure 7(b) shows, the marking probabilitysss R
changes considerably over very short periods of time. Thas,Rils to mark packets evenly over time and
hence cannot remove synchronization among sources. As Figure 8 shows, the marking probahiiity of B
remains steady. As a resultL. Be marks packets randomly and evenly over time. Consequently, it does a
better job in avoiding global synchronization.

Another goal of RD is to eliminate biases against bursty sources in the network. This is done by limiting
the queue occupancy so that there is always room left in the queue to buffer transient bursts. In addition,
the marking function of RD takes into account the last packet marking time in its calculations in order
to reduce the probability that consecutive packets belonging to the same burst are marked. Using a single
marking probability, RUE achieves the same goal equally well. As the queue length plot oE Bhows
(Figure 6), the queue occupancy remains below the actual capacity, thus allowing room for a burst of packets.
In addition, since the marking probability remains smooth over large time scales, the probability that two
consecutive packets from a smoothly transmitting source are marked is the same as with two consecutive
packets from a bursty source.

10

200 T T i n 200

160 1 i 160 i
o o
< <
s s
S 120 |t © 120 |t
3 3
(] (]
=} =}
g g
O 80 & 80 f
© ©
2 2
[} [}
< <

40 |t i 40

0 ! I\ It it I 0 L Il Il Il Il Il Il Il

00 100 20.0 30.0 400 50.0 600 70.0 80.0 00 100 20.0 30.0 400 500 600 70.0 80.0
Time (s) Time (s)
(a) RED (b) BLUE

Figure 9: Queue length plots of#® and B_UE with ECN timeouts

3.4 The effect ofECN timeouts

All of the previous experiments usep sources which suppoHCN, but do not perform a retransmission
timeout upon receipt of arcN signal with a congestion window of 1. This has a significant, negative impact
on the packet loss rates observed for bodpRnd B.UE especially at high loads. Figure 9 shows the queue
length plot of RED and BLUE using the same experiments as in Section 3.2 with sources enabled
with ECN timeouts. Figure 9(a) shows that by deterministically marking packets:at;,, RED oscillates
between periods of packet loss and periods of underutilization as described in Section 2. Note that this is in
contrast to Figure 6(a) where withoEtN timeouts, TCP is aggressive enough to keep the queue occupied
when the load is sufficiently high. An interesting point to make is thab Ran effectively prevent packet
loss by setting itsnaz,, value sufficiently far below the size of the queue. In this experiment, a small
amount of loss occurs since deterministicN marking does not happen in time to prevent packet loss.
While the use oEcN timeouts allows RD to avoid packet loss, the deterministic marking eventually causes
underutilization at the bottleneck link. Figure 9(b) shows the queue length plotwf Bver the same
experiment. In contrast to &, BLUE avoids deterministic marking and maintains a marking probability
that allows it to achieve high link utilization while avoiding sustained packet loss over all workloads.

Figure 10 shows the corresponding marking behavior of bath &d B_UE in the experiment. As the
figure shows, BUE maintains a steady marking rate which changes as the workload is changed. On the other
hand, ReD’s calculated marking probability fluctuates from 0 to 1 throughout the experiment. When the
gueue is fully occupied, Bd overmarks and drops packets causing a subsequent period of underutilization as
described in Section 2. Conversely, when the queue is emptyuRdermarks packets causing a subsequent
period of high packet loss as the offered load increases well beyond the link’s capacity.

Figure 11 shows hovEcN timeouts impact the performance oER and BLUE. The figure shows
the loss rates and link utilization using the 1000 and 4000 connection experiments in Section 3.2. As
the figure shows, BUE maintains low packet loss rates and high link utilization across all experiments.
The figure also shows that the usemdN timeouts allows RD to reduce the amount of packet loss in
comparison to Figure 5. However, becausRften deterministically marks packets, it suffers from poor
link utilization unless correctly parameterized. The figure shows that only an extremely small valye of
(ConfigurationR1) allows ReD to approach the performance ot 8. As described earlier, a smali,
value effectively decouples congestion management from the queue length calculation neiiqgere

11

1.0 + ; 4 10 -
0.9 + q 0.9
0.8 + 4 0.8
0.7 +
0.6 |
0.5 K

0.4 |

o
~

Marking Probability
Marking Probability
o
(8]

0.3 |

o
w

0.2 |

o
N

0.1 H

o
s

0.0

0.0 | | | | | | |
0.0 10.0 200 30.0 40.0 50.0 60.0 70.0 80.0 0.0 10.0 200 30.0 40.0 50.0 60.0 70.0 80.0
Time (s) Time (s)

Py
(@) 0wt of RED (b) p., of BLUE

Figure 10: Marking behavior witBCN timeouts
management behave more like:.

3.5 Implementation

In order to evaluate BUE in a more realistic setting, it has been implemented in FreeBSD 2.2.7 using
ALTQ [3]. In this implementationECN uses two bits of the type-of-service (ToS) field in the IP header [25].
When B.UE decides that a packet must be dropped or marked, it examines one of the two bits to determine
if the flow is ECN-capable. If it is noteCN-capable, the packet is simply dropped. If the flonesN-
capable, the other bit is set and used as a signal todheeceiver that congestion has occurred. The
receiver, upon receiving this signal, modifies tiee> header of the return acknowledgment using a currently
unused bit in thecp flags field. Upon receipt of acp segment with this bit set, thecp sender invokes
congestion-control mechanisms as if it had detected a packet loss.

Using this implementation, several experiments were run on the testbed shown in Figure 12. Each
network node and link is labeled with the CPU model and link bandwidth, respectively. Note that all links
are shared Ethernet segments. Hence, the acknowledgments on the reverse path collide and interfere with
data packets on the forward path. As the figure shows, FreeBSD-based routers usingesitioerBRUE
gueue management on their outgoing interfaces are used to connect the Ethernet and Fast Ethernet segments.
In order to generate load on the system, a variable numbhegtpérf [22] sessions are run from thBM
PC 360and thewinbook XLto thelBM PC 365and theThinkpad 770 The router queue on the congested
Ethernet interface of thintellistation Zprois sized at;0K B which corresponds to a queueing delay of
about40ms. For the experiments with 8, a configuration with anin,, of 10K B, amaz;, of 40K B, a
mazx, of 1, and aw, of 0.002 was used. For the experiments witlUB, ad1l of 0.01, ad2 of 0.001 and
a freeze time of 50ms was used. To ensure that the queue management modifications did not create a
bottleneck in the router, the testbed was reconfigured exclusively with Fast Ethernet segments and a number
of experiments between network endpoints were run using thee Bnodifications on the intermediate
routers. In all of the experiments, the sustained throughput was always &hbies.

Figures 13(a) and (b) show the throughput and packet loss rates at the bottleneck link across a range
of workloads. The throughput measures the rate at which packets are forwarded through the congested
interface while the packet loss rate measures the ratio of the number of packets dropped at the queue and

12

5.0

G—oB1 100.0 F L —— 8 ——@ /ﬁ B
G—HaB2
20 - &—oB3]| |
A—AB4 95.0 / 4
*—*R1 S
8 *—x R2 5 v
230+t +—+R3| 4 g 90.0 1
9] — R4 =
e %/ \\ £ 850 a1l
c L \ B) co—>o0
g 2.0 >\)\\ \\\\\\ g 0 B2
[o} \ \ o
8 \ \ 19 >—<B3|]
N\ g 8o A—AB4
1.0 | A\ 1 FRRL
A *—x R2
\ 75.0 - +—+R3|]
—— R4
0.0 - ; - E| 70,0 ‘ ‘ ‘
0.0 50.0 100.0 150.0 200.0 0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay) Buffer Size (in ms of delay)
(a) Loss rates (1000 sources) (b) Link utilization (1000 sources)
5.0 ‘
G—oB1 100.0 F 3
G—8B2
20 - &—oB3]| |
’ / A—AB4 95.0 b
*—%R1
§ »—= R2 S /
230+t +—+R3| 4 T 90.0 / 1
ol —— R4 = a
3 2 /
b= ¥ 850/)]
& 2.0 - 1 <) G—oB1
o g , 5—8B2
® © >—<oB3
a L 4
e Y A—ABA
10 J > *—*R1
— — »— R2
~+ 75.0 | R3| 1
—— R4
0.0 T — & | 70.0 . . .
0.0 50.0 100.0 150.0 200.0 0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay) Buffer Size (in ms of delay)
(c) Loss rates (4000 sources) (d) Link utilization (4000 sources)

Figure 11: Performance off® and B_UE with ECN timeouts

the total number of packets received at the queue. In each experiment, throughput and packet loss rates
were measured over five 10-second intervals and then averaged. Note thatrtheurces used in the
experiment do notimplemegtN timeouts. As Figure 13(a) shows, both theu& queue and the optimally
configured RD queue maintain relatively high levels of throughput across all loads. However, sitre R
periodically allows the link to become underutilized, its throughput remains slightly below thatuef.BA\s

Figure 13(b) shows, BD sustains increasingly high packet loss as the number of connections is increased.
Since aggregatecp traffic becomes more aggressive as the number of connections increases, it becomes
difficult for RED to maintain low loss rates. Fluctuations in queue lengths occur so abruptly thatthe R
algorithm oscillates between periods of sustained marking and packet loss to periods of minimal marking
and link underutilization. In contrast,LBE maintains relatively small packet loss rates across all loads. At
higher loads, when packet loss is observed,) B maintains a marking probability which is approximately

1, causing it to mark every packet it forwards.

13

9.40

9.20

Throughput (Mbs)

9.10

IBM PC 360 IBM PC 365
150 MHz/64 MB 200 MHz/64 MB
Intellistation Intellistation
100Mbs MPro 100Mbs |\ £Pr0 10Mbs
WinBookXL Thinkpad 770
233 MHz/32 MB 400 MHz/128 MB 200 MHz/64 MB 266 MHz/64 MB
Figure 12: Experimental testbed
T 14.0 T
=—mBlue B Blue
O—ORED 120 L ©O—ORED i

10.0

8.0

6.0

|
Percent Packet Loss

4.0

2.0

0.0

0.0 20.0 40.0 60.0 80.0 100.0 120.0

Number of Connections

(a) Throughput

140.0 0.0

20.0 40.0 60.0 80.0 100.0 120.0 140.0
Number of Connections

(b) Percent packet loss

Figure 13: Queue management performance

4 Stochastic Fair BLUE

Up until recently, the Internet has mainly relied on the cooperative natureroéongestion control in order

to limit packet loss and fairly share network resources. Increasingly, however, new applications are being
deployed which do not usecp congestion control and are not responsive to the congestion signals given
by the network. Such applications are potentially dangerous because they drive up the packet loss rates
in the network and can eventually cause congestion collapse [17,23]. In order to address the problem of
non-responsive flows, a lot of work has been done to provide routers with mechanisms for protecting against
them [6, 18]. The idea behind these approaches is to detect non-responsive flows and to limit their rates so
that they do not impact the performance of responsive flows. This section describes and eSahchizstic

Fair BLUE (SFB), a novel technique for protectingcp flows against non-responsive flows using thesB
algorithm.sFBis highly scalable and enforces fairness using an extremely small amount of state and a small

14

Bll][n]: Lx N array of bins (L levels, N bins per level)
enque()
Calculate hash function valués, hq, ..., hr,_1;
Update bins at each level
fori=0toL —1
if (B[7][hi]-qlen > bin_size)
Bli][h;]-pm += delta;
Drop packet;
else if (B[¢][h;].qlen == 0)
Bli][h;].pm -= delta;
Pnin = MIN(BO][o]-p - BILIhL]po);
if (prin == 1)
ratelimit()
else
Mark/drop with probabilityp,,,.;

Figure 14:sFBalgorithm
amount of buffer space.

4.1 The algorithm

Figure 14 shows the bas&rs algorithm. SFB is a FIFO queueing algorithm that identifies and rate-limits
non-responsive flows based on accounting mechanisms similar to those used.with &8 maintains

N x L accounting bins. The bins are organizediilevels with N bins in each level. In adtion, sFB
maintains () independent hash functions, each associated with one level of the accounting bins. Each hash
function maps a flow into one of th¥ accounting bins in that level. The accounting bins are used to keep
track of queue occupancy statistics of packets belonging to a particular bin. This is in contrast to Stochastic
Fair Queueing [20]¢FQ) where the hash function maps flows into separate queues. EachdsiB keeps a
marking/dropping probability,,, as in BLUE, which is updated based on bin occupancy. As a packet arrives

at the queue, itis hashed into one of thebins in each of thd levels. If the number of packets mapped to

a bin goes above a certain threshold (i.e., the size of the hinjor the bin is increased. If the number of
packets drops to zerp,, is decreased.

The observation which drivesFs is that a non-responsive flow quickly drives, to 1 in all of the L
bins it is hashed into. Responsive flows may share one or two bins with non-responsive flows, however,
unless the number of non-responsive flows is extremely large compared to the number of bins, a responsive
flow is likely to be hashed into at least one bin that is not polluted with non-responsive flows and thus has
a normalp,,, value. The decision to mark a packet is basegh.gn,, the minimump,,, value of all bins to
which the flow is mapped into. I,,,;, is 1, the packet is identified as belonging to a non-responsive flow
and is then rate-limited. Note that this approach is akin to applying a Bloom filter on the incoming flows. In

15

Non-responsive

o N

Figure 15: Example ofFB

this case, the dictionary of messages or words is learned on the fly and consists of the IP headers of the non-
responsive flows which are multiplexed across the link [1]. When a non-responsive flow is identified using
these techniques, a number of options are available to limit the transmission rate of the flow. In this paper,
flows identified as being non-responsive are simply limited to a fixed amount of bandwidth. This policy
is enforced by limiting the rate of packet enqueues for flows wijth, values of 1. Figure 15 shows an
example of howsFB works. As the figure shows, a hon-responsive flow drives up the marking probabilities
of all of the bins it is mapped into. While thecp flow shown in the figure may map into the same bin

as the non-responsive flow at a particular level, it maps into normal bins at other levels. Because of this,
the minimum marking probability of thecp flow is below 1.0 and thus, it is not identified as being non-
responsive. On the other hand, since the minimum marking probability of the non-responsive flow is 1.0, it
is identified as being non-responsive and rate-limited.

Note that just as BuE’s marking probability can be used BFB to provide protection against non-
responsive flows, it is also possible to apply AdaptiebR maz, parameter to do the same. In this case, a
per-binmaz, value is kept and updated according to the behavior of flows which map into the bin. As with
RED, however, there are two problems which make this approach ineffective. The first is the fact that a large
amount of buffer space is required in order to gebRo perform well. The second is that the performance
of a RED-based scheme is limited since even a moderate amount of congestion requires setting of
1. Thus, RD, used in this manner, has an extremely difficult time distinguishing between a non-responsive
flow and moderate levels of congestion. In order to compare approaches, StochastiEed~8FRED) was
also implemented by applying the same techniques usesFfoto ReD.

4.2 Evaluation

Usingns, thesFa algorithm was simulated in the same network as in Figure 4 with the transmission delay
of all of the links set td 0ms. ThesFs queue is configured with00 K B of buffer space and maintains two

hash functions each mapping to 23 bins. The size of each bin is set to 13, approximately 50% more than
21—3”[of the available buffer space. Note that by allocating more %éﬁthe buffer space to each bisgs
effectively “overbooks” the buffer in an attempt to improve statistical multiplexing. Notice that even with

16

2Mbs non-responsive flow 45M bs non-responsive flow
Packet Loss{/bs) | sFB | RED | SFRED | sSFQ+ReD || sFB | RED | SFRED | SFQ+RED

Total 186| 1.79| 3.10 3.60 44.85| 13.39| 42.80 46.47
Non-responsive flow| 1.85| 0.03 | 0.63 1.03 44.84| 10.32| 40.24 43.94
All Tcpflows 0.01| 1.76 | 2.57 2.47 0.01 | 3.07 | 2.56 2.53

Table 3:sFBloss rates i/ bs (one non-responsive flow)

overbooking, the size of each bin is quite small. Sine®B performs extremely well under constrained
memory resourcesFs can still effectively maximize network efficiency. The queue is also configured to
rate-limit non-responsive flows 16 M bs.

In the experiments, 400cpP sources and one non-responsive, constant rate source are run for 100 sec-
onds from randomly selected nodesi (ny, ns, n3, n4) to randomly selected nodes ims(, ng, 77, ng, ng).
In one experiment, the non-responsive flow transmits at a ratd/dfs while in the other, it transmits at a
rate of45 M bs. Table 3 shows the packet loss observed in both experimenssBrAs the table shows, for
both experimentssFB performs extremely well. The non-responsive flow sees almost all of the packet loss
as it is rate-limited to a fixed amount of the link bandwidth. In addition, the table shows that in both cases,
a very small amount of packets froncp flows are lost. Table 3 also shows the performance @b .RIn
contrast tosFB, RED allows the non-responsive flow to maintain a throughput relatively close to its original
sending rate. As a result, the remainingp sources see a considerable amount of packet loss which causes
their performance to deteriorateFRED, on the other hand, does slightly better at limiting the rate of the
non-responsive flow, however, it cannot fully protect tlae sources from packet loss since it has a difficult
time discerning non-responsive flows from moderate levels of congestion. Finally, the experiments were
repeated usingrFQwith an equivalent number of bins (i.e., 46 distinct queues) and a buffer more than twice
the size {14 K B), making each queue equally sized& B. For each bin in thesFQ, the ReD algorithm
was applied withmin,, andmax,, values set a2 K’ B and8 K B, respectively. As the table showssQ
with RED does an adequate job of protectimgp flows from the non-responsive flow. However, in this case,
partitioning the buffers into such small sizes causes a significant amount of packet loss to occur. Additional
experiments show that as the amount of buffer space is decreased even further, the problem is exacerbated
and the amount of packet loss increases considerably.

To qualitatively examine the impact that the non-responsive flow hasemperformance, Figure 16(a)
plots the throughput of all 400cP flows usingsFB when the non-responsive flow sends ataf bs rate.
As the figure showssFs allows eachrcp flow to maintain close to a fair share of the bottleneck link’s
bandwidth while the non-responsive flow is rate-limited to well below its transmission rate. In contrast,
Figure 16(b) shows the same experiment using norngal ieue management. The figure shows that the
throughput of allrcp flows suffers considerably as the non-responsive flow is allowed to grab a large fraction
of the bottleneck link bandwidth. Figure 16(c) shows that whit&ED does succeed in rate-liting the
non-responsive flow, it also manages to drop a significant amount of packetsdmfiows. This is due to
the fact that the lack of buffer space and the ineffectiveness«f, combine to causeFREDto perform
poorly as described in Section 4.1. Finally, Figure 16(d) shows that ghitewith RED can effectively
rate-limit the non-responsive flows, the partitioning of buffer space causes the fairness between flows to
deteriorate as well. The large amount of packet loss induces a large number of retransmission timeouts
across a subset of flows which causes significant amounts of unfairness [21]. Thus, through the course of
the experiment, a fewcp flows are able to grab a disproportionate amount of the bandwidth while many of
the flows receive significantly less than a fair share of the bandwidth across the linkitiomtithis, SFQ

17

0.40 0.40

0.35 Non-responsive Flow Throughput = 0.16 Mbs b 0.35 Non-responsive Flow Throughput = 34.68 Mbs b
0.30 1 0.30 1
T.rg\ 0.25 | 1 T_é’\ 0.25 9
=3 =3
= .) = .
E_ 0.20 [-Fair Share o %% ° o e] E_ 0.20 LFair Share]
=) o o Op o
3 o o o0 o % o 3
S 015 ° ° ® 2°,%° o] = 015 | 1
TE 0% i oo 0w 000o o O&;%ooo * °s®o og °° ° o % "E
o 008 0%70 @005000° g 9 3
Lo S00fi0- 0B 55705 O 030 0a%y O S 2
010 MR PR TSA EEE oo :
o © ©
005 | . 0.05 [
o o
0.00 & L L I d 0.00 h . . . d
0 100 200 300 400 0 100 200 300 400
Flow Number Flow Number
(a) sFB (b) RED
0.40 T 1.20
0.35 Non-responsive Flow Throughput = 4.76 Mbs | 1 Non-responsive Flow Throughput = 0.10 Mbs
. . R 1.00 1
° . N °
0.30 og ° ° o ° . L] o o ° ° o R
o o < L o o ° |
Boxf,o° Jo oo o o T e 0] 2 0-80 ° K ot
= o0 ° (90 o . o o . o o ° S . =
2 0.20 ﬁ@iroshg(rpe % %0 o ° . (;00 8 oo Oo 0o ° 9 E_ 0.60 - . . °. ° i
g o ° OoO 00 o ° ooo o 0000 000 ®o ° °F g’ 3 ¢ o0 °° o ° ° °©
= 015 | % © °g o o° 00,9 o] e
= o o ° 3 IS oo o oo %% = X
= i o o o °®8 o o F 0.40 | Fair Share)
N Y - W [y SR
0.10 o ® o -
°
s © L i
0.05 [° 0] 020 1 o ° e ® &
o PR
0.00 H @EBO® oD v H 0.00 B @0 ®°% ® 0a®w ao® g o P opad wqoPo opf® om ® oo o
0 100 200 300 400 0 100 200 300 400
Flow Number Flow Number
(c) SFRED (d) sSFQ+RED

Figure 16: Bandwidth ofcp flows (45 M bs non-responsive flow)

with RED allows41—6th of the 400 flows to be mapped into the same queue as the non-responsive flow. Flows
that are unlucky enough to map into this bin receive an extremely small amount of the link bancwwijth.
in contrast, is able to protect all of thep flows in this experiment.

4.3 Limitations of SFB

While itis clear that the basi&rB algorithm can protectcp-friendly flows from non-responsive flows with-

out maintaining per-flow state, it is important to understand how it works and its limitasessffectively

usesL levels withV bins in each level to creat®¥” virtual buckets. This allowsFs to effectively identify

a single non-responsive flow in ah”” flow aggregate usin@ (L * N) amount of state. For example, in the
previous section, using two levels with 23 bins per level effectively creates 529 buckets. Since there are only
400 flows in the experimensFB is able to accurately identify and rate-limit a single non-responsive flow
without impacting the performance of any of the individuap flows. As the number of non-responsive
flows increases, the number of bins which become “polluted” or hgyealues of 1 increases. Conse-
guently, the probability that a responsive flow gets hashed into bins which are all polluted, and thus becomes

18

Probability of Misclassification

-

0.8 -

1o
WN P

06 -

04 -

02 -

N
Probability of Misclassification

0.8 -

0.6 -

04 -

0.2 -

L e

11
WN P

0 Li=a

I I I I I I I
0 10 100 200 300 400 500 600 700 800 900

Number of Non-Responsive Flows

(b) 900 bins

. . . | | | | -
20 30 40 50 60 70 80 90 0
Number of Non—-Responsive Flows

(&) 90 bins

Figure 17: Probability of misclassification

misclassified, increases. Clearly, misclassification limits the abilitgr#f to protect well behavedcp
flows.

Using simple probabilistic analysis, Equation (1) gives a closed-form expression of the probability that
a well-behavedcp flow gets misclassified as being non-responsive as a function of number of levels (L),
the number of bins per level (B), and the number of non-responsive/malicious flows (M), respectively.

p=l1- (- M

= ®

In this expression, wheh is 1, sFB behaves much likeFQ The key difference is thars using one level
is still aFiFo queueing discipline with a shared buffer whileqQ has separate per-bin queues and partitions
the available buffer space amongst them.

Using the result from Equation (1), it is possible to optimize the performancgE®iiven a priori
information about its operating environment. Suppose the number of simultaneously active non-responsive
flows can be estimated{) and the amount of memory available for use in &#® algorithm is fixed ().

Then, by minimizing the probability function in Equation (1) with the additional boundary condition that

I x N =, sFBcan be tuned for optimal performance. To demonstrate this, the probability for misclas-
sification across a variety of settings is evaluated. Figure 17(a) shows the probability of misclassifying a
flow when the total number of bins is fixed at 90. Figure 17(b) shows the same probability function when
the total number of bins is fixed at 900. In these figures, the number of levels used along with the
number of non-responsive flows are varied. As the figures show, when the number of non-responsive flows
is small compared to the number of bins, the use of multiple levels keeps the probability of misclassifi-
cation extremely low. However, as the number of non-responsive flows increases past half the number of
bins present, the single leveFs queue affords the smallest probability of misclassification. This is due to
the fact that when the bins are distributed across multiple legats) non-responsive flow pollutes a larger
number of bins. For example, using a single lesfe queue with 90 bins, a single non-responsive flow pol-
lutes only one bin. Using a two-leveFB queue with each level containing 45 bins, the number of effective
bins is 45¢45 (2025). However, a single non-responsive flow pollutes two bins (one per level). Thus, the
advantage gained by the two-lews#B queue is lost when additional non-responsive flows are added, as a
larger fraction of bins become polluted compared to the single-level situation.

19

0.30 0.30

0.25 Non-responsive Flows Throughput = 0.18 Mbs 0.25 Non-responsive Flows Throughput = 0.21 Mbs
o ° o ° o o 0p Oo
L o o o° o 4 L
7 0.20 . o o 7 0.20 _ ©% 0 Lo, o . °
= Fair Share 6 00 60 go © o = lair Share °0 . 45 00 o
2 015 [% |° ° 0 o 4o %0 2 015 [¢ % ®o 05 00570798800 w0 "0 o0 o0
S ° ° o ° o ©° 0® 00 o £ 0 6990059599;,800° 40 °
g @ Cog ° - ooo%ooo@#b;oo%%ooood%o§ o‘;;%o B 0899 g ° ° & Q(:o ;o 6 o % ©° o OOQ’ R o oc:
S L @ ,0&590&706’,0,%&&&% & g o 7S S L2 ool e OB g2 R0 % 0e o Dol o % o
£ 25, 2o 00,0 90 2556 0508 25 ST £ WS T o0 @ 9835 o BT 005w Y
= 0.10 *oog,m“’gf&é}%%%%o @wogjO" %g‘b%dg@oé’o&oo og;o o ol F 010 28w, gmy G o ¥8° o %0 w®o 830000 00"’?6’0 R
0.05 1 0.05
° oo ° ° o o° ° ° 08° §0a® o 00 o0 0 O P00 ar0® o Q0 o
0.00 k ‘ ‘ °, d 0.00 h Tt e oo Be °
0 100 200 300 400 0 100 200 300 400
Flow Number Flow Number
(@) 4 non-responsive flows (b) 8 non-responsive flows

Figure 18: Bandwidth of cp flows usingsFB

In order to evaluate the performance degradatiagrafas the number of non-responsive flows increases,
Figure 18 shows the bandwidth plot of the 400p flows when 4 and 8 non-responsive flows are present.
In these experiments, each non-responsive flow transmits at a ratéiof As Equation (1) predicts, in an
SFB configuration that contains two levels of 23 bigs;5% of the Tcp flows (11) are misclassified when
4 non-responsive flows are present. Similarly, when 8 non-responsive flows are pyeXEnt(36) of the
TcP flows are misclassified. When the number of non-responsive flows appro&chie performance of
SFB deteriorates quickly as an increasing number of bins at each level becomes polluted. In the case of
8 non-responsive flows, approximately 6 bins or one-fourth of the bins in each level are polluted. As the
figure shows, the number of misclassified flows matches the model quite closely. Note that even though a
larger number of flows are misclassified as the number of non-responsive flows increases, the probability of
misclassification in a two-levedrs still remains below that o§FQ or a single-levekFB. Using the same
number of bins (46), the equation predicts thepand a single-levedFB misclassifys.42% of theTcpr flows
(34) when 4 non-responsive flows are present &htl2% of the Tcp flows (64) when 8 non-responsive are
present.

4.4 srFB with moving hash functions

In this section, two basic problems with tBeB algorithm are addressed. The first, as described above, is
to mitigate the effects of misclassification. The second is to be able to detect when non-responsive flows
become responsive and to reclassify them when they do.

The idea behindFB with moving hash functions is to periodically or randomly reset the bins and change
the hash functions. A non-responsive flow will continually be identified and rate-limited regardless of the
hash function used. However, by changing the hash function, respors®vBows that happen to map
into polluted bins will potentially be remapped into at least one unpolluted bin. Note that this technique
effectively creates virtual bins across time just as the multiple levels of bins in the original algorithm creates
virtual bins across space. In many ways the effect of using moving hash functions is analogous to channel
hopping in CDMA [16, 28] systems. It essentially reduces the likelihood of a responsive connection being
continually penalized due to erroneous assignment into polluted bins.

To show the effectiveness of this approach, the idea of moving hash functions was applied to the exper-

20

0.30

0.25 r

Throughput (Mbs)

0.10

0.20 r

0.15 ¢

Non-responsive Flow Throughput =

3.85 Mbs

Fair Share

)

4)’5%

5 0

s % o
o

e

005+ °

0.00

%’ %é&)@ o
%o:; Qggg

o, 0%

° &

<5>

o
°

L

o
Tk
>

o ° 50 0
wgae % o s
.
PSR A
089’ 62 9o FHE O b B “$E e
08 S 06000 ¥ g
E

()
0 0%
o

o
o

00
oo 8
e° © &
oo

I
100

.
200
Flow Number

I
300 400

Throughput (Mbs)

0.30

0.25 r

0.20 r

0.15 r

0.10 foe°

0.05 r

0.00

Non-responsive Flow Throughput = 0.19 Mbs

Fair Share

d

. .
200 300
Flow Number

I
100

400

(&) Moving hash (b) Double buffered moving hash

Figure 19: Bandwidth ofcp flows using modifiedsFB algorithms

iment in Figure 18(b). In this experiment, 8 non-responsive flows along with 400 responsive flows share
the bottleneck link. To protect against continual misclassification, the hash function is changed every two
seconds. Figure 19(a) shows the bandwidth plot of the experiment. As the figure strayserforms

fairly well. While flows are sometimes misclassified causing a degradation in performance, none of the
Tcp-friendly flows are shut out due to misclassification. This is in contrast to Figure 18 where a significant
number ofrcp flows receive veryittle bandwidth.

While the moving hash functions improve fairness across flows in the experiment, it is interesting to note
that every time the hash function is changed and the bins are reset, non-responsive flows are temporarily
placed on “parole”. That is, non-responsive flows are given the benefit of the doubt and are no longer
rate-limited. Only after these flows cause sustained packet loss, are they identified and rate-limited again.
Unfortunately, this can potentially allow such flows to grab much more than their fair share of bandwidth
over time. For example, as Figure 19(a) shows, non-responsive flows are allowed to c8risuhés of
the bottleneck link. One way to solve this problemis to use two sets of bins. As one set of bins is being used
for queue management, a second set of bins using the next set of hash functions can be warmed up. In this
case, any time a flow is classified as hon-responsive, it is hashed using the second set of hash functions and
the marking probabilities of the corresponding bins in the warmup set are updated. When the hash functions
are switched, the bins which have been warmed up are then used. Consequently, non-responsive flows are
rate-limited right from the beginning. Figure 19(b) shows the performance of this approach. As the figure
shows, the double buffered moving hash effectively controls the bandwidth of the non-responsive flows and
affords thercp flows a very high level of protection.

One of the advantages of the moving hash function is that it can quickly react to non-responsive flows
which becomercp-friendly. In this case, changing the hash bins places the newly reformed flow out on
parole for good behavior. Only after the flow resumes transmitting at a high rate, is it again rate-limited. To
show this, an additional experiment was run using the same experimental setup as above. In this experiment,
one non-responsive flow with a transmission raté &fbs and one oscillating flow is run between network
endpoints. The oscillating flow transmitsfat/ bs from ¢ = 10s to¢ = 30s and from¢ = 50s tot = 70s.

At all other times, the flow transmits a&t10 M bs, approximately a fair share of the bottleneck link. Table 4
shows the packet loss rates in the experiment. As the table shows, the first non-responsive flow sees a
sustained packet loss rate throughout the experiment which effectively limits its throughput to well below

21

Loss Rates (il bs)
10s-30s | 30s-50s \ 505-70s \ 70s-100s

TCcPFlows 0.402 | 0.358 0.260 0.324
Non-responsive Flow 4.866 4.849 4.898 4.863
Oscillating Flow 4.871 0.025 4.845 0.017
Total 10.139 | 5.232 | 10.003 | 5.204

Table 4:sFBloss rates (One non-responsive, One oscillating flow)

0.30

Non-responsive Flow Throughput = 0.23 Mbs

0.20 r

Fair Share

Throughput (Mbs)

0.05 r

L L L Il
0 100 200 300 400
Flow Number

Figure 20: Bandwidth of cp flows (One non-responsive, one oscillating flow)

its transmission rate. The table also shows that when the second flow transiit& gt it observes a
sustained packet loss rate as a large fraction of its packets are dropped by the queue. When the second flow
cuts its transmission rate to a fair share of the link’s bandwidth, it is reclassified and a very small fraction

of its packets are dropped. Finally, the table shows that all40flows see a minimal amount of packet

loss throughout the experiment. Figure 20 shows the bandwidth plot farabéows in the experiment.

As shown in the figuresFB protects thercp flows from the non-responsive flows, thus allowing them to
maintain close to a fair share of the bottleneck link.

4.5 Round-trip time sensitivity

The previous experiments witFB use a network topology in which all of the connections have approx-
imately the same round-trip time. When a large number of connections with varying round-trip times are
used withsFB, fairness between flows can deteriorate. It has been showndhabnnections with smaller
round-trip times can dominate the bandwidth on the bottleneck link since their window increases are clocked
more frequently. When a small number of such connections are presecan mitigate this problem some-

what. Similar to the non-responsive flow cases aboee,connections with small round-trips slowly drive

the marking probability of their bins higher. Thus, whep;,, is calculated, they receive a larger fraction

of congestion notification. However, when a large numbera¥ flows with varying round-trip times are
present, this mechanism breaks down justesbreaks down with a large number of non-responsive flows.

22

0.30

T 0.30
0.25 r 0.25 r
~ 0.20 ~ 0.20
8 . ° 8 o _°
s . Fajr Share . s Fair Share © R
= ° o = ° | o o 3
20150 .94 ° C o T P 201505 F|% 57 0 8 % oo o S0 e o0 8o oo]
5 00w © ® > & o o o® < olg ° ° o o o %y o
2 BR L BB N SRR 2 NG 8 cady SF B @
e ° ° ° ° e 092§ o ‘e 2o _2 °
£ e o 8o oo T Sess — o 50 o o o3 0T o £ Fofe 89 55 8.0 5 0 0068 g T a0 T 5 T B B
Lo o o %6 o % oo o o <) 90 26 oo | [oe® e ® 0 ®, B gooq ° 8 |
" 010 Mo G, g tukeny SR SRRl] T 010 [G el T 0, 08 e B of L A 1
o ° F % % % o oo B & ?
RPeCBELERTPRIED S, et Lhre BTk
P
0.05 4 0.05 0 ° °
0.00 h I I I d 0.00 h I I I d
0 100 200 300 400 0 100 200 300 400
Flow Number Flow Number
(a) Rep (b) sFB

Figure 21: Bandwidth of cp flows over varying round-trip times.

Figure 21 shows the performance afiRandsFB using the original network shown in Figure 4. Using
this network, 400 sources are randomly started between network end points. As the figure showspboth R
andsFB show biases towards connections with smaller round-trip times. However, since all of the flows still
useTCP, the amount of unfairness between flows is limited.

5 Comparisons to Other Approaches

SFB provides one particular solution for identifying and rate-limiting non-responsive flows, thereby enforc-
ing fairness. This section comparess to other related approaches.

5.1 ReD with Penalty Box

The ReD with penalty box approach takes advantage of the fact that high bandwidth flows see proportionally
larger amounts of packet loss. By keeping a finite log of recent packet loss events, this algorithm identifies
flows which are non-responsive based on the log [19]. Flows which are identified as being non-responsive
are then rate-limited using a mechanism such as class-based queueing [14]. While this approach may be
viable under certain circumstances, it is unclear how the algorithm performs in the face of a large number
of non-responsive flows. Unless the packet loss log is large, a single set of high bandwidth flows can poten-
tially dominate the loss log and allow other, non-responsive flows to go through without rate-limitation. In
addition, flows which are classified as hon-responsive remain in the “penalty box” even if they subsequently
become responsive to congestion. A periodic and explicit check is thus required to move flows out of the
penalty box. Finally, the algorithm relies orrap-friendliness check in order to determine whether or not a
flow is non-responsive. Withouat priori knowledge of the round-trip time of every flow being multiplexed
across the link, it is difficult to accurately determine whether or not a connectiapifriendly.

23

5.2 FRRED

Another proposal for using 8 mechanisms to provide fairness is FlovelR(FRED) [18]. The idea behind

FRED s to keep state based on instantaneous queue occupancy of a given flow. If a flow continually occupies
a large amount of the queue’s buffer space, it is detected and limited to a smaller amount of the buffer space.
While this scheme provides rough fairness in many situations, since the algorithm only keeps state for flows
which have packets queued at the bottleneck link, it requires a large amount of buffers to work well. Without
sufficient buffer space, it becomes hard faore#® to detect non-responsive flows since they may not have
enough packets continually queued to trigger the detection mechanism. In addition, non-responsive flows
are immediately re-classified as being responsive as soon as they clear their packets from the congested
gueue. For small queue sizes, it is quite easy to construct a transmission pattern which exploits this property
of FRED in order to circumvent its protection mechanisms. Note #r# does not directly rely on queue
occupancy statistics, but rather long-term packet loss and link utilization behavecauBe of thissFB

is better suited for protectingcp flows against non-responsive flows using a minimal amount of buffer
space. Finally, as with the packet loss log approacétgd-also has a problem when dealing with a large
number of non-responsive flows. In this situation, the ability to distinguish these flows from nocmal

flows deteriorates considerably since the queue occupancy statistics used in the algorithm become polluted.
By not using packet loss as a means for identifying non-responsive fleesy €annot make the distinction
betweenV Tcp flows multiplexed across a link versids non-responsive flows multiplexed across a link.

5.3 ReD with per-flow Queueing

A RED-based, per-active flow approach has been proposed for providing fairness between flows [27]. The
idea behind this approach is to do per-flow accounting and queueing only for flows which are active. The
approach argues that since keeping a large amount of state is feasible, per-flow queueing and accounting is
possible even in the core of the network. The drawbacks of this approach is that it provides no savings in the
amount of state required. I flows are activeQ (N) amount of state must be kept to isolate the flows from

each other. In adtion, this approach does not address the large amount of legacy hardware which exists in
the network. For such hardware, it may be infeasible to provide per-flow queueing and accounting. Because
SFB provides considerable savings in the amount of state and buffers required, it is a viable alternative for
providing fairness efficiently.

5.4 Stochastic Fair Queueing

Stochastic Fair Queueingkq) is similar to arnsFe queue with only one level of bins. The biggest difference

is that instead of having separate quews® uses the hash function for accounting purposes. ThEB,

has two fundamental advantages o8€eR. The first is that it can make better use of its buffessB gets

some statistical multiplexing of buffer space as it is possible for the algorithm to overbook buffer space to
individual bins in order to keep the buffer space fully utilized. As described in Section 4.2, partitioning the
available buffer space adversely impacts the packet loss rates and the fairness ammfigsts. The other

key advantage is thatBis aFiFO queueing discipline. As aresult, it is possible to change the hash function
on the fly without having to worry about packet re-ordering caused by mapping of flows into a different set
of bins. Without additional tagging and book-keeping, applying the moving hash functiergttan cause
significant packet re-ordering.

24

5.5 Core-Stateless Fair Queueing

Core-Stateless Fair Queueing [26]sEQ is a highly scalable approach for enforcing fairness between
flows without keeping any state in the core of the network. The approach relies on per-flow accounting
and marking at the edge of the network in conjunction with a probabilistic dropping mechanism in the core
of the network. The idea behintsFQis to estimate the rate of the flow at the ingress of the network or
network cloud and to attach an estimate of the flow’s sending raesxypacket that the flow sends. Given

this label, intermediate routers at congested links in the network calculate a dropping probability which is
derived from an estimate of a fair share of the bottleneck link capacity and the rate of the flow as identified
in the label.

While csrQ provides an elegant and efficient solution to providing fairness, it relies on the use of
additional information that is carried in every packet of the flow. Thus, the scheme trades off overhead
in the packet header at every network link for resource management overhead at the bottleneck router. In
addition, it requires that both intermediate routers and edge devices adhere to the same labeling and dropping
algorithm. A misconfigured or poorly implemented edge device can significantly impact the fairness of the
scheme. sFB, on the other hand, does not rely on coordination between intermediate routers and edge
markers and can peform well without placing additional overhead in packet headers.

6 Conclusion and Future Work

This paper has demonstrated the inherent weakness of current active queue management algorithms which
use queue occupancy in their algorithms. In order to address this problem, a fundamentally different queue
management algorithm called.BE has been designed and evaluateduB uses the packet loss and link
utilization history of the congested queue, instead of queue lengths to manage congestion. In addition to
BLUE, this paper has proposed and evaluates, a novel algorithm for scalably and accurately enforcing
fairness amongst flows in a large aggregate. Usirg non-responsive flows can be identified and rate-
limited using a very small amount of state.

As part of on-going work, several extensionsges are being considered. In particular, additional
mechanisms for managing non-responsive flows are being examined. In this paper, non-responsive flows
were rate-limited to a fixed amount of bandwidth across the bottleneck link. However, it is possible to
rate-limit non-responsive flows to a fair share of the link’s capacity. One way to do this is to estimate both
the number of non-responsive flows and the total number of flows going through the bottleneck. Using this
information, the rate-limiting mechanism can be aetordingly. Another possible mechanism to find the
number of “polluted” bins and use it to derive the fraction of flows which are non-responsive. Assuming
perfect hash functions, this can be directly derived from simple analytical modekssadis described in
Section 4. Finally, the development of an “enhancedUB queue management algorithm which is similar
to “enhanced” RD [8, 9] is being considered. By using.BE, the buffer requirements needed to support
differentiated services can be greatly reduced.

References

[1] B. Bloom. Space/time Trade-offs in Hash Coding with Allowable Erro@ommunications of the
ACM, 13(7), July 1970.

[2] R. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. Minshall,
C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang. Recommenda-

25

tions on Queue Management and Congestion Avoidance in the INt&R€Et2309 April 1998.

[3] K. Cho. A Framework for Alternate Queueing: Towards Traffic Management by PC-UNIX Based
Routers.USENIX 1998 Annual Technical Conferendene 1998.

[4] I. Cidon, R. Guerin, and A. Khamisy. Protective Buffer Management Politi#s=/ACM Transactions
on Networking2(3), June 1994,

[5] S. Doran. RED Experience and Differentiated QueueingNANOG MeetingJune 1998.

[6] K. Fall and S. Floyd. Router Mechanisms to Support End-to-End Congestion Control.
ftp://ftp.ee.lbl.gov/papers/collapse.ps, February 1997.

[7] W. Feng, D. Kandlur, D. Saha, and K. Shin. Techniques for Eliminating Packet Loss in Congested
TCP/IP Networks. IlUM CSE-TR-349-90ctober 1997.

[8] W. Feng, D. Kandlur, D. Saha, and K. Shin. Understanding TCP Dynamics in an Integrated Services
Internet. InProc. of NOSSDAV '9May 1997.

[9] W. Feng, D. Kandlur, D. Saha, and K. Shin. Adaptive Packet Marking for Providing Differentiated
Services in the Internet. IAroc. of ICNP '98 October 1998.

[10] W. Feng, D. Kandlur, D. Saha, and K. Shin. A Self-Configuring RED GatewayPrtt. IEEE
INFOCOM, March 1999.

[11] S. Floyd. TCP and Explicit Congestion Notificatiddomputer Communication Revig24(5):10-23,
October 1994.

[12] S. Floyd and V. Jacobson. On Traffic Phase Effects in Packet-Switched Gatdwigyaetworking:
Research and Experienc&(3):115-156, September 1992.

[13] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoid&dEEE
Transactions on Networking.(4):397—-413, August 1993.

[14] S. Floyd and V. Jacobson. Link-sharing and Resource Management Models for Packet Networks.
IEEE/ACM Transactions on Networking(4), August 1995.

[15] R. Guerin, S. Kamat, V. Peris, and R. Rajan. Scalable QoS Provision Through Buffer Management. In
Proceedings of ACM SIGCOMMseptember 1998.

[16] IEEE 802.11 Working Group. IEEE 802.11 Standard, June 1997.

[17] V. Jacobson. Congestion Avoidance and ControPioceedings of ACM SIGCOMMages 314-329,
August 1988.

[18] D. Linand R. Morris. Dynamics of Random Early DetectionPlmc. of ACM SIGCOMMSeptember
1997.

[19] S. McCanne and S. Floyd. http://www-nrg.ee.Ibl.gov/ns/. ns-LBNL Network Simulator, 1996.
[20] P. McKenney. Stochastic Fairness Queueind?roc. IEEE INFOCOM March 1990.

[21] R. Morris. TCP Behavior with Many Flows. IRroc. IEEE International Conference on Network
Protocols October 1997.

26

[22] Netperf. The Public Netperf Homepage: http://www.netperf.org/. The Public Netperf Homepage,
1998.

[23] V. Paxson. End-to-End Internet Packet DynamicsPioc. of ACM SIGCOMMSeptember 1997.

[24] K. K. Ramakrishan and R. Jain. A Binary Feedback Scheme for Congestion Avoidance in Computer
Networks. ACM Transaction on Computer Syster@§2):158-181, May 1990Review: Computing
ReviewsDecember 1990.

[25] K. Ramakrishnan and S. Floyd. A Proposal to Add Explicit Congestion Notification (ECN) RHE.
2481, January 1999.

[26] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing: A Scalable Architecture to Ap-
proximate Fair Bandwidth Allocations in High Speed NetworksPtoceedings of ACM SIGCOMM
September 1998.

[27] B. Suter, T. V. Lakshman, D. Stiliadis, and A. Choudhury. Design Considerations for Supporting TCP
with Per-flow QueueingProc. IEEE INFOCOM March 1998.

[28] V. K. Garg and K. Smolik and J. E. Wilkes. Applications Of CDMA In Wireless/Personal Communi-
cations. Prentice Hall Professional Technical Reference, October 1996.

[29] C. Villamizar and C. Song. High Performance TCP in ANSNEImputer Communication Revigw
24(5):45-60, October 1994.

27

