BLUE: Active Queue M anagement

CS756 Project Report

Sunitha Burri
May 5, 2004

INDEX

1. Introduction

.. 2
2. BLUE Active Queue Management Algorithm 4
3. Performance Evaluation d BLUE by simulation 5

3.1, SimulationDesignccooiiiiiiiii i, 5
3.2. Anayzing SimulationResults 6

4, CONCIUSIONS ...ivit e e e e e e 8
5. Future Work ..., 8
REfEIENCES ... 9
Appendix A: Network Topdogy and Configurations........ 10

Appendix B: SimulationResultscooeoiiiint, 12

AppendiX C: C++CO0E ...vvvi i e e e 24

Appendix D: Simulation SCriptsoovvvvviiiiin e, 29

BLUE: Active Queue M anagement

Abstract

In order to avoid high padet lossrates many Active queue management algorithms
have been propased, which drop the padets before the queues overflow at the gateways,
so that the end nodks can respondto the cngestion before queues overflow. BLUE isone
such adive queue management algorithm, which uses padet lossand link idle events to
manage cngestion. In this report I'll discussthe working of BLUE and using simulation
results, I'll present that BLUE performs sgnificantly better than RED [2], ancther adive
gqueue management technique, which uses moving average of queue length to manage

congestion.

1. Introduction

In the past, rather the decentralized and fast-changing evolution d Internet
architedure has worked reasonably well. But, novadays, the network traffic is increasing
exporentially due to the integration d enormous networks with many different service
providers, users and potocols. Under this stuation, if the Internet is not designed
caefully it will be more vulnerable to frequent congestion and coll apse. Congestion
occurs when the total demand exceels the bandwidth that the avail able resources can

provide.

The ealiest congestion control mecdhanism that was propacsed in the mid 80s is
TCP endto-end congestion control. This works as follows. Source aljusts its
transmisgon rate acording to the level of congestionit perceves through the padet loss
events. It has 3 drawbadks: 1. By the time source perceves the padet loss considerable
amourt of time might have dapsed from the time when the padet has been dropped at a
gateway due to bufer over flows, during this time source might have dumped some more
padckets to the network which may get dropped based on the level of congestion.
2. Resources are wasted as the dropped padkets consume resources on their way from
sourceto destination. 3.Upon perceaving a padket lossevent, TCP sources may bad off
a the sametimelealing to under utili zation d the link.

In light of these observations, researchers began to consider congestion control at
gateways. The mechanisms that were considered for congestion control at gateways are:
1. Queue management algorithms: These manage the length of the queues by dropping
packets whenever necessary and appropriate.

2. Scheduling agorithms: These determine the next packet to be sent and alocate the

bandwidth among different flows.

Traditional Queue management agorithms drop the packet only when the queues
are full. Some of those techniques are:
1. Tail Drop: This technique drops the incoming packet if the queue is full. It suffers
from the following two drawbacks.
a Lock out: In some situations tail drop alows a single connection or a few
flows to monopolize queue space, preventing other connections from getting room in
the queue.
b. Full Queues: This alows queues to maintain a full or aimost full status for long
periods of time, as it signals congestion through a packet drop only when the queue
has become full. The full or ailmost full status will result in high end-to-end delays.
As queues are always full the packets that arrive in burst from different flows will get
dropped, as aresult of thisall of those flows may back off at the same time leading to
under utilization of the links.
2. Random Drop on full: This technique drops a randomly selected packet if the
incoming packet sees the queue as full. As the randomly selected packet may be from a
different flow when compared to the arriving packet, it does not suffer from lock out
problem. But suffers from full queues problem.
3. Drop front on full: This technique drops the head of the queue if the incoming packet
sees the queue as full. This discipline also does not suffer from Lock out problem, but

suffers from full queues problem.

Full queues problem can be solved if the packets are dropped well before the

gueues become full, so that end nodes can respond to congestion before buffers overflow.

This technique is known as Active queue management. Goals of active queue
management are: reducing number of packet losses; low end-to-end delays; and avoiding
Lock out problem. As of now, many of the Active queue management algorithms have

been proposed. In this project | will be focusing mainly on BLUE and RED algorithms.

RED (Random Early Detection) Algorithm was first proposed by S.Floyd and V.
Jacobson [2]. This discipline maintains a moving average of the queue length to manage
congestion. If this moving average of the queue length lies between a minimum threshold
value and a maximum threshold value, then the packet is either marked or dropped with a
probability. If the moving average of the queue length is greater than or equal to the
maximum threshold then the packet is dropped. Even though, it tries to avoid globa
synchronization and has the ability to accommodate transient bursts, in order to be
efficient RED must have sufficient buffer spaces and must be correctly parameterized. In
contrast to RED, BLUE algorithm uses packet loss and link utilization to manage
congestion. This algorithm is proposed by Wu-chang Feng, Kang Shin, Dilip Kandlur,
Debanjan Saha,

The remainder of this report is organized as follows. Section 2 presents the BLUE
algorithm. Section 3 provides Simulation model, results, and evaluates the performance
of BLUE by anayzing the simulation results. Section 4 presents conclusions and

Section 5 presents future work.

2. BLUE Active Queue Management Algorithm

BLUE performs queue management based on packet loss and link utilization. It
maintains a marking probability pm to either mark or drop the packets. If the queue is
continually dropping the packets , Pmisincremented by afactor J;. If the queue is empty
or link isidle, Pmis decremented by a factor d2. The value of 9; must be set significantly

larger than J,. This is because link is underutilized when the congestion management is
either too aggressive or too conservative, but packet 1oss occurs only when the congestion
mechanism is too conservative. BLUE uses one more parameter freeze time, which

determines the time interval between two successive updates of freeze time. It allows the

changes in the marking probabilit y to take effed before the value is updated again. BLUE
algorithm is given below.

The BLUE algorithm:

UponPadket loss(or Q|en > L) event:
if ((now —last_update) > freeze time)
Pm:=pPm * J1
last_update := now
Uponlinkidle event:
if ((now —last_update) > freeze time)
Pm:=pm - 62
last_update := now

Marking probability, p,, is also updited when the queue length exceals a cetain valuein
order to allow room to be left for transient bursts and to control the queueing delay when
thesize of the buffer being used islarge.

3. Performance evaluation of BL UE through simulation model
3.1 Simulation Design

Network simulator ns2 [4] is used to run the simulations in order to evaluate the
performance of BLUE. A new queue objed (blue) is added to ns2. The network used in
simulationsis given in Fig.1. This network consists of a battlened link between nodes
A and B, which has a cgadty of 35Mbs and delay of 10ms. The nodes that are on the
left side of the node A (NO, N1, N2, N3) are the nodes to which the TCP agents will be
attached. Eadh of these nodes is conreded to the node A through a dudex-link o
cgpadty 25Mbs with adelay of 10ms. The nodes that are on the right side of node B (N4,
N5, N6, N7) are the nodes to which TCP sink agents will be &dtadhed. Pareto onloff
sources with mean onttimes of 200ms and mean dff-times of 200ms, which are dtaded
to the left side nodes nd padkets of size 1000 Bytes to the sinks on correspondng nodes
ontheright side.
Actua Queue lengths and marking probability are used in order see whether BLUE and
RED are adieving the goals (avoiding dobal synchronization and hiases against bursty

sources) or not. Packet lossrates and Link utili zation are used as performance metrics in

order to compare the performance of BLUE with that of RED. For RED queue minth and
maxth are set at 20% and 80% of the queue size with maxp of 1. RED queue
configurations and BLUE queue configurations that are used during the simulations are

given in Tablel and Table2 respectively.

3.2 Analyzing Simulation Results

3.2.1. Actual Queue Lengths and Marking Probability plots without ECN timeouts
Simulations are run on the simple network described in the previous section for 60

seconds, Initially starting with 200 Pareto on/off sources. The number of sources are

increased by 200 every 20 seconds. B4 configuration of BLUE and R2 configuration of

RED are used and gqueue between nodes A and B is monitored in order to plot the actua

gueue lengths and marking probabilities.

Figure 2 shows that RED suffers from continual packet losses during the entire
simulation and also at lower loads periods of packet losses or followed by periods of
under utilization of the link due to the deterministic packet marking behavior. Where as
from Figure 3, we can say that actual queue length plot of BLUE is stable. Only at heavy
load BLUE suffers from continual packet losses. Even though BLUE drops every packet
in that situation, as the TCP sources do not invoke retransmission timeouts when ECN
signal is received with a congestion window of 1, TCP sources are aggressive enough to

maintain full queues.

Figure 4 shows that the marking behavior of RED fluctuates a lot. Where as
Figure 5, shows that marking behavior of BLUE isin accordance with the level of load.

We know that RED tries to avoid global synchronization through randomized
marking as well as maintaining spacing evenly between these markings. But, Incase of
large number of connections, TCP aggregate load changes rapidly leading to considerable
fluctuations of marking probability over short periods of time (as shown in Figure 4). So,
in that scenario RED fails to avoid global synchronization and thus leading to under
utilization of link also. In contrast to RED, as BLUE marking is done randomly and

evenly over time (as shown in Figure 5), BLUE performs better in avoiding global
synchronization. By limiting the queue occupancy RED alows transient bursts. From
the Figure 3, we can say that there is aways room for bursts as the actual queue length is

less than the queue length.

From the Figure 3, Even though it may seem like queueing delay can be reduced
if we can make the queue length to attain stability at a lower length, it is not possible, as
the TCP sources (which are implemented without ECN timeouts), are so aggressive that

actual queue lengthswill be much higher.

3.2.2. Actual Queue Lengths and Marking Probability plotswith ECN timeouts

Actual queue length and marking probability plots are drawn by running the
simulations as described in the previous section with TCP sources that implement ECN
timeouts. From the Figures 6 and 7, we can say that RED sustains continual packet |osses
aswell as the periods of packet losses are followed by periods of under utilization of link.
By observing the Figure 9, we can say that BLUE marking probability is changed in
accordance with the level of congestion. By careful observation of Figure 8, we can say
that link can be utilized more as well as the queuing delays can be reduced, if we can
make graph to form a very low band with lower range more than 0 and higher range far
less than buffer size. During the simulation | had used a fixed freeze time value of
100ms. But as the number of sources increase, the RTT of al the flows increases. We
can achieve the above kind of plot if we can assign effective RTT of all the connections,
that are multiplexed in to the link, to freeze_time dynamically and dynamicallychange 61
ard d2sothatthequeuequicklyadaptstotheofferedload.

3.2.3. Packet Loss Rates and Link Utilization

Simulations are run for al the 4 configurations of RED and BLUE whose
parameters are given in Tablel and Table2 respectively, changing the buffer size from
100KB to 1000KB. Percent packet loss rates and percent link utilizations are plotted

against buffer size.

Figure 10 and 11 are percent packet loss rates for 1500 sources and 4000 sources
respectively. Figure 10 shows that all the 4 configurations of BLUE have amost O
percent packet loss for 1500 sources. From both the figures 10 and 11 we can say that
BLUE has less packet loss rates when compared to RED even under low buffer sizes. As

the buffer size decreases RED suffers more packet |osses.

From the Figures 12 and 13, we can observe that BLUE performs better in
utilizing the link when compared to RED.

4. Conclusions

BLUE performs better when compared to RED even in cases of low buffer sizes.
Even though BLUE algorithm is very simple to implement, it must also be correctly
parameterized and the parameters have to be changed dynamically so as to make the
gueue to adapt to the dynamically changing loads. BLUE is not useful in case of non-

responsive flows.

5. Future Work

Evaluating the performance of BLUE, by changing the way the marking
probability is getting updated, such as modifying it multiplicatively, or both
multiplicatively and additively.

References

[1] Wu-chang Feng, Kang Shin, Dili p Kandlur, Debanjan Saha, “The Blue Active Queue
Management Algorithms’, IEEE/ACM Transactions on Networking, Vol. 10, No. 4,
August 2002.

[2] [RED] S. Floyd and V. Jabson, “Randam Early Detedion Gateways for Congestion
Avoidance”, IEEE/ACM Transactions on Networking, Vol. 1, pp 397413,August 1993

[3] [RFC2309 B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deaing, D. Estrin, S.
Floyd, V. Jacbson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker,
J. Wroclawski, L. Zhang, Recommendations on Queue Management and Congestion
Avoidancein the internet, April 1998.

[4] K. Fall and K. Varadhan, mrs notes and dacumentation, The VINT projed, UC
Berkeley, LBL, USC/1SI and Xerox PARC (February 2000,

http://www.isi.edu/nsnam/ns

[5] [Jaco88] V. Jacobson, “Congestion avoidance and control”, in Proceealings of
S GCOMM'’ 88, (Stanford, CA), pp. 314-329, August 1988.

Appendix A: Network Topology and Configurations
Simulation Topology

100 M bs 100 M bs Q

P

N
B |8
3 |Z
”n (o
wn
\
\

ARG

Each Link : 25Mbs, 10ms

&)

Figure 1

10

RED Configurations

Tablel
Configuration | wq
R1 0.0002
R2 0.002
R3 0.02
R4 0.2

BLUE Configurations

Table?2
Configuration | Freeze time o1 o1
Bl 10ms 0.0025 0.00025
B2 100ms 0.0025 0.00025
B3 10ms 0.02 0.002
B4 100ms 0.02 0.002

11

Appendix B: Smulation Results

Figure 2: Actual Queuelength (in KB) versus Time (in seconds) For RED
, TCP sources without ECN timeouts

o

Elose | Heepy |[2bout X Graph

Actual QueueLength

100, 0000 s

50,0000 H it

FOL OO 4 ; LI LCLLI N

BO.0000 -

S0 O

fiD'.ijl:IElI:I

30.0000--- |

20,0000

o I : : A : :1

0.0000

Tirne

0.0000 ED.DﬁDU' 40,0000 'a‘n.nﬁtu:r

12

Figure 3: Actua Queue length (in KB) versus Time (in seconds) For BLUE
, TCP sources without ECN timeouts

i *'_ xgraph

13

Figure 4: Marking Probability versus Time (in seconds) For RED

, TCP sources without ECN timeouts

se_j]. _H‘cﬂ'@:r‘:_y_ |;=m:-ut_-

Farking Prabakility

X Graph

. Fedpmark ot

1 00007

01,9000 - ERRA RS H‘

E!EED.I:ID { _
07000 1
08000~ : ; : |

0.5000 : il | ”

|:|'4,|:|D|:| : H | I

DSJ:'!:":'

02000

0.1000-

0.0000

z
5

_ : o : Tirme
[EuE]NE] 2000000 40.0000° - BO.0000;

14

Figure 5: Marking Probability versus Time (in seconds) For BLUE
, TCP sources without ECN timeouts

15

Figure 6: Actua Queue length (in KB) versus Time (in seconds) For RED
, TCP sources with ECN timeouts

= X Grap
ActualBoeueLength X G [Fl'h

100,000 o1 i s e

‘?':'-]:'DE!';:'

SO0

20,0000 ot A ;. _ _ | 1 f

00000

Timne.

00000 20,0000 un.ﬁum;’r- 50,0000

16

Figure 7: Actua Queue length (in KB) versus Time (in seconds) For BLUE
, TCP sources with ECN timeouts

i *'_ xgraph

17

Figure 8: Marking Probability versus Time (in seconds) For RED

, TCP sources with ECN timeouts

oty][oot X Graph

Aetusl Duevelength

S0 ——

0,900

05000

07000

0.G000--

0.5000 -

|:|'4,|.:|E||:|

|':|:.3|:.|!:!|:|

0.2000

0.1 000+

0.0000

i
i

00000 20,0000 4010000 500000

Time

18

Figure 9: Marking Probability versus Time (in seconds) For BLUE
, TCP sources with ECN timeouts

xgraph

19

Figure 10: Percent Packet loss versus Buffer Size (in KB) for 1500 sources

20

Figure 11: Percent Packet loss versus Buffer Size (in KB) for 4000 sources

xgraph

21

Figure 12: Percent Link Utilization versus Buffer Size (in KB) for 1500 sources

22

Figure 13: Percent Link Utilization versus Buffer Size (in KB) for 4000 sources

23

Appendix C: C++ code

“blue.h

#i f ndef NS_BLUE_H
#define NS_BLUE H

#i ncl ude <string. h>
#i ncl ude "queue. h"
#i ncl ude "config. h"
#i ncl ude "trace. h"

class Blue : public Queue {
publi c:
Bl ue();
~Bl ue();

pr ot ect ed:
int coonmand(int argc, const char*const* argv);
voi d enque(Packet *);
Packet * deque();
Packet Queue *q_; /* FIFO queue */

void reset();

voi d inc_marking_prob(); /* incrementing the marking
probability */

voi d dec_marking_prob(); /* decrenmenting the marking
probability */

doubl e nmarki ng_prob_; /* marking probability */

doubl e inc_factor_; /* factor by which marking probability
will be increnented */

doubl e dec_factor_; /* factor by which marking probability
will be decrenented */

doubl e last_update tinme_; /* time at which nmarking probability is
updated last tine */

doubl e bandw dt h_; /* bandwi dth of the link */

int setECNbit_; /* ECN enabl ed */

int idle_; /* whether the link is idle */

doubl e idletinme_; /* time at which the link is idle |ast
time */

doubl e freezetine_; /* time period between successive

updat es of marking probability */

doubl e ptc_; /* The ptc is the max nunber of (avg
si zed) pkts per second which can be placed on the |ink */
i nt mean_pktsize_;

int drop_front_; /* bool for dropping packet from front
when queue overflows */
int gib_; /* queue neasured in bytes? */

24

b

do

Tc
Tr

VO

#endi f

ubl e blue_ | _; /*

| _Channel tchan_;

For allow ng transient
control I ing queing delay */

bursts and

/* place to wite trace records */

acedInt curqg_; /* current glen seen by arrivals */
TracedDoubl e marking _prob_trace_; [/* for trace purposes */
routine to wite trace records */

idtrace(Tracedvar*); [/*

“blue.cc “

#i
#i
#i
#i
#i
#i
#i

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

<mat h. h>
<stdlib. h>
<sys/types. h>
"random h"
"flags. h"

"del ay. h"

"bl ue. h"

/* defining |inkage between C++ and Tcl */

static class BlueC ass :

public:

Bl

{

public Tcl d ass {

ued ass() : Tcl d ass("Queue/Blue") {}
Tcl oj ect* create(int argc,

return (new Bl ue);

} class_bl ue;

Bl ue: : Blue() {

}

a_

= new Packet Queue();

pa_ = q_;
/* binding the variables */

b
b
b
b
b
b
b
b
b

b
b

}

const char*const* argv)

nd(" mar ki ng_prob_", &marking_prob_);
nd("inc_factor_ ", & nc_factor_);
nd("dec_factor_ ", &dec_factor_);
nd_bool ("setECNbit ", &setECNbit);

nd_tine("freezetinme ",

nd_bool (" queue_i n_bytes_

nd_bool ("drop_front _",

nd("blue_|_", &blue_I_);

nd("curq_ ", &curqg);

nd(" mar ki ng_prob_trace_",

Bl ue: : ~Bl ue() {

}

int Blue

delete g_;

&f reezetinme_);
nd("pktsize ", &mean_pktsize);

&Qqi b_);

&drop_front_);

&mar ki ng_prob_trace_);

;. command(int argc, const char*const* argv) {

25

Tcl& tcl = Tcl::instance();

if (argc == 3) {
/I attach a file for variable tracing
if (strcmp(argv[1], "attach™) == 0) {

int mode;
const char*id = a rgv[2];
tchan_ = Tcl_GetChannel(tcl.interp(), (char*)id,
&mode);
if (tchan_ == 0) {
tcl.resultf("BLUE: trace: can't attach %s for
writing", id);

return (TCL_ERROR);

}
return (TCL_OK);
}

I link stats
if (stremp(argv[1], "link") = =0){
LinkDelay* link_ =
(LinkDelay*)TclObject::lookup(argv[2]);
if (link_==0) {
tcl.resultf("Blue : No link delay Object %s
argv[2]);
return(TCL_ERROR);
}
bandwidth_ = link_ - >bandwidth();
return(TCL_OK);

if (Istrcmp(argv[1], "packetqueue - attach™)) {
delete g_;
if (I(q_ = (PacketQueue*)
TclObject::lookup(argv[2])))
return (TCL_ERROR);

else {
pa_=0a_;
return (TCL_OK);
}
}
}
return Queue::command(argc, argv);
}
void Blue::reset 0
{

Queue::reset();
/*
* Compute the "packet time constant" if we know the
* link bandwidth. The ptc is the max number of (avg sized)
* pkts per second which can be placed on the link.
* The link bw is given in bits/sec, so scale mean psize
* accordingly.

*/
ptc_ = (bandwidth_ / (8 * mean_pktsize));
idle_=1;

idletime_ = Scheduler::instance().clock();

26

\n",

mar ki ng_prob_ = 0;

mar ki ng_prob_trace_ = marking_prob_;
freezetinme_ = O;
}
voi d Bl ue::inc_marking_ prob()
{
doubl e now = Schedul er::instance().clock();
int glen = qib_ ? gq_->byteLength() : g_->length();
curgq_ = glen;
if ((now - freezetime_ > last_update_tine_) || (curq_ > blue_l_))
{
| ast _update_tinme_ = now,
mar ki ng_prob_ += inc_factor_
if (marking _prob_ > 1.0)
mar ki ng_prob_ = 1. 00;
mar ki ng_prob_trace_ = marking_prob_;
}
}

voi d Bl ue::dec_marking_prob()

doubl e now = Schedul er::instance().clock();
if (now - freezetime_ > last_update_tinme_) {
mar ki ng_prob_ -= dec_factor_;
if (marking_prob_ <
mar ki ng_prob_
mar ki ng_prob_trace_

0. 0;
mar ki ng_prob_;

I 1 o
N—r

}

voi d Bl ue:: enque(Packet* p)

{

doubl e now = Schedul er::instance().cl ock();

bool dropped = false;
bool ECNbit _set = fal se;
hdr _flags* hf = hdr_flags::access(p);
doubl e u = Random : uni form);
/* Find whether to drop or not */
if (u <= marking_prob_) {
if (setECNbit_&& hf->ect()) { /* if ECN enabled */
hf->ce() = 1; /*set ECN bit */
ECNbit _set = true

el se {
drop(p); /* drop packet */
dropped = true;

}
i nc_mar ki ng_prob();
}
if (!dropped)
{
int glim=gqib_? (glim * mean_pktsize_) : qlim;

g_- >enque(p);
if (g_->length() >=qglim {

27

if 'ECNbit_set) inc_marking_prob();
g_- >remove(p);

drop(p);
}
}
intglen=qib_?q_ - >byteLength() : q_ - >len gth();
curg_ = glen; /[for tracing purposes
}
Packet* Blue::deque()
{
Packet*p=q_ - >deque();
if (p!=0){
idle_ = 0;
else { /*if link is idle */
dec_marking_prob();
idle_ = 1;
idletime_ = Scheduler::instance().clock();
}
int glen =gib_?q_ ->byteLength():q_ - >length();
curg_ = glen; /I for tracing purposes
return (p);
}
void Blue::trace(TracedVar* v)
{
char wrk[500], *p;
if (((p = strstr(v - >name(), "curg")) == NULL) &&
((p = strstr(v - >name(), "marking_prob_trace")) = = NULL)) {
fprintf(stderr, "BLUE:unknown trace var %s \n",
v->name());
return;
}
if (tchan_) {
int n;
double t = Scheduler::instance().clock();
/I XXX: be compatible with nsvl RED trace entries
if (strstr(v - >name(), "curg") '= NULL) {
sprintf(wrk, "A %g %d", t, int(*((TracedInt*) v)));
} else {
sprintf(wrk, "P %g %g", t, double(*((TracedDouble*)
V)
n = strlen(wrk);
wrk[n] =" \n
wrk[n+1] = 0;
(void)Tcl_Write(tchan_, wrk, n+1);
}
return;
}

28

Appendix D: Simulation Scripts

set ns [new Sinul at or]

set f [open out.tr w
$ns trace-all $f
$ns nantrace-all [open out.namw]

#set the no of TCP flows here
set nodenum 4

set start _time 0.0
set finish_ time 60.0

create the nodes
for {set i 0} {$i < $nodenunt {incr i} {

set s($i) [$ns node]
set r($i) [$ns node]
}
set nl [$ns node]
set n2 [$ns node]

create the |inks between the senders and nl, receivers and n2
for {set i 0} {$i < $nodenunt {incr i} {

$ns dupl ex-link $s($i) $nl 1Mo 1ms DropTai
$ns dupl ex-link $r($i) $n2 1M 1nms DropTai

}

#Bottl e neck |ink between between nl and n2
$ns sinplex-link $nl $n2 10Mops 100ns Bl ue
$ns sinplex-1ink $n2 $nl1 10Mops 100ns DropTai

#Conf i gure BLUE queue paraneters here
set blueq [[$ns link $nl $n2] queue]
$bl ueq set inc_factor_ 0.002

$bl ueq set inc_factor_ 0.02

$bl ueq set freezetinme_ 100ns

$bl ueq set setECNbit_ true

set tchan_ [open blueq.tr w

$bl ueq trace curq_

$bl ueq trace marking prob_trace_
$bl ueq attach $tchan_

#set the queue-limt between nl and n2
$ns queue-limt $nl $n2 100

create TCP agents

for {set i 0} {$i < $nodenunt {incr i} {

set tcp($i) [new Agent/ TCP/ Sack1l]

Stcp($i) set fid_ [expr ($i + 1)]
$tcp($i) set ecn_ 1

29

set sink($i) [new Agent/ TCPSi nk/ Sackl/ Del Ack]
$sink($i) set ecn_ 1

$ns attach-agent $s($i) $tcp($i)

$ns attach-agent $r($i) $sink($i)

$ns connect $tcp($i) $sink(S$i)

set srcnumO
for {set j 0} {$ < $finish tine} {set j [expr ($ + 20.0)]} {
for {set num 0} {$num < $nodenunt {incr nun} {
for {set k $srcnunt {$k < [expr ($srcnum + 50)]} {incr k} {
set p($k) [new Application/Traffic/ Pareto]
$p($k) set packet Size_ 1000
$p($k) set burst_time_ 200ms
$p($k) set idle time_ 200ns
$p($k) set shape_ 1.5
$p($k) set rate_ 10000K
$p($k) attach-agent $tcp(Snum

$ns at $j "Sp($k) start”
}

set srcnum [expr ($srcnum + 50)]
}

}

$ns at $finish_time "finish"

proc finish {} {

gl obal ns sink nodenum srcnumtchan_
set awkCode ({

if ($1 == "A" && NF>2) {
print $2, $3 >> "aqg.tr";
set end $2

}

else if ($1 == "P" && NF>2)

print $2, $3 >> "prb.tr";
}
}

$ns flush-trace
if { [Iinfo exists tchan_] } {
cl ose $tchan_

}
exec awk $awkCode bl ueq.tr

puts "running nam.."
exec nam out.nam &

exit O

$ns run

30

