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Abstract 

This work documents the implementation of the BLUE Active Queue Management 

algorithm for the Linux Operating System and its evaluation by measurements. 

The issues of Active Queue Management (AQM), and the search for the most adequate 

AQM algorithms are important in these days because of the changing traffic dynamics – 

mostly congestion – on the Internet, and the rising quality expectations held by the 

customers. 

One of the oldest and the most known AQM scheme is RED (Random Early Detection), 

but there are other proposed algorithms also. The BLUE algorithm is one of these, and 

tries to be superior in heavily congested situations by using a different approach, which 

decouples the queue management from the queue length. 

The conclusion is that while BLUE outperforms RED in scalability and low setup 

resource demand, but if not available, RED can be also hand-tuned to achieve similar or 

close results. 

 ii



 

Áttekintés 

Ezen munka témája a csomagkapcsolt hálózatokhoz kifejlesztett BLUE Aktív Sorkezelő 

algoritmus megvalósítása Linux Operációs Rendszerre és az ezt követő mérés alapú 

vizsgálata. 

Az utóbbi években az Internet forgalmának jellege – és ezzel az okozott torlódás is – 

jelentősen megváltozott, és a felhasználói tábor minőségi elvárásai is emelkedtek. 

Ennek köszönhető, hogy az Aktív Sorkezelés (Active Queue Management) kérdései, és 

a kívánalmaknak leginkább megfelelő sorkezelő algoritmusok kutatása egyre 

fontosabbak napjainkban. 

Az egyik legrégebbi és legjobban ismert Aktív Sorkezelő algoritmus a RED (Random 

Early Detection), de a kutatói közösség sok más további algoritmust is felvetett már. A 

BLUE is ezek egyike. A BLUE függetleníteni igyekszik magát a sor hosszától, így 

próbálja a többi algoritmusnál jobban kezelni a súlyos torlódással járó helyzeteket. 

A két algoritmus vizsgálatának végkövetkeztetése az, hogy bár a BLUE skálázhatóbb, 

alap beállításokkal is szinte minden körülmények között jól teljesítő mechanizmus, a 

RED megfelelő hangolásával ez az egyes esetekre megközelíthető. 
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1 Introduction 

In it’s first years the Internet was rather a test network among several universities and 

research institutes. It worked well even with very simple flow control algorithms, 

because the offered traffic was usually less then the transfer capacity of the network. 

When usage got higher, series of congestion collapses in the late ‘80-s motivated the 

research community to elaborate and deploy congestion control mechanisms such as 

Slow Start and Congestion Avoidance [1] for TCP (Transmission Control Protocol). This 

made the participants of the communication more aware of the network bottlenecks 

between them. 

In the ‘90-s the Internet grow 100 to 1000-times again in number of hosts and users [2], 

and by orders of magnitude higher in traffic. The shift from a research network to a 

business and entertainment environment also changed the type and dynamics of the 

traffic. In spite of this, these algorithms serve surprisingly well even for now, with only 

little additions. 

However, this period was dominated by telephone dial-in access and best-effort-only 

Internet traffic, significant conditions that are likely to change in the near future. 

Introduction of xDSL for residential users and 100 Mb/s Ethernet access for business 

customers results in a much higher traffic load on the distribution and core routers as 

well. 

1.1 Motivation 

For better interactive experience, we need lower RTT (Round Trip Time) in the Internet. 

As generally no RTT is good enough, IP carriers are pushed to ensure 100-200 

millisecond, or even shorter delays on transatlantic connections. This can be achieved 

with smaller queuing delays, and further optimization of the adaptation layers between 

IP (Internet Protocol) and the physical media. However, to preserve the good 

performance the queuing delay in the access networks also needs to be decreased. 

Using shorter queues is generally not a straightforward solution, as in most cases it 

causes higher packet loss ratio, which is contrary to our efforts to improve the Internet. 

While TCP can cope with the loss, its throughput significantly suffers when experiencing 
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packet loss rate above a few percent. In addition, the throughput shows high time-scale 

variations – affordable for long-lived connections, but a nightmare for HTTP traffic, 

which uses many short-lived connections. 

For newly emerging interactive applications, such us (best-effort) Voice over IP and 

video-conferencing, the need for low delay and low packet loss rate is a clear 

requirement. 

Additionally, with spreading broadband access the network bottlenecks tend to move 

from links used by only one user towards shared links used by many of them. In dial-in 

access, the limiting PSTN (Public Switched Telephone Network) last mile acted as a 

traffic limiter for the users, effecting in relatively low over-subscription of the access and 

backbones. Contrary, a typical broadband ISP (Internet Service Provider) offers a 

guaranteed bit rate, and shares the surplus bandwidth proportionally among the 

customers. This higher level of over-subscription is likely to cause congestion in the 

busy hours, as customers are potentially unlimited in their bandwidth-hunger in a 

flat-rate price package. 

The default drop-tail algorithm on congested links with aggregated traffic tends to cause 

weird behavior. It keeps the queues always full, is unfair with bursty flows, and can 

effect in lockouts [3]. 

1.2 Random Early Detection 

One of the first proposed solutions for the saturated transmit queues was RED (Random 

Early Detection) evaluated in [4]. When the link is congested, RED randomly drops 

arriving packets even if they would fit into the queue, to signalize congestion to the end 

nodes. The probability of the packet dropping is a function of the average queue length. 

While RED is adequate in situations with moderate congestion levels, it has been 

shown, that – depending on its parameters – the queue length either oscillates, or the 

algorithm reacts to the changes in traffic very slowly [5]. Many researchers also criticize 

the behavior of RED under steady, but high congestion. 

In addition, the deployment of Differentiated Services [6] and other schemes with 

multiple queues and packet schedulers changes the constant line speeds seen by the 

queues so far. A scenario where prioritized or Round Robin queues share a single link, 

effects in sudden departure rate changes, especially for the low priority queues. 
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RED is expected to handle the above situations non-optimally, so various improvements 

to RED and many brand new algorithms are proposed. 

1.3 Explicit Congestion Notification 

Standard TCP relies exclusively on packet loss to signal congestion. This practically 

prevents loss-free operation even with very slight congestion. ECN (Explicit Congestion 

Notification), proposed in RFC2481 [7], is an experimental standard intended to deliver 

congestion signals to end nodes without packet dropping. The idea is to let the routers 

mark the traversing packets when congested (but far before queue overflow), let the 

receivers mirror back the congestion signals, and the senders interpret them the same 

way as real packet loss. Some reserved bits in the IP and TCP headers have been 

experimentally allocated to carry the congestion information. 

Combination of ECN and algorithms similar to RED are expected to help to achieve the 

goals like low delay and packet loss described in Section 1.1. 

1.4 BLUE 

One of the newly proposed algorithms for congestion signaling – either be ECN-marking 

or packet dropping – is BLUE [9]. This algorithm is not based on averaged queue 

length, rather takes a black box approach: it uses packet loss and link utilization history 

to maintain the congestion signaling probability. If the queue is dropping packets due to 

queue overflows, the probability is increased. If the link is underutilized, the probability is 

decreased. To avoid oscillations, it freezes the probability after every change for a fixed 

time interval. 

The simulations done by its author promise to achieve practically no packet loss if used 

with ECN even under very high congestion. Note that RED cannot achieve this if the 

queue length is oscillating. 

1.5 The Task 

The task is to evaluate BLUE, whether it is better – and in which areas if it is – than 

other existing algorithms, especially RED. Most router vendors have already 

implemented RED in their devices, this accounts for comparing especially to it. 

Important part of the work is to add BLUE to the Linux operating system, as this addition 
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will be used in measurements with real TCP implementations. The measurements 

should be done with ECN-capable TCP traffic, with attention to the situation when ECN 

and non-ECN traffic share the congested link. 

1.6 About This Work 

The rest of the work is organized as follows. Section 2 gives a detailed background, with 

description of the TCP congestion control mechanisms and a review of BLUE and other 

recently proposed queue management schemes. Section 3 describes the design 

considerations of the Linux BLUE implementation. Section 4 summarizes the most 

important implementation details. Section 5 describes the tests performed to verify the 

robustness of the implementation and compares the performance of BLUE and RED 

based on measurements. Finally, Section 6 concludes with a suggestion of future work. 
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TCP/IP, the communication protocol suite of the Internet, is a de facto standard 

constantly evolving with the implementations. It is common that parts of the standard are 

post-documentation of reference implementations. It is contrary to the conventional 

telecom world, where formal standardization bodies create the standards, and 

implementation typically starts only after the standardization process. 

Some of the primary requirements at the foundation of the Internet were continuous 

extensibility, and interoperability of highly different computer networking worlds. Such, a 

layered architecture organized around a simple datagram-oriented Internetworking 

Layer was a straightforward design rule to start with. After years of evolvement the core 

scheme stabilized in Unix implementations as seen on Figure 1. 

TCP/UDP

ARP

ICMP

HTTP/SMTP/Telnet/RPC/...

IP

Network Device Driver

Sockets API

Network Interface

Internetwork

Transport

Application

Network Interface Hardware
 

Figure 1 – TCP/IP protocol layers 

Since the architecture was built bottom-up, it is most convenient to describe the layers in 

this order. However, this section does not aim a detailed review of all details of TCP/IP. 

It focuses on presenting the ones that are later referenced in the work. 
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2.1 Network Interface 

The sites connected by the Internet had varying legacy computer equipment. Total 

homogenization of the computer and networking architectures used by the participants 

was not expected, not even in the future. Thus, the Internet have not specified its own 

link layer or a specific network interface, rather posed only minimal requirements on it 

and built upon these. Practically the only service a link layer is supposed to provide is 

unreliable datagram delivery. 

This scheme was very successful, because the sites were free to select the underlying 

hardware, typically adapting lower layers of other communication equipment they used 

anyway. Good examples for this are X.25’s LAPB (Link Access Procedure, Balanced) or 

LAN standards Ethernet and Token Ring. 

2.2 Internet Protocol 

The Internetworking Layer provides a unified view of the underlying lower layers. This 

allows the upper layers to communicate transparently with peers on any network 

connected to the Internet. Of course, the transparency means only the transparency of 

the interface and not its parameters like delay, etc. 

IP (Internet Protocol) is the heart of this layer. IP is a connectionless protocol, and 

provides unreliable datagram service to the higher layers. Being so simple, it focuses on 

its main task, trying its best to deliver the datagram to the addressee. 

Version IHL Type of Service Total Length

Identification

Time to Live

Source Address

Destination Address

Options

Flags Fragment Offset

Protocol Header Checksum

Padding

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 

Figure 2 – IP Header 
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Figure 2 shows the IP Header as defined by RFC 791 [10]. Only the fields important for 

us are explained here, detailed description of the other fields can be found in [10]. 

Version 

This 4-bit field indicates the IP protocol version. Different Version field usually indicates 

significant changes in the definition of the other fields, so they should be interpreted 

according to it. Such, Figure 2 applies only to IPv4 (IP version 4), which is the usual 

reading of IP. See  for the IPv6 (IP version 6) header. 

Type of Service 

From RFC791 [10]: “Type of Service provides an indication of the abstract parameters 

of the quality of service desired. These parameters are to be used to guide the selection 

of the actual service parameters when transmitting a datagram through a particular 

network. […] The major choice is a three way tradeoff between low-delay, high-

reliability, and high-throughput.” 

It was left to applications to set the ToS bits through the socket interface (with some 

restrictions). However, usage of this field was rare, and has not been fully consistent, so 

it was a place for experimentation by many research projects. It even was totally 

redefined by DiffServ in RFC2474 [11]. Figure 3 shows the original definition, while 

Figure 4 represents the new definition. 

  

Precedence

0 1 2 3 4 5 6 7

D T R 0 0
 

DSCP

0 1 2 3 4 5 6 7

CU
 

Figure 3 – Type of Service field Figure 4 – DS-field 

Bit 3 Low Delay 

Bit 4 High Throughput 

Bit 5 High Reliability 

Bits 6-7 Reserved for Future Use 

DSCP Differentiated Services CodePoint 

CU Currently Unused 
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The Precedence field in the original definition used enumerated values with increasing 

priority. However, values other than Routine (the lowest priority) were used very rarely. 

DSCP interprets bits 0-5 as an opaque integer value that classifies the traffic, and 

leaves the assignment of the classes partly open, permitting to vary between DS 

domains. DS domains change the DSCP field on their edges, according to the mapping 

arranged with the peer networks. 

Note that the reserved bits remained the same with the new definition. These have been 

chosen later to carry part of the ECN information (See Section 2.4.12 for more details). 

Header Checksum 

From RFC791 [10]: “The checksum field is the 16 bit one's complement of the one's 

complement sum of all 16 bit words in the header. For purposes of computing the 

checksum, the value of the checksum field is zero.” 

The checksum is verified at each point the IP header is processed. When a header field 

changes, the checksum must be recomputed. This happens quite often, as every 

forwarder hop decrements the Time to Live field, or when an ECN-capable router 

changes the bits of the ToS field. 

2.3 IPv6 

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Address

Destination Address

 

Figure 5 – IPv6 Header 
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IP version 6 defines its new IP header format.  illustrates its current definition, based on 

RFC2460 [12]. 

Note that IPv6 does not protect its header with a checksum so it is not needed to 

recalculate it after the ECN-marking. Functionality of the ToS field or DS byte has been 

taken over by the Traffic Class field, which is used consistently with its IPv4 

predecessor. Next Header has replaced the Protocol field. 

2.4 Transmission Control Protocol 

Dominant transport protocol of the Internet is TCP. It provides full duplex, reliable, 

connection-oriented service built upon the unreliable IP layer. It tries to utilize all 

available bandwidth, or shares it approximately fairly when more connections are 

competing for a bottleneck. Using TCP is straightforward for applications requiring a 

byte-stream. 

TCP is an area so wide that heavy books could be written about it. This section tries to 

cover only the issues of the congestion control, which is important to understand the 

later parts of the document. See RFC793 [13] and the TCP/IP Illustrated series [16] [17] 

for full details on TCP. 

Source Port Destination Port

Sequence Number

Acknowledgment Number
Data

Offset

Checksum

Options Padding

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved U A P R S F Window

Urgent Pointer

 

Figure 7 – TCP Header 

TCP breaks the stream into pieces called segments, and precedes every segment with 

a header as shown in Figure 7. The result is then sent in an IP datagram. The receiver 
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responds with acknowledgments1 to notify the sender about the successful reception of 

data. The acknowledgments use the same header as packets carrying data. Thus, a 

data segment can be combined with an acknowledgment in the same packet. 

Source Port, Destination Port 

A TCP connection is fully identified by the quadruplet formed by the source and 

destination IP addresses plus source and destination ports. This allows multiple 

simultaneous TCP connections between two hosts. 

Sequence Number 

Sequence number is the offset of data in the stream, measured in bytes. The field 

contains the sequence number of the first data byte in the segment. 

Acknowledgment Number 

The receiver sets this field in their acknowledgments to notify the sender about the next 

sequence number it is expecting to receive. This scheme is called cumulative 

acknowledging. Thus, one acknowledgment can cover multiple data segments. 

Normally only one acknowledgment is sent per two data segments for established 

connections with continuous data flow. This saves some computing power and 

bandwidth. 

Acknowledges can be delayed artificially by the receiver for a small amount of time. Its 

intention is to combine the incidental application-level answer with the acknowledgment. 

This time must be less then 200 milliseconds. 

Control Bits 

URG Urgent Pointer field significant not covered here 

ACK Acknowledgment field significant 

PSH Push Function not covered here 

RST Reset the connection used for connection refuse/resetting 

 

1 The original TCP authors use the phrase acknowledgment while other literature and common 

language dictionaries often use acknowledgement instead. When used in TCP context and 

possible, this work tries to follow the original variant. 
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SYN Synchronize sequence numbers used for connection initialization 

FIN No more data from sender used for connection close 

Window 

The receiver advertises the maximum sequence number it can accept (due to buffer 

space limitations), which is Acknowledgment Number + Window. This field is also called 

as Advertised Window. To overcome the limitation imposed by the 16-bit field, the 

Window Scaling extension has been introduced later (Section 2.4.8). 

Checksum 

Checksum contains a checksum of the header and the payload. Also covers a 96-bit 

pseudo header formulated from some fields of the IP header (See RFC973 [13] for the 

details of this pseudo header). Fortunately the pseudo header does not contain the ToS 

field, so recalculating this field is not necessary when changing the ToS value. 

Options 

Options are variable length fields beginning on byte boundaries. They have been 

defined to allow continuous evolution of the protocol. Most TCP extensions utilize 

Options to carry their specific control information. 

2.4.1 TCP Connection Setup 

Initiator Responder

time

SYN x

SYN y, ACK x+1

ACK y+1

 

Figure 8 – TCP Connection Setup 

 illustrates the basic case of the three-way TCP connection setup. First, the connection 

initiator sends a SYN packet with its offered ISN (Initial Sequence Number). The other 
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end responds with a SYN-ACK, sending its ISN (note that the Sequence Numbers are 

independent for the two directions) and acknowledging the initiator’s SYN. The initiator 

acknowledges the responder’s SYN, and assumes that the connection is set up. The 

data transfer can start in any direction. 

2.4.2 Flow Control  

Flow control helps a fast sender to avoid flooding a slow receiver with data it cannot or 

do not want to receive yet2. The mechanism is based on the receiver’s Advertised 

Window: the sender is not allowed to send data not fitting into the window. Figure 10 

shows how the receiver’s window limits the sender. The sender is also limited by it’s 

own allocated buffer size (Sender Window). 

Sequence
Number

Allowed
to receive

Last sent ACK

Window

Not allowedAlready
ACK-ed

Sequence
Number

Allowed
to send

Last received ACK

Not allowedSent,
ACK-ed

Sender Window

Receiver Window

Sender Receiver

 

Figure 10 – TCP Windows 

2.4.3 Retransmission 

To achieve reliable operation, when a packet is lost, it must be retransmitted. The basic 

retransmission algorithm is as follows. TCP sender continuously estimates the Round 

Trip Time (RTT – the time between sending a segment, and receiving the ACK for it), 

and sets RTO (Retransmission Timeout) according to it when sending a segment. When 

the RTO expires, and the ACK still has not been arrived, the segment is retransmitted. 

                                                 

2  The changed phrasing (sender/receiver vs. the initiator/responder in the previous subsection) 

is intentional to emphasize that there is no direct relation between that which endpoint 

initiates the TCP connection and which endpoint sends data in a given time later. 
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As recommended in [1], the estimated RTT is calculated with an EWMA (Exponentially 

Weighted Moving Average) function shown in Equation 2. 

 ( ) measuredsmoothedsmoothed RTTRTTRTT αα −+← 1  Equation 2 

 Where 0 1≤≤ α  is a constant. 

Equation 3 shows the inclusion of estimated RTT variation (V in the equation) into the 

RTO calculation – this helps to reduce unnecessary retransmissions while maintaining 

low RTO for constant RTTs. 

 VRTTRTO smoothed 4+=  Equation 3 

Retransmitted segments can be lost also, so a timeout applies to them too. RTO is 

doubled after every retransmission of the same segment up to an upper bound, which is 

in the range of 60-100 seconds in most implementations. 

Defined by RFC1122 [14], the initial RTT estimate for a new connection is zero. 

Variation has to be set to result in a 3-second initial RTO. While this value is reasonable, 

it causes long delays for short connections when a connection-initiating SYN packet is 

lost, as it will be retransmitted only after 3 seconds. 

2.4.4 Congestion Avoidance 

A situation when the sender and receiver windows are bigger then the buffering capacity 

of the network, effects in regular packet loss. However, this is usually the case when 

more TCP connections share a network path, especially if we use short transmit buffers. 

Hence, the sender must use one more limiting factor when sending the data: the 

estimated buffering capacity of the network. This estimate is called the Congestion 

Window (CWND). Figure 11 shows the final picture for the sender windows. Note that 

there can be any relation between the windows. The situation, when CWND is the 

smallest of the three – as seen on the figure – is only a typical example. 



  Background 

 14

Sequence
Number

Allowed
to send

Last received ACK

CWND

Not allowedSent,
ACK-ed

Sender Window

Receiver Window

Sender

 

Figure 11 – TCP Sender with Congestion Window 

Such, the upper limit on the resulting transfer rate (not considering the packet loss) is: 

 
( )

RTT
WindowCongestionWindow,ReceiverWindow,SenderRate min

max =  

 Equation 4 

The sender continuously tunes CWND during the transmission [15]. To maintain high 

utilization of the path, it is incremented by approximately one MSS (Maximum Segment 

Size) every RTT. When a packet loss occurs, it is a signal of overestimating the 

buffering capacity, so CWND is lowered (typically halved, but see Section 2.4.7 for the 

details of lowering). This idea of congestion control was developed as the solution for 

the congestion collapses in the late ‘80s [1]. 

2.4.5 Fast Retransmit 

When a packet is lost, a sequence hole will formulate. This means that the receiver will 

get segments, which fit into its window but are not the next expected segment. It is 

assumed that the receiver will send acknowledge pointing to the start of the sequence 

hole for every such segment, so the sender will get duplicated ACKs (multiple ACKs 

with the same Acknowledge Number). The duplicated ACKs (dupacks) could also be a 

signal of packet reordering or packet duplication, but the assumption is that these are 

rare. 

The BSD Tahoe TCP implementation introduced Fast Retransmit [15] based on this 

assumption. When three or more dupacks are received for a segment, the sender 

assumes that it has been lost and retransmits immediately (before RTO expires). 
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2.4.6 Slow Start 

The CWND adjustment described in Section 2.4.4 opens the window too slowly for the 

new connections. This is notable on paths with high bandwidth-delay product. To 

overcome this, CWND is not incremented, but doubled every RTT at the beginning of a 

connection. This algorithm is called Slow Start [15]. 

Slow Start ends when CWND reaches the maximum window size or a threshold 

(ssthresh), or a packet loss occurs. Ssthresh is then maintained during the connection 

also: when a CWND halving happens, the lowered CWND value is also copied to 

ssthresh to keep it a lower estimate of the path capacity. 

2.4.7 Fast Recovery 

The BSD Tahoe version sets CWND to one MSS after the Fast Retransmit, and so 

followed with Slow Start to probe the network’s buffering capacity again. 

BSD Reno introduced Fast Recovery [15], which tries to maintain the data flow, while 

still adjusting the CWND to reflect a lower estimate of the buffering capacity. After 

detecting the packet loss and sending the fast retransmit, the sender enters the 

recovery phase, which is as follows. 

If using only CWND halving, the sender would be quiet until getting the ACK that 

acknowledges all the data sent after the lost packet. After that, it would send burst of up 

to CWND packets. This would probably lead to packet loss again. Note that CWND 

would not be used properly in this situation. Remember that it represents the estimated 

buffering capacity of the network. However, limiting the sender to send only up to 

Acknowledged + CWND offset in the stream, the packets triggering the dupacks would 

not be considered in the calculation. The reception of every dupack is a signal of one 

data packet leaving the network. The burst at the end of the recovery state would be the 

result of not considering this. 

Therefore, after halving (and copying it to ssthresh), CWND is incremented by 3 MSS to 

represent the 3 dupacks. It is incremented by one MSS for every further dupack 

received. There were CWND - 3 MSS bytes of data in flight at the time we entered the 

recovery phase. After getting dupacks matching oldCWND/2 data (at about the half of 

the recovery period), CWND reaches its old value and the sender starts sending again. 
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When the ACK arrives that acknowledges new data (the receiver sends it when the 

retransmitted segment reaches him), the sender exits the recovery state. After that it 

discards the inflated CWND by copying back the halved value from ssthresh, and 

follows with the data transfer. It will not send a burst of packets, as it already sent 

exactly oldCWND/2 data while in recovery. 

This is the original algorithm implemented in BSD Reno. Linux implements the algorithm 

also. An implementation difference is that CWND is not inflated in Linux, but another 

state variables are used to keep track of the received dupacks [18]. 

Note that while Fast Recovery does not send a burst at the end of the recovery phase, it 

is quiet in the first half of the recovery period, and sends data with approximately the 

original rate in the second half. A possible improvement could be the Rate-Halving 

algorithm [19], which “adjusts the congestion window by spacing transmissions at the 

rate of one data segment per two segments acknowledged over the entire recovery 

period, thereby sustaining the self-clocking of TCP and avoiding a burst.” Rate-Halving 

exists in research TCP implementations, but no production TCP is known to use it. 

NewReno [20] improves the original Fast Recovery algorithm by interpreting a partial 

acknowledgment (partial – which acknowledges beyond the original dupack point, but 

still in the recovery window) as a sign of another lost packet at that sequence number. 

This improves the throughput in the case when multiple packets are lost from one 

window of data. Reno would wait for an RTO for every such packet in this case and 

would follow with a Slow-Start. NewReno instead handles the situation with its improved 

recovery. 

Major vendors implement Fast Recovery in their TCP implementations, most of them in 

a Reno or NewReno fashion. 

2.4.8 Selective Acknowledgment 

With cumulative acknowledgment, the sender needs to wait for one RTT to find out 

every lost packet. With SACK (Selective Acknowledgment) [21], the receiver can inform 

the sender about every successfully arrived segment explicitly, immediately disclosing 

the sequence holes. 

The SACK-capability and the selective acknowledgment information are sent in TCP 

Options. The acknowledgment information is represented by edges of non-contiguous 

blocks of data that has been successfully arrived.  
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[22] compares Tahoe, Reno, NewReno and SACK TCP by simulations, and shows a 

tremendous advantage of SACK against Reno when multiple packets are lost from one 

window of data. It shows a light improvement even against NewReno. 

The bias towards the throughput of the more advanced TCP implementations can make 

a significant difference when we want to control them with packet drop. Consider a 

highly congested link, shared between flows of the named different TCPs. The same 

packet drop rate will slow them down differently. 

2.4.9 Forward Acknowledgment 

FACK (Forward Acknowledgment) is a further refinement to TCP Fast Recovery. From 

[23]: “The goal of the FACK algorithm is to perform precise congestion control during 

recovery by keeping an accurate estimate of the amount of data outstanding in the 

network. In doing so, FACK attempts to preserve TCP's Self-clock and reduce the 

overall burstiness of TCP. […] The FACK algorithm uses the additional information 

provided by the SACK option to keep an explicit measure of the total number of bytes of 

data outstanding in the network.” 

Note that the accuracy of this estimate is the size of the burst sent at the end of the 

recovery phase. Reno senders will underestimate the number of packets in flight when 

multiple packets are lost, as they know only about the first loss. Reno+SACK senders 

will behave the same, if they use the SACK information only to point out the packets to 

retransmit (as originally proposed). 

FACK assumes that all not SACK-ed packets up to the rightmost SACK-ed packet were 

lost. Thus it underestimates the amount of data in flight when packet reordering takes 

effect. While this is legal in IP, it is a pathological behavior, characteristic to some 

network paths and not to the Internet as a whole [25]. Therefore, Linux falls back from 

FACK to NewReno (only for that connection) when the path is suspected to reorder 

packets. 

2.4.10 TCP Vegas 

To have a full picture it is important to note that there exists at least one research project 

– namely TCP Vegas [26] – that uses more advanced Congestion Avoidance 

mechanisms, not relying only on packet loss. For example it tries to avoid buffer 
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saturation with decreasing the CWND when the RTT is suspected to grow only because 

of the too much data sent into the network and the queues have been lengthened. 

However, after years of research it is still not clear whether Vegas will be widely 

deployed, this is the reason of not considering its behavior in this work. 

2.4.11 Other Extensions 

RFC1323 [24] introduced three optional extensions to TCP to allow higher performance 

on long, high bitrate links. Of these, the following two are significant to us. 

Window Scaling 

The advertised free receiver window size can be a throughput-limiting factor for low-

loss, high buffering capacity links, such as satellite links. Window Scaling allows bigger 

windows as it extends the TCP window from 16-bit, sending the most significant 16 bits 

of the extended value in the Window field of the header. The window can be extended 

by 1 to 16 bits. The size of the shift is negotiated at the connection setup. 

Round Trip Time Measurement 

RTTM (Round Trip Time Measurement) uses the TCP Timestamp Option to achieve 

more precise RTT estimate. From [24]: “…using TCP options, the sender places a 

timestamp in each data segment, and the receiver reflects these timestamps back in 

ACK segments. Then a single subtract gives the sender an accurate RTT 

measurement…” 

The receiver sends back always the latest timestamp seen from the sender, so it gets a 

straightforward and accurate measured RTT with every received ACK. 

Note that without RTTM, retransmitted segments can not be included into RTT estimate 

calculation, as we cannot decide whether the original or the resent packet triggered the 

ACK for it. What is worse, when a packet is lost, a whole window of data starting at the 

lost packet should be excluded from RTT estimation, as they are not acknowledged 

immediately on their arrival. 
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2.4.12 Explicit Congestion Notification 

ECN is nothing revolutional, as similar schemes existed in other networking 

environments for years. Frame-Relay has FECN (Forward Explicit Congestion 

Notification) and BECN (Backward Explicit Congestion Notification), and ATM or 

DECNet also have their explicit notification. 

The truth is that TCP ECN itself is also not new. It was published first in 1994 [27]. After 

years of further research and discussion, it was accepted in RFC2481 [7] as an 

experimental standard. The currently proposed version of the standard is [8], an Internet 

Draft expected to advance to Proposed Standard (and such an RFC) in these days. 

The status of implementations is usually somewhere between the mentioned two, 

because of typically implementing earlier versions of the draft. This document follows 

the current Linux implementation, as it is the subject of the measurements. However, 

the implementation is expected to change when the final standard is accepted. 

RFC2481 [7] redefines the IP ToS field as shown on Figure 12. The so far unreserved 

bits (see Figure 3 for the original definition) are used as follows. 

Precedence

0 1 2 3 4 5 6 7

D T R ECT CE
 

Figure 12 – ECN bits in the IP ToS field 

ECT ECN Capable Transport 

CE Congestion Experienced 

ECT 

Keeping in mind the independent TCP/IP stack vendors, only gradual deployment of 

such a new standard can be expected. As ECN and non-ECN flows require different 
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handling at the ECN-capable routers, we need to explicitly distinguish them. The ECT bit 

is set to one for the ECN-capable flows.3 

Note that not only TCP can utilize ECN, hence the word Transport in the name of the 

control bit. Utilization of ECN by UDP/RTP or other transport protocols is left for future 

research. 

CE 

ECN-capable routers can set the CE bit on packets they would otherwise drop to inform 

the end nodes about the congestion. The receiver must mirror back the congestion 

signal in its transport protocol, and the sender must react to this – in terms of congestion 

control – in the same way it would react to a lost packet. For TCP, it means halving the 

CWND. In terms of packet loss, setting the CE bit (marking) is a cheaper way of 

signaling congestion to the end nodes. The benefit for the individual flow – avoiding a 

possible RTO – is clean also. The end nodes must react to the packet loss also, as they 

would otherwise. 

The routers are not expected to only mark (and pass) ECT packets when their buffers 

are completely full. They should drop the packet as in the old way. What is more, they 

are encouraged to drop also ECT packets when the congestion goes beyond moderate 

level. This is indented to serve as an emergency brake to avoid fatal unfairness 

between ECT and non-ECT flows (unfairness in any relation) or DoS (Denial of Service) 

attacks. However, there are no exact guidelines or standards on this yet. 

Note that the IP header checksum must be recalculated when the CE bit is changed. 

Figure 13 shows how [7] redefines the fourth word of the TCP header (See Figure 7 for 

the original). Two control bits have been allocated from the reserved space to be used 

by ECN. 

 

3  This definition of the ECT bit is consistent with RFC2481 [7]. The newest Internet Draft [8] 

defines the so far undefined ECT=0, CE=1 combination to be equivalent with ECT=1, CE=0. 

Note that the Linux kernel code does not follow yet this new definition. 
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Data
Offset

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved U A P R S F WindowEC
 

Figure 13 – ECN bits in the TCP header 

CWR Congestion Window Reduced 

ECE ECN Echo 

ECE 

When the receiver receives the packet with a CE bit set, it sets ECE in its next 

acknowledgment sent to the sender. In addition, it continues sending acknowledges with 

ECE bit, until it receives a packet with the CWR bit set from the sender. 

CWR 

From [8]: “When an ECN-Capable TCP sender reduces its congestion window for any 

reason (because of a retransmit timeout, a Fast Retransmit, or in response to an ECN 

Notification), the TCP sender sets the CWR flag in the TCP header of the first new data 

packet sent after the window reduction.” 

This scheme tries to avoid missing congestion signal information when the ACK, which 

mirrors back the CE bit in its ECE, is lost. Sending consequent ECE acknowledges will 

not lead to multiple reductions of CWND in the sender, as the sender does not react to 

ECE more then once every window of data. 

If the CWND is already decreased to its minimum (1 MSS) – to slow down further – the 

sender should send its next packet only when the RTO expires. However, this ECN 

Timeout is not implemented in Linux [28] and FreeBSD [9] ECN implementations. In 

addition, while faced to only ECN marking and no packet loss, Linux decreases its 

CWND only down to 2 MSS. The developer’s motives behind these modifications are to 

preserve the ACK-clock and avoid delaying the congestion notification information by 

the delayed ACKs. However, this effects in a more aggressive (than the standard) TCP 

in heavily congested situations. 
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There are some details of ECN that are significant, but may be not straightforward. For 

example there are numerous exceptions where the ECT bit cannot be set on packets of 

ECN-capable TCP connections: 

• On the clean ACK packets (which do not carry data) – as it would break the basic 

principle of reacting to the ECN-marking the same way as to a lost packet. Note that 

the sender would not necessarily detect a lost ACK in the non-ECN case. 

• On retransmitted data packets – for the DoS and other considerations in Section 

6.1.5 of [8] on this. 

• On connection-initiating packets – as we do not know in advance that the connection 

will be ECN-capable, only after the negotiation. This means that ECN cannot directly 

help us to avoid the 3-second initial RTO problem for short connections. 

2.4.13 The Linux TCP Implementation 

According to [18], the Linux 2.4 branch has a NewReno-behavioral TCP with SACK and 

FACK additions. It also supports features from RFC1323 [24] (Section 2.4.11). It 

contains full ECN support – has both ECN-capable TCP and ECN marking-capable 

AQMs. 

2.5 Active Queue Management 

Active Queue Management (AQM) is an advanced form of router queue management 

that tries to detect and react to the congestion prior to its fatal consequences such us 

full queues and bursty drops. In reaction to suspected congestion, AQM schemes drop 

packets early (or do ECN-marking) to signal the congestion to the end nodes. 

The most important difference between the various AQM schemes is that when they 

suspect congestion, and how do they select the packets to be marked/dropped. In 

general, the congestion judgment can be based on current or averaged Qlen, on the 

traffic’s arriving rate being higher than the departure rate, or other characteristics of the 

traffic or the queuing system, such us the number of recent tail-drops. 
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2.5.1 Random Early Detection 

Random Early Detection [4] is a queue length based algorithm, as it uses the averaged 

Qlen to determine the probability with which it will mark or drop packets. The average is 

calculated with an EWMA function on every packet arrival. Figure 14 shows the marking 

probability as a function of the average Qlen. The probability is zero below a lower 

threshold, and is 1.0 above an upper threshold. Between the two it changes from zero to 

Pmax linearly. 

 

avgQlen 

Pmark/drop 

thmin thmax 

1.0

Pmax

0

 

Figure 14 – Packet marking/dropping probability in RED 

RED defines its parameters in a little peculiar way. Instead of directly setting the weight 

of the EWMA function, it is calculated from other parameters. The idea behind this 

design was to allow a mostly idle system (empty queue, zero average Qlen) to 

deterministically pass a given burst of packets without a single drop. Thus, the weight is 

set to a value so that the average Qlen reaches thmin only after passing burst number of 

packets. 

Also uncomfortable parameters are the average packet length and the transmit rate 

(both are user-settable parameters in typical case) which are used to estimate the 

number of missed packet-slots for transmitter idle times. This is needed to correct the 

error introduced by long idle times in its packet-triggered average queue length 

calculation. 
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2.5.2 BLUE 

The BLUE algorithm [9] is not based on averaged queue length, arrival/departure rate, 

or other explicit characteristics of the traffic. It focuses on the two types of events it tries 

to avoid: the tail-drops and link under-utilization. BLUE treats the system consisting of 

the queue and the traffic rather as a black box. Practically the only assumption is that if 

we increase the packet marking/dropping probability, the end nodes will respond to that 

with slowing their traffic and the system will shift from frequent tail drops towards link 

under-utilization. 

The approach necessarily misses some possibilities to spot incipient congestion when 

compared to some other mechanisms. For example, the AVQ algorithm could signal 

congestion based on the arrival rate being higher then desired – even before the first 

dropped packet. However, not using explicit characteristic of the traffic, BLUE could be 

more robust in many situations where the heuristics built into other algorithms fail or are 

not scalable. 

BLUE uses a single congestion signaling probability Pm. Packets traversing the queue 

are always ECN-marked with this probability regardless of the queue length. If a packet 

of a non-ECN flow is to be marked, it is dropped (the ECT bit of the ToS field is used to 

identify the ECN-capable flows). 

If the queue is tail-dropping packets due to queue overflows, Pm is increased. If the link 

is underutilized, the probability is decreased. The simplest way to achieve this is a linear 

increase on packet drop, and linear decrease on a queue empty event with a freeze for 

a fixed time after every change to avoid oscillations. The queue empty event (when the 

network interface asks for a new packet to transmit, but the queue is empty) is used to 

signalize the link under-utilization, as when it happens, the link is supposed to be idle at 

least for a moment.4 

 

4  Note that this is not necessarily the case. Modern network interfaces can have their own 

transmit buffers for better efficiency. If these buffers are more than a few packets long, this 

can have a significant impact on packet schedulers or AQM schemes. However, 

unfortunately there is no mechanism to check whether the interface is really idle, so this 

approximation should be used with paying attention to the possible software tuning of these 

buffers to the absolute minimum required. 
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Note that contrary to RED, not a packet-based but a time-based memory is used. This 

allows conveniently setting the response time of the algorithm, or determining the time 

needed for the algorithm to go from zero Pm to 1.0. Note however, that the changes to 

Pm are still not triggered by a timer, but by the enqueued packets. 

Figure 15 shows pseudo-code for the algorithm with two simple enhancements 

(published in the original BLUE paper [9] and supplementary source code): 

• Build in a mechanism that tries to keep the queue much shorter than its maximum 

length, to reserve space for occasional bursts. This is a little contrary to the 

black-box approach, but this modification is clearly needed to achieve loss-free ECN 

operation as otherwise only the tail drops could trigger the Pm increase. The 

proposed addition is to increase when the actual queue length exceeds a predefined 

value, L < Qmax. Note that the averaging of this indicator is again covered by the 

black-box strategy and time-based memory, so this change is not expected to break 

the robustness of the algorithm. 

• Build in an emergency brake: add an upper limit Pmax ≥ Pm. 

Upon packet loss or event: LQlen >

 if ( (now – last_update) > freeze_time ) { 
  P  = min(P , P  + inc); m max m

  last_update = now; 
 } 
 

Upon link idle event: 

 if ( (now – last_update) > freeze_time ) { 
  P  = max(0, P  – dec); m m

  last_update = now; 
 } 

Figure 15 – The BLUE algorithm 

In the simulations done by its author BLUE achieves practically loss-free operation with 

ECN flows even under very high congestion, while having higher link utilization then 

RED. Note that the queue length of RED was oscillating in simulations performed in [9]. 

This could be a reason behind its worst performance. The referenced paper itself also 
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states, that using a much longer then originally suggested memory for RED it could 

achieve similar results. 

The expected behavior is to achieve high link utilization without ECN also. While packet 

loss is unavoidable in this case, the ratio of tail versus early drops can make a big 

difference between RED and BLUE. 
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3 Design 

This section documents the design steps of the Linux BLUE implementation. The author 

of BLUE provides an implementation for the FreeBSD ALTQ framework [29], but there 

are several motives behind choosing especially Linux for our implementation: 

• The Linux Traffic Control Framework is part of the standard Linux kernel distribution. 

Although ALTQ is synchronized with the KAME IPv6 project5, it is not released with 

the mainstream *BSD releases. This could make supporting a product utilizing BLUE 

potentially harder. 

• Linux has better support for applications that are beyond a simple Unix-like server 

(better support for real-time, embedding, etc.) 

• The lab where the work was carried out has history and experience rather with 

Linux-based developments and networking devices. This makes the integration into 

existing projects easier. 

3.1 Requirements Specification 

To achieve our goals the implementation has to fulfill the following requirements: 

• Integrate well into the existing Traffic Control Framework – it is important for 

consistent management. Also, if BLUE is proven superior, this way it can be easily 

included into the mainstream Linux kernels. 

• Try to be consistent with the existing Linux RED and ECN implementation – when it 

is possible, try to follow the practice introduced by existing implementations of 

related standards. Good examples for this are to allow turning on or off the 

ECN-marking, or interpreting the ECT code points according to RFC2481 [7] 

respective [8]. 

• Be robust enough to use in my measurements and to use by other people for 

testing, measurements, or including into the mainstream kernel. 

 

5  KAME is one of the alternative IPv6 implementations for Free/Net/OpenBSD 
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• Try to be at least as effective as the Linux RED implementation is. 

3.2 Variations of BLUE 

Two variations of the algorithm described in the BLUE paper [9] can make minor 

changes to its behavior, so they were chosen to incorporate into the code in a way that 

it can be easily recompiled with any combination of them: 

• Single update time – the timestamps made on Pm changes can be separated for the 

incrementing or decrementing, or they can use a common timestamp. 

• Use, or not the L < Qmax value described in Section 2.5.2 – the L could be also a 

parameter, but for the beginning I decided to use L = Qmax/2 if using this is selected 

(consistently with the BLUE author’s simulations). 

There could be other variations of the algorithm, based on whether the queue length is 

calculated in bytes, or packets. The length of the packet could be also calculated into 

the probability of dropping, as discussed in [30] for RED. 

The decision was to use a byte-based queue length, but do not use the packet length in 

the packet dropping calculation. 

• The Linux RED implementation does it this way, and so the comparison is less 

ambiguous. 

• While the byte mode suggested by [30] tries to eliminate the bias against flows with 

small packets (small MTU of the path), and is definitively an important future work 

area, the proposed solution (packet dropping probability is a linear function of the 

packet length) is probably too aggressive. Consider a 10% packet dropping 

probability for 500-byte packets. The resulting 80% probability for 4 kB packets or 

more the 100% for 8 kB packets is probably not a fair weighting6. As working out the 

optimal function is beyond the scope of this work, the decision was to implement 

per-packet dropping. 

 

6  These MSS values seem too large for nowadays Ethernet-dominant networks, but note that 

many Fast Ethernet devices already support it unofficially. These and even higher packet 

sizes are considered for high utilization Gigabit Ethernet networking to reduce protocol 

overhead in the end nodes and routers. 
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3.3 Parameters 

Based on the above, the parameters that are settable from the user-space are the 

following. 

struct tc_blue_qopt 
{ 
       __u32   limit; 
       int     freeze_time; 
       int     pmark_init; 
       int     pmark_inc; 
       int     pmark_dec; 
       int     pmark_max; 
       __u32   flags; 
}; 
 
#define TC_BLUE_ECN    1        /* The flag ‘ecn’ */ 

Limit 

The Qmax limit of the queue length, measured in bytes. This value will be interpreted in a 

way that no new packets are enqueued into the queue until the current Qlen is higher 

then Qmax. Note that this implies that Qlen can exceed Qmax at most with one MTU. On 

the other side this approach is fairer between small and big packets, this is why the 

Linux RED and byte-FIFO implementation uses the same. 

The parameter is a 32-bit unsigned integer. 

Freeze time 

Minimum time between the Pm updates. Although the resolution of the timers in a Unix 

kernel is typically in the range of milliseconds, the precision of time measurements can 

be significantly finer, even one microsecond. This is the case for Linux also, so this 

parameter can be set in microseconds. 

Pm initial 

For measurements it can be a useful feature that the initial Pm value is not zero, but can 

be set explicitly. With choosing zero increment and decrement this is an easy way to 

achieve a fixed packet marking/dropping probability. The parameter is an integer, 

Section 3.8 describes how are integers used to represent the probability values. 
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Pm increment 

0 ≤ Pm increment < 1 is the Pm increment step. Pm is increased with this value on a 

packet drop or Qlen > L event. 

Pm decrement 

0 ≤ Pm decrement < 1 is the Pm decrement step. Pm is decreased with this value when 

dequeue is requested with an empty queue. 

Pm maximum 

This is the Pmax upper limit on Pm. 

Flags 

There is only one flag for now: ecn. If this is set, the algorithm does marking for 

ECN-capable flows, and dropping for non-capable ones. If it is not set, dropping is done 

for both. 

Parameter Value 

Freeze time 10 ms 
Pm initial 0.0 
Pm increment 0.0025 
Pm decrement 0.00125 
Pm maximum 1.0 
Flags – 

Table 1 – Default parameters for BLUE 

3.4 Variables of the Algorithm 

Only a minimal set of internal variables is needed, as follows. 

Backlog 

Backlog is the current Qlen in bytes. It is increased on every successfully enqueued 

packet with the length of the packet, and decreased with it when the packet leaves the 
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queue. This is not a really private variable, as the BLUE uses the variable 

sch→stats.backlog provided by the TC (Traffic Control) framework. This way it is 

automatically shown in the statistics. 

Pm 

The current packet marking/dropping probability. (pmark in the code) 

Last update / Last increment + Last decrement 

The timestamp of the last change to Pm. Depending on the chosen variation of the 

algorithm, it can be a single or separated value. (last_update vs. last_inc and last_dec in 

the code) 

3.5 Statistics 

struct tc_blue_xstats 
{ 
       int     pmark; 
       __u32   marked; 
       __u32   early_drops; 
       __u32   limit_drops; 
       __u32   other_drops; 
}; 

Pm 

The current Pm is shown in the statistics. It is useful to see it, as this is the most 

important internal state variable of the algorithm. 

Marked packets 

The number of packets that have been ECN-marked by the probability decision. 

Early drops 

The number of packets that have been dropped by the algorithm by the probability 

decision. 

Limit drops 

The number of packets dropped because of queue overflow (Qlen > Qmax). 
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Other drops 

The number of packets dropped because of an explicit drop() function call from the TC 

framework. Packet schedulers such as CBQ (Class Based Queuing) can penalize 

queues with this mechanism. 

3.6 System Overview 

Figure 16 shows where the Linux kernel TC (Traffic Control) framework fits into the 

outgoing path from the Network layer towards the Network Interface. This section 

focuses on settling the BLUE implementation in it, a detailed description of the 

framework can be found in [32]. 

 

enqueue 
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Traffic Control 

Network Interface 

dequeue 

 

Figure 16 – Traffic Control in the 

Linux kernel 

Control, Configuration, Statistics 
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Figure 17 – Using the BLUE queue 

standalone 

The TC framework allows changing the default drop-tail FIFO queuing algorithm 

modularly. Its modules are: 

Qdisc 

Packet schedulers and queuing algorithms are implemented in qdisc (queuing 

discipline) modules. They are fed by the framework with packets through their 

enqueue() function, and they are asked through their dequeue() function to output 

packets. 
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Class 

A qdisc can have classes, which are typically used in packet schedulers to represent the 

different queues. The classes can contain a qdisc again, so this structure allows 

unusually flexible queuing configurations. 

Filter 

Filters are used to direct the packets into the classes. Filters are like in a packet-filter 

firewall, they can make the classification decision based on packet header fields. 

BLUE is implemented as a qdisc module, and is typically used as a root qdisc (runs 

standalone, replaces the drop-tail FIFO) for a network interface as shown in Figure 17. 

Figure 18 shows BLUE when used as a queuing algorithm for one of the queues of a 

classful qdisc, for example the CBQ packet scheduler. 

 

Control, Configuration, Statistics 

dequeue enqueue 

TC user-
space tools 

BLUE qdiscClass

Other qdiscClass 

Filter 

Filter 

qdisc with classes
 

Figure 18 – Using the BLUE queue as a sub-qdisc of another class-based qdisc 

For managing the framework – setting up or deleting structures and gathering statistics 

information – the Netlink interface [33] is used between the user-space configuration 

program and the kernel-space framework. 
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3.7 The Interface 

To implement the qdisc functionality and to interface to the kernel, we have to fill in and 

register a C struct containing a few parameters and addresses of functions. This 

method, resembling the virtual functions of the object-oriented methodology is a 

common way of inserting new modules (file systems, device drivers) into the open 

interfaces of the kernel. The struct to fill in is Qdisc_ops in this case: 

struct Qdisc_ops 
{ 
        struct Qdisc_ops        *next; 
        struct Qdisc_class_ops  *cl_ops; 
        char                    id[IFNAMSIZ]; 
        int                     priv_size; 
 
        int                     (*enqueue)(struct sk_buff *, struct Qdisc *); 
        struct sk_buff *        (*dequeue)(struct Qdisc *); 
        int                     (*requeue)(struct sk_buff *, struct Qdisc *); 
        int                     (*drop)(struct Qdisc *); 
 
        int                     (*init)(struct Qdisc *, struct rtattr *arg); 
        void                    (*reset)(struct Qdisc *); 
        void                    (*destroy)(struct Qdisc *); 
        int                     (*change)(struct Qdisc *, struct rtattr *arg); 
 
        int                     (*dump)(struct Qdisc *, struct sk_buff *); 
}; 

The BLUE module will fill in the struct as shown below: 

struct Qdisc_ops blue_qdisc_ops = 
{ 
        NULL, 
        NULL, 
        "blue", 
        sizeof(struct blue_sched_data), 
 
        blue_enqueue, 
        blue_dequeue, 
        … 
        blue_dump, 
} 

Some clarification of the fields of this struct (see [32] for more details) 

next Used internally by the TC framework – the available qdiscs are kept in a 

linked list. 

cl_ops Pointer to a similar structure describing the class operations functionality. 

As BLUE is a classless queue, this is NULL. 

id A character string, the name of the queuing discipline. 
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priv_size The size of the private data struct. The framework will allocate an area of 

this size before init (and free the area after destroy) and pass its address 

to the qdisc. 

A short summary of the functions to be implemented (their addresses will be passed in 

the struct for registering) is as follows. 

blue_enqueue Enqueues a packet. Parameters: the packet and the destination 

qdisc. Returns the result of the queuing: success, success with 

congestion, or drop. 

blue_dequeue Asks the next packet from the qdisc for transmitting on the network 

interface. Parameter: the desired source qdisc. Returns the 

dequeued packet or NULL if no packet is to send. 

blue_requeue Puts a packet back to the queue (in the front), undoing the results of 

a dequeue call. It is needed because of some broken network 

interfaces that can request a packet to transmit but change their mind 

on transmit problems. Parameters: the packet and the destination 

qdisc. Returns the result of the operation (however, it really should be 

successful). 

blue_drop Drops a packet from the queue (to penalize queues eg. by CBQ). 

Parameter: the desired qdisc. Reports in its return value whether a 

packet has been dropped – note that the queue can be empty. 

blue_init Initializes and configures the qdisc. Parameters: the target qdisc, and 

the struct describing the desired configuration. Informs the caller 

about success or failure in its return value. 

blue_reset Resets the qdisc: clears the queue and sets back its state variables 

to the initial values. Parameter: the target qdisc. It always should 

succeed, so it does not have a return value. 

blue_destroy The opposite of blue_init, it prepares the removing of the qdisc given 

in parameter. It should always succeed also. 

blue_change Requests to change the configuration of the qdisc, but without full init. 

Parameters: the target qdisc and the desired configuration. Reports 

the success or failure in its return value. 
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blue_dump Dumps diagnostic data. Its main use is to return configuration 

information (needed to set up a qdisc like the questioned), and 

statistics. Parameters: the qdisc in question and a Netlink packet into 

which the dumped data will be written. Returns success or failure. 

3.8 Fixed-Point Arithmetic 

Note that the float or double types of the language C cannot be used in the Linux kernel 

code. To represent the probability values (Pm, initial Pm, Pmax, increment, and 

decrement) and to allow fast computations on them, a fixed-point arithmetic is needed. 

As we only use the 0 ≤ value ≤ 1 range for these, and want a simple checking for 

over/underflows, it is straightforward to use the two’s complement fractional fixed-point 

format from the DSP (Digital Signal Processor) world: 

 

0 1 0 1 0 0 0

1/2 sign (-1) 1/4 
1/8 

1/16
1/32

1/64

binary point 

0.625  = =  0x50000000 

 

Figure 19 – The Fixed-Point format used to represent Pm 

Note that this scheme can describe only values in the [-1, 1-231] range, so only a close 

approximation of 1.0 can be represented. However, this precision is enough for our 

purposes. 
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4 Implementation 

4.1 Software Environment 

As the implementation consists of modifying other programs that were written in C, the 

programming language (and the GNU gcc compiler, because of at least the Linux kernel 

depends on it) is so determined. 

As a base platform, the Debian GNU/Linux 2.2 (potato) release was chosen. One of the 

main reasons for this was the wide user community support for the software, so its 

maintenance (especially security updates) requires only very low resources from the 

system administrator. We have many Linux computers connected openly to the Internet 

in the lab, so the absolute minimum maintenance level is to have them security-patched 

always up-to-date. 

The kernel and some of its close surroundings have been upgraded to kernel version 

2.4.3. As this new stable branch has been available for more than half a year, it makes 

sense to develop new additions such as BLUE primarily for that. It is expected that most 

of the experimenter people (potential users and feed-backers of the BLUE 

implementation) prefer this branch to 2.2 versions. The 2.4 series also has ECN support 

built in by default, which is important for this work. 

To allow easy including into the mainstream sources, the newest available snapshot of 

the TC command line configuration tool was used, namely from package 

iproute2-001007 (released on 7th Oct 2000). 

The tcpdump packet sniffer has been modified to dump the ECN control bits in the IP 

and TCP headers. As this modification is a very short code, the easier integration into 

the used Linux distribution had a higher priority then using the latest snapshot from the 

developers of the tcpdump package. Hence, the Debian source package of 

tcpdump-3.4a6 was selected as the basis. See Appendix A for the detailed 

modifications. 
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4.2 Time Measurement Granularity 

The default time measurement in the Linux kernel is based on the jiffies variable. This 

global variable always contains the number of ticks (of the kernel 100 HZ timer) elapsed 

from the booting of the system. If this precision is adequate, it can be used for time 

measurements. The internal timers can work also with jiffies granularity. For example, 

there is an efficient mechanism in the kernel to ask to call a callback function (still in the 

kernel of course) at a given jiffies time. TCP timers are implemented like this, so having 

a better resolution would effect in better granularity of the TCP retransmission or 

delayed acknowledge timers. This can be important if measurements are to be done 

with only a few traffic generator computers. 

The default 100 HZ rate can be speeded up in a limited fashion. Using 1024 HZ is 

generally not considered hairy, as most of the kernel is written with this possibility in 

mind – Linux on the Digital Alpha platform uses 1024 HZ because of the hardware 

suggestion. However, on Intel 32 platforms one problem can arise sooner this way: the 

jiffies variable is an unsigned long, and various timing problems can appear in certain 

parts of the kernel at its wrap-around. Using 100 HZ this occurs after 497 days, with 

1024 HZ this time is shortened to approximately 48.5 days. The following modification to 

the Linux kernel is needed to change the tick rate to 1024 HZ: 

diff -urN -X dontdiff v2.4.3/linux/include/asm-i386/param.h linux-2.4.3-
blue/include/asm-i386/param.h 
--- v2.4.3/linux/include/asm-i386/param.h       Fri Oct 27 20:04:43 2000 
+++ linux-2.4.3-blue/include/asm-i386/param.h   Wed Apr 18 19:25:18 2001 
@@ -2,7 +2,7 @@ 
 #define _ASMi386_PARAM_H 
 
 #ifndef HZ 
-#define HZ 100 
+#define HZ 1024 
 #endif 
 
 #define EXEC_PAGESIZE  4096 

As packet schedulers typically need better then 10-millisecond (even maybe better then 

1-millisecond) resolution, the TC framework contains various solutions for microsecond 

resolution time measurement. Depending on the used hardware, this can be surprisingly 

effective. On the Intel Pentium (and higher) and Digital Alpha processor platforms the 

provided machine code instruction can be utilized to achieve a very accurate timestamp 

quickly. These processors have high-resolution time measurement availability built in, in 

form of a readable register counting at the processor clock. The following modification to 
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the Linux kernel turns on the usage of this feature (otherwise a jiffies-based mechanism 

is used): 

diff -urN -X dontdiff v2.4.3/linux/include/net/pkt_sched.h linux-2.4.3-
blue/include/net/pkt_sched.h 
--- v2.4.3/linux/include/net/pkt_sched.h        Tue Mar 27 01:48:17 2001 
+++ linux-2.4.3-blue/include/net/pkt_sched.h    Thu May 24 19:30:23 2001 
@@ -5,7 +5,7 @@ 
 #define PSCHED_JIFFIES                 2 
 #define PSCHED_CPU             3 
 
-#define PSCHED_CLOCK_SOURCE    PSCHED_JIFFIES 
+#define PSCHED_CLOCK_SOURCE    PSCHED_CPU 
 
 #include <linux/config.h> 
 #include <linux/pkt_sched.h> 

Both the traffic generator and the BLUE queuing router machines used these 

modifications during the development and following measurements. There were no fatal 

problems with them, but it seems they interfere to NTP (Network Time Protocol) 

timekeeping, because the NTP Daemon running on the machines complained more 

often into the logs about losing synchronism than without them. 

4.3 The Running System 

The implemented system can be set up the following way (Consult [34] if not familiar 

with the tc command): 

• Load the kernel module that implements the BLUE queue. 

• Replace the default packet FIFO queue of the selected network interface with BLUE 

using the desired parameters. 

blue:~# modprobe sch_blue 
blue:~# tc qdisc replace dev eth2 root blue help 
Usage: ... blue limit BYTES [ freeze TIME ] [ init PROBABILITY ] 
           [ inc PROBABILITY ] [ dec PROBABILITY ] [ max PROBABILITY ] 
           [ ecn ] 
blue:~# tc qdisc replace dev eth2 root blue limit 50kB freeze 10ms inc 0.0025 
dec 0.00125 max 1.0 ecn 
blue:~# 
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After running some traffic through the queue, the statistics can be shown with this 

command: 

blue:~# tc -s qdisc 
qdisc blue 8002: dev eth2 limit 50Kb freeze 10.0ms inc 0.002500 dec 0.001250 
max 1.000000 ecn 
 Sent 41699148 bytes 28128 pkts (dropped 180, overlimits 7465) 
 backlog 15140b 10p 
  pmark 0.277500, marked 7288, drops: early 177 limit 3 other 0 
blue:~# 

The command dumps back the parameters used to setup the queue in the first line of its 

output. The second line (indented by a space) contains standard traffic statistics 

summary of the queue: successfully enqueued bytes and packets, and the number of 

total drops and overlimit situations (when the queue throttled the traffic in a form of an 

early drop or ECN mark). If there is a non-zero queue, its length is also reported both in 

bytes and packets. This is also standard for all queues. The last line (indented bye one 

more space) contains the private statistics of the queue, in this case as described in 

Section 3.5. 

The source code of the implementation and all connected material can be downloaded 

from the project’s home page [35]. 
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5 Testing and Measurements 

The subject of the test is the BLUE kernel and user-space code. The goal is to verify the 

usability and robustness of the code and after that perform traffic measurements to 

evaluate the algorithm. 

5.1 Module testing 

As the environment code – the TC framework – is not well documented, it is important to 

make sure that the assumptions made in the design and implementation phases are 

right. In addition, many things in the Linux kernel are subject to change in the future 

without notice in the nowadays documentation or code. It is clear that a test suite that is 

constantly maintained with the code can significantly improve the quality of a product. 

It is expected that a software module of a (desired) high-availability telecommunication 

device is tested more systematically at least for the very trivial errors than just run a few 

times with common-use conditions and start searching for the bugs only when the 

failures appear in the test operations phase. Even stress testing with traffic generators – 

while important – is able to disclose only some of the problems and its black-box 

approach can generate hardly reproducible errors. 

Module testing aims the elimination of trivial coding errors and wrong or outdated 

assumptions with a gray-box approach. It separates the code into modules, and tries to 

verify the functionality of the modules knowing their internals, and following the more 

code paths. It is built on the principle that even the simplest program code has nonzero 

probability to contain errors. Thousands of newly written program code lines are likely to 

contain wrong pointer initializations, never tried (and crashing) error handling paths, 

unhandled memory allocation failures and other similar bugs. Module testing tries to 

detect these with double-checking in controlled situations. 

Using the classical module testing approach for such a small project would be a little 

over-engineering, but it makes sense to utilize its basic ideas. Providing a test suite with 

the software allows the people with other software or hardware configuration not 

available in the lab (eg. 64-bit, or big endian processors) to perform easily the basic 

self-checks of the software. 
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From the viewpoint of testing, the ideal software should consist of well-separated 

modules, which could be tested separately. This is often not the case in the real-world 

situations, as most software has not been designed with module testing in mind, or uses 

a complex environment that is not easy to substitute or emulate. 

In our case both the kernel and user-space sources are small modules integrated into 

rather monolithic software – this is the typical case for using a complex environment. 

Thus only limited module testing can be done, and the module test code is to be 

included into the tested module, and run at initialization time in its real-life environment. 

Partial module testing of BLUE has been performed, with focus on the Fixed-Point 

Arithmetic code which is most suspected to be a source of latent bugs, especially when 

run on non-i386 CPU architectures. 

5.2 Performance Testing 

The validity and forwarding performance of the implemented queuing module has been 

verified with IXIA 1600 traffic generator. 
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Figure 20 – Performance testing setup 
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Figure 20 shows the measurement setup. The Linux computer named BLUE has three 

Fast Ethernet interfaces, and is connected to the traffic generator with crossover UTP 

(Unshielded Twisted Pair) cables to achieve full-duplex 100 Mbit/second line speed.7 

The measurements were done with the eth2 interface set up to use the byte-FIFO, RED, 

and BLUE queuing mechanisms in three turns. The following commands were used to 

set up the queues: 

byte-FIFO: tc qdisc replace dev eth2 root bfifo limit 50kB 
RED: tc qdisc replace dev eth2 root red limit 50kB min 10kB max 40kB 

avpkt 600 burst 100 probability 0.1 bandwidth 100Mbit ecn 
BLUE: tc qdisc replace dev eth2 root blue limit 50kB ecn 

For all three cases the maximum queue length was 50 kB. 

The BLUE implementation was used mostly with its default parameters (See Table 1). 

The forwarding performance was tested with one-way traffic of evenly paced UDP 

packets (with the ECT bit set), measuring the CPU utilization on the Linux machine with 

the vmstat command. Note that the UDP traffic is used here to verify the forwarding 

performance of the mechanism, not its marking or dropping correctness. The ECT bit is 

set to avoid early packet drops. Figure 21 shows the results with 1518-byte Ethernet 

frames. 

 

7  See Appendix B for the exact hardware configuration of Linux machines used in the 

measurements 
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Figure 21 – Forwarding Performance with 1518-byte frames 

The measured three queuing mechanisms do not show a significant difference and as 

expected, the CPU demand is approximately a linear function of the offered traffic. The 

Linux machine handled the traffic without packet loss. 

Note the CPU demand decrease at 8127 Packets/second – this is the 100% utilization 

point of the 100 Mbit/second Fast Ethernet. The reason behind the decrease is that 

when more consecutive frames are sent or received on a network interface – depending 

on the hardware and device driver implementation – more frames can be handled with 

one hardware interrupt service. This helps the performance a lot, as the bottleneck in 

PC-based routers is rather the interrupt-handling, and not the forwarding or queuing 

itself. The number of hardware interrupts per second – as monitored with vmstat – 

showed about the same decrease, it dropped from the approximately 2 interrupts per a 

forwarded packet seen before. 

Figure 22 shows the results with 64-byte Ethernet frames. Note that in this case the 

router cannot forward near the full line speed traffic, as it would mean approximately 

148809 frames/second (considering the Ethernet gap and preamble). 



  Testing and Measurements 

 45

0

20

40

60

80

100

0 20000 40000 60000

Traffic [Packets/second]

Pe
rc

en
t C

PU
 U

til
iz

at
io

n

0

20

40

60

80

100

Pe
rc

en
t P

ac
ke

t L
os

s

byte-FIFO CPU

RED CPU

BLUE CPU

byte-FIFO Loss

RED Loss

BLUE Loss

 

Figure 22 – Forwarding Performance with 64-byte frames 

The CPU usage was expected to be higher in this case, as most of the work done at the 

forwarding – interrupt handling, IP header checks, routing decision, queuing – is 

proportional to the number of packets. The three queuing mechanisms performed 

similarly, with the byte-FIFO being a little faster than the others, and BLUE being very 

slightly faster than RED. The points, where the queues first reach 100% CPU utilization, 

and where the first packet losses occur have been measured out with 1000 

Packets/second accuracy, and are shown in Table 2.  

Queue Packets/second 

 First reaching 100% CPU 
utilization, but no packet loss First packet losses occur 

byte-FIFO 35000 42000 
RED 34000 35000 
BLUE 35000 36000 

Table 2 – Maximum forwarding speed of the compared queues 

There was a third set of measurements performed with 512-byte Ethernet frames, but its 

results are so similar to the 1518-byte case that they are not presented here in details. 

In short, all queues handled the 100% line rate traffic (23496 frames/second) with 50% 
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CPU usage and without packet loss. The CPU usage has decreased the same way at 

the full link utilization, and for same Packets/second values it was approximately the 

same as in the 1518-byte case (for example 17% for 6000 Packets/second). 

It is interesting to note that longer than zero length queues could be observed only when 

running at full line speed in the 512-byte or 1518-byte measurements. Otherwise, the 

transmit path was not a bottleneck, there were no output queue drops even in the 

64-byte measurements with packet loss. 

The conclusion is that the implemented BLUE module is at least as effective in terms of 

packet queuing and administration as the RED implementation is, and is capable to 

handle close the traffic that a simple FIFO queue is. However, there are other serious 

bottlenecks in the software router structure – probably the interrupt handling of the 

network interfaces – that prevent us to more precisely measure the situation in a default 

setup. 

5.3 Traffic Measurements 

For the traffic measurements, Linux computers were used to generate TCP traffic. The 

measurement network is shown on Figure 23. The links between the machines and 

towards the Ethernet switch were forced to full duplex 10 and 100 Mbit/second 

operation to formulate two bottlenecks at the interfaces of the router machine BLUE, 

where the measured AQM scheme can be set up. 
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Figure 23 – The traffic measurements environment 
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All three machines can be used to generate traffic, and as the interfaces of the 

machines use different IP addresses, it is possible to direct the traffic according to the 

two measurement scenarios shown on Figure 24 and Figure 25. 

 

SEND BLUE RECV

switch
 

Figure 24 – Scenario 1 – AQM applied 

to a bottleneck link 

SEND BLUE RECV

switch
 

Figure 25 – Scenario 2 – ECN and 

non-ECN capable traffic sharing a link 

Scenario 1 is the basic measurement setup, where the traffic is generated between 

SEND and RECV and sent through the eth2 bottleneck of BLUE. 

Scenario 2 is used to perform measurements where non-ECN and ECN capable traffic 

share a single link. In this case the traffic is sent from BLUE to SEND and RECV 

through the eth0 bottleneck of BLUE. The easiest way to control the ECN-capability in 

Linux is the /proc/sys/net/ipv4/tcp_ecn sysctl, which applies to all newly created 

connections and has a system-wide context. Hence, one of the two receivers runs with 

ECN disabled in the measurements in this scenario (and thus the new connections do 

not negotiate to use ECN). 

It is not suspected that the bottleneck router and the traffic sender machine being the 

same would significantly bias the measurements in this scenario. The work of the 

machine BLUE can be even easier, as the traffic must only be sent, and not received 

(as compared to the forwarding case). Note also that only approximately 10 Mbit/second 

traffic was generated. 

Netperf [36] sessions were used to generate traffic. Packet loss statistics were gathered 

on machine BLUE with the tc tool, directly from the AQM module used. 
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5.3.1 High bias against non-ECN flows 

When experimenting with the measurements it got obvious that the naive approach – 

using the Pm ECN-marking probability also for packet dropping from non-ECN flows – 

works well only with light congestion. Using more then a few competing flows Pm gets so 

high, that the non-ECN flows experiencing the packet drops are subject to starvation. 

To reproduce the problem in a controlled situation, the throughput of a TCP flow as a 

function of the experienced rate of packet loss or ECN marking was measured. The 

measurements were performed in Scenario 1 (Figure 24). The fixed rate packet 

marking/drop was generated using the initial Pm setting feature of the BLUE queue using 

commands like this: 

blue:~# tc qdisc replace dev eth2 root blue limit 1MB init 0.02 inc 0 dec 0 
ecn 

Because of the increase = decrease = 0 parameters, the marking probability is fixed 

during the whole measurement (2% in this example). The 1 MB maximum Qlen is set to 

surely avoid tail drops. Non-ECN traffic was achieved with disabling ECN in RECV. 

At every Pm value 10 tries of 30-second Netperf throughput measurements were 

performed. Figure 26 shows the results of the successful tries (with Pm ≥ 0.6 the 

measurements often failed due to timeouts) and their average for the ECN and 

non-ECN case. Note that the maximum result in the measurements is only 9.41 

Mbit/second, as Netperf reports the TCP payload throughput. 
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Figure 26 – Throughput of ECN and non-ECN flows as a function of Pm 

To more emphasize the bias, Table 3 shows the ratio of the throughput of the ECN and 

non-ECN flows for selected Pm values. Note that with Pm ≥ 4% the bias is definitely 

noticeable, and above a few percent it rapidly gets fatal for the non-ECN flows. 

Pm 0% 1% 2% 3% 4% 5%  10% 20% 30% 40% 

Ratio 1 1 1.006 1.112 1.249 1.543  3.2 6.47 18.37 143.4 

Table 3  – Ratio of the throughput of ECN and non-ECN flows experiencing the same 

probability of packet marking or packet loss 

In today’s Internet it is not uncommon to happen that 10% packet drop is needed at a 

highly congested bottleneck link to cope with the congestion in the busy hours. 

Considering a future world, where most of the TCPs would be ECN-capable, 

approximately 30% packet marking probability would be needed to hold back the TCP 

senders at about the same sending rate than the 10% packet drop did. 

An old-timer, not ECN-capable TCP would have hard times in that situation if faced to a 

simple Pdrop ← Pm mapping, effecting in an approximately 18–fold bias towards ECN at 

that point. 
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One of the reasons behind the high bias is the Linux ECN implementation not 

implementing the ECN timeouts and waiting for real packet loss to decrease CWND 

below 2 MSS. This could be solved with a function that maps the internal Pm to a (Pm, 

Pdrop) pair for ECN and single Pdrop for non-ECN considering this characteristic. 

To suggest a fair mapping is left for future work, as it would need very thorough 

measurements and simulations in multi-gateway scenarios and with at least a few 

longer delay links also to avoid the too short delays distorting the picture. Note that 

thanks to small CWND during the measurements (it is small because of the packet 

loss), the Fast Retransmit scheme often fails to work, and as the RTO has a lower limit 

of 200 milliseconds on Linux8, it expires very lately. 

5.3.2 Comparing RED and BLUE 

To compare RED and BLUE, the setup according to measurement scenario 1 (Figure 

24) was used. ECN-capable TCP traffic was generated using Netperf sessions. 

To achieve a fixed amount of parallel sessions, a wrapper shell script was used, which 

always restarts the Netperf command with the desired parameters – in this 

measurement these were to run a 30 second TCP throughput test. Starting a fixed 

amount of such shell scripts, we do have the same amount of – at least trying – Netperf 

sessions. After starting the scripts with 1-second pacing, the measurement data 

gathering started at the 100th second after starting the first script, and lasted for 100 

seconds. 

The queues were setup with the following parameters: 

BLUE: blue:~# tc qdisc replace dev eth2 root blue limit 50kB ecn 
RED: blue:~# tc qdisc replace dev eth2 root red limit 50kB min 8kB max 25kB 

avpkt 1000 burst 50 probability 0.1 ecn 
RED2: blue:~# tc qdisc replace dev eth2 root red limit 50kB min 8kB max 25kB 

avpkt 1000 burst 500 probability 0.6 ecn 

BLUE is run mostly with its default parameters. The first RED queue is run with 

parameters according to the ordinary suggestions. As the variation of BLUE that reacts 

also to the Qlen exceeding Qmax/2 is used, RED’s thmax is set similarly. 

 

8  This lower limit is needed to seamlessly interoperate with TCP/IP stacks that fully utilize the 

allowed 200 milliseconds for the delayed ACKs. 
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The second RED queue demonstrates a RED queue tuned to handle high congestion. 

Note the much longer EWMA memory (burst), and the higher Pmax probability. 

Figure 27 shows the results: the packet loss (early + tail drops) as a function of the 

number of Netperf sessions. 
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Figure 27 – Measured packet loss 

To estimate the severity of the measured congestion, Pm reported by BLUE can be a 

possible guideline. It stabilized around 0.66 with 100 sessions. According to 

measurements in Section 5.3.1, it has approximately the same congestion control force, 

as 15% packet loss. 

It is interesting to note, that BLUE practically totally avoided the tail drops, as they first 

occurred only when running 100 sessions, and even then they measured only 0.036% 

of all the forwarded packets. All the other drops were early drops, as such packets with 

the ECT bit not set.  
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6 Conclusions and Future Work 

This work demonstrated that the basic idea of an AQM scheme mostly decoupled from 

the queue length such us BLUE is viable, and should be developed further. 

One of the biggest advantages of BLUE is that it works well in a wide range of situations 

up to very high levels of congestion without manual fine-tuning for any special case. 

Of course, being such a new research project, BLUE still could be improved in many 

areas. It could have a mechanism to avoid the Pm remaining high for a long time on a 

link that has gone suddenly idle. Its Pm adjustment algorithm could be also improved 

from the simplest linear increase/decrease. These all are exciting areas for future work. 

One of the nice surprises during the experiments was that RED – even if it can be 

empirically proved that a queue-length-only based AQM is not adequate for many 

situations – can be tuned to handle severe congestion. Unfortunately, (plain) RED is 

generally not that scalable. 

An unexpected (at least in terms of its seriousness) problem has been disclosed with 

ECN, namely the implementations not strictly following the standard could break the 

fairness between ECN-capable and non-ECN-capable sessions, an issue maybe 

needing special handling at the routers. 

The Linux environment demonstrated its power for rapid development and high 

performance, although the hardware limitations prevent building high-end routers from 

commodity PCs. Note however, that with specialized network interfaces such as Gigabit 

Ethernet adapters focusing on saving on interrupt handling it can be possible to build 

very flexible access routers. 

As direct continuation of the work, utilizing the ready module there could be other 

measurements done, with non-Linux TCP implementations, and also with non-TCP 

congestion control – streaming media and WAP just to name a few. 

Further studying the disclosed bias against non-ECN flows could be also an interesting 

area – and also important when ECN gets widely deployed. 
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Abbreviations 

ACK Acknowledgment 
AF Assured Forwarding 
ARP Address Resolution Protocol 
AQM Active Queue Management 
ATM Asynchronous Transfer Mode 
BE Best Effort 
BECN Backward Explicit Congestion Notification 
BSD Berkeley Software Distribution 
CBQ Class Based Queuing 
CE Congestion Experienced 
CPU Central Processing Unit 
CWND Congestion Window 
DoS Denial of Service 
DS Differentiated Services 
DSCP Differentiated Services CodePoint 
DSP Digital Signal Processor 
dupack Duplicated Acknowledgment 
ECN Explicit Congestion Notification 
ECT ECN Capable Transport 
EF Expedited Forwarding 
EWMA Exponentially Weighted Moving Average 
FACK Forward Acknowledgment 
FECN Forward Explicit Congestion Notification 
FIFO First In First Out 
GNU GNU’s Not Unix 
HTTP Hypertext Transfer Control Protocol 
IETF Internet Engineering Task Force 
IHL Internet Header Length 
ISP Internet Service Provider 
IP Internet Protocol 
IPv6 Internet Protocol version 6 
ISN Initial Sequence Number 
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LAN Local Area Network 
LAPB Link Access Procedure, Balanced 
MSS Maximum Segment Size 
NAT Network Address Translation 
NTP Network Time Protocol 
PC Personal Computer 
PSTN Public Switched Telephone Network 
qdisc Queuing Discipline 
RED Random Early Detection 
RFC Request For Comments 
RTP Real-time Transport Protocol 
RTT Round Trip Time 
RTTM Round Trip Time Measurement 
SACK Selective Acknowledgment 
ssthresh Slow Start Threshold 
TC Traffic Control 
TCP Transmission Control Protocol 
ToS Type of Service 
UDP User Datagram Protocol 
UTP Unshielded Twisted Pair 
VoIP Voice over IP 
WRR Weighted Round Robin 
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Appendix A – Adding ECN support to tcpdump 

This modification is mostly based on [37]. My additions are: 

• Display also the ECN CWR flag in TCP packets. 

• This patch applies cleanly to the Debian tcpdump-3.4a6 package source. 

diff -u --recursive --new-file tcpdump-3.4a6/print-ip.c tcpdump-3.4a6-
ecn/print-ip.c 
--- tcpdump-3.4a6/print-ip.c    Sat May 26 21:01:44 2001 
+++ tcpdump-3.4a6-ecn/print-ip.c        Fri Apr 27 21:02:32 2001 
@@ -493,8 +493,15 @@ 
        } else if (off & IP_DF) 
                (void)printf(" (DF)"); 
 
-       if (ip->ip_tos) 
+       if (ip->ip_tos) { 
                (void)printf(" [tos 0x%x]", (int)ip->ip_tos); 
+ 
+               /* ECN bits */ 
+               if (ip->ip_tos &0x01) 
+                       (void)printf(" [CE] "); 
+               if (ip->ip_tos &0x02) 
+                       (void)printf(" [ECT] "); 
+       } 
        if (ip->ip_ttl <= 1) 
                (void)printf(" [ttl %d]", (int)ip->ip_ttl); 
 
diff -u --recursive --new-file tcpdump-3.4a6/print-tcp.c tcpdump-3.4a6-
ecn/print-tcp.c 
--- tcpdump-3.4a6/print-tcp.c   Sat May 26 21:01:44 2001 
+++ tcpdump-3.4a6-ecn/print-tcp.c       Fri May 25 18:40:27 2001 
@@ -75,6 +75,9 @@ 
 #define TCPOPT_CCECHO          13      /* T/TCP CC options (rfc1644) */ 
 #endif 
 
+#define ECE_ON                 0x40    /* ECN CE Notify */ 
+#define CWR_ON                 0x80    /* ECN CE Notify */ 
+ 
 struct tha { 
        struct in_addr src; 
        struct in_addr dst; 
@@ -146,6 +149,12 @@ 
                        putchar('P'); 
        } else 
                putchar('.'); 
+ 
+       if (flags & ECE_ON) 
+               printf(" [ECE]"); 
+ 
+       if (flags & CWR_ON) 
+               printf(" [CWR]"); 
 
        if (!Sflag && (flags & TH_ACK)) { 
                register struct tcp_seq_hash *th; 
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Appendix B – Hardware configuration of the 
computers used for the measurements 

Machine BLUE SEND, RECV 
CPU 466 MHz Intel Pentium3 350 MHz AMD K6-3D 
Cache L1 Instruction 16 kB 

L1 Data 16 kB 
L2 256 kB 

L1 Instruction 32 kB 
L1 Data 32 kB 

Motherboard 
Chipset 

Intel 440 BX ALi M1541 

RAM 128 MB SDRAM 32 MB SDRAM 
Eth0 3Com PCI 3c905B Cyclone Intel 82557 PCI (Ethernet Pro 100) 
Eth1 3Com PCI 3c905C Tornado Intel 82557 PCI (Ethernet Pro 100) 
Eth2 3Com PCI 3c905C Tornado – 
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