D3: Arithmetic Issues

Portland State
& Computer Science /

#3: Arithmetic Issues

® Integer overflow and integer underflow
® Unsigned VS signed integer confusion

* Turns many benign—seeming codepaths into vectors for theft or

denial of service.

Portland State University CS 410/ 510 Blockchain Development & Security

e
Walkthrough scenario

e A contract's withdraw() function allows you to retrieve ether
donated to the contract as long as your balance remains
positive after the operation.

e An attacker attempts to withdraw more than his or her
current balance.

® The check in withdraw() function is done with unsigned
(positive) integers, resulting in an always positive condition.

e Attacker withdraws more than allowed and the resulting

balance underflows and becomes orders of magnitude larger
than it should be.

e
Example

* April 22,2018
® https://peckshield.com/2018/04/22 /batchOverflow/

New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-10299)

ERC-20 Tokens Deposit Suspended

Dear valued customers,

We are suspending the deposits of all ERC-20 tokens due to the discovery of a new smart contract bug - "BatchOverFlow". By
exploiting the bug, attackers can generate an extremely large amount of tokens, and deposit them into a normal address. [This

makes many of the ERC-20 tokens vulnerable to price manipulations of the attackers.

-

Portland State University CS 410/ 510 Blockchain Development & Security

https://peckshield.com/2018/04/22/batchOverflow/

4 N
Code vulnerability example #1

® Underflow Code Example

function withdraw (uint amount) {

require (balances[msg.sender] - amount >= 0);
msg.sender.transfer (amount) ;
balances[msg.sender] -= amount;

}

* Using uint makes require statement useless (U1nt can never be <
0!
® Attacker has 5 tokens and withdraws 6
* Ends up with 22°°_1 tokens instead in balance

* What would make this code problematic?

function popArrayOfThings () {
require (arrayOfThings.length >= 0);
arrayOfThings.length--;

}

Brick a contract by popping it when its length is O

- /

Portland State University CS 410/ 510 Blockchain Development & Security

e
Code vulnerability example #2

* Overflow Code Example
Code secks to send each addressin receivers,acertain _value amount of
ETH from their account (balances [msg.sender])

batchTransfer(address[] _receivers, uint256 _value) whenNotPaused
uint cnt = _receivers. length;
uint256 amount = uint256(cnt) * _value;

(cnt > 0 cnt 20);

(_value > 0 balances[msg.sender] amount) ;

balances[msg.sender] balances [msg.sender].sub(amount);

(uint i = 0; i < cnt; i++) {
balances[_receivers[i]] balances[_receivers([i]].add(_value);
Transfer(msg.sender, _receivers[i], _value);

true;

® Line 257, the amount local variable is calculated as the product of cnt (the
number of receivers) and value (the amount to send each receiver)

® Line 258 ensures there are only 1-20 receivers

® Line 259 ensures the amount in our balances is more than the amount

® Line 261 updates our balances

® Line 263 updates the balances for each of the receivers

* Any errors here?

Portland State University CS 410/ 510 Blockchain Development & Security

e

® Contract Exploit
® Passtwo recelversinto batchTransfer ()
® Pass 22°° for _value (an arbitrary 256 bit integer)

® What is the value of amount?

® Do the checks in lines 258-259 pass?

® What is the effect of line 2617

® What happens in line 263 to the balance of each of the two
receivers?

® Receivers get an extremely large ~value added to their accounts

without costing a dime in the attacker’s pocket!

batchTransfer(address[] _receivers, uint256 _value) whenNotPaused
uint cnt = receivers. length;
uint256 amount uint256(cnt) * _value;

(cnt () cnt 20);

(_value > 0 balances[msg.sender] amount) ;

balances[msg.sender] = balances[msg.sender].sub(amount);
(uint i = 0; i < cnt; i++) {
balances[_receivers[i]] balances[_receivers[i]].add(_value);
Transfer(msg.sender, _receivers([i], _value);

true;

Portland State University CS 410/ 510 Blockchain Development & Security

Remediation

e Validation: validate all arithmetic operations

contract Overflow {
uint private sellerBalance = 0;
function unsafe_add(uint value) returns (bool) {
sellerBalance += value;

}

function safe_add(uint value) returns (bool){
require(value + sellerBalance >= sellerBalance);
sellerBalance += value;

}
}

Portland State University CS 410/ 510 Blockchain Development & Security

e

* Using SafeMath library (or an equivalent)

https: / /ethereumdev.io/ safemath-protect—overﬂows/

library SafeMath {
function mul(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 ¢ = a * b;
assert(a == 0 || ¢ / a == b);
return c;

}

function div(uint256 a, uint256 b) internal constant returns (uint256) {
// Note: Solidity automatically throws when dividing by ©
uint256 ¢ = a / b;
return c;

}

function sub(uint256 a, uint256 b) internal constant returns (uint256) {
assert(b <= a);
return a - b;

}

function add(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 ¢ = a + b;
assert(c >= a);
return c;

}

3

Portland State University CS 410/ 510 Blockchain Development & Security

https://ethereumdev.io/safemath-protect-overflows/

e

o Replacing native opeartors with SafeMath in contracts

contract MyContract {
using SafeMath for uint256;
uint256 result;

function MyAdd(uint256 a, uint256 b) {
result = 0;
result = a.add(b);

Portland State University CS 410/ 510 Blockchain Development & Security

SI CTF Lab 3.3: D3 _TokenSale

