
D3: Arithmetic Issues

#3: Arithmetic Issues

 Integer overflow and integer underflow

 Unsigned vs signed integer confusion

 Turns many benign-seeming codepaths into vectors for theft or

denial of service.

Portland State University CS 410/510 Blockchain Development & Security

Walkthrough scenario

 A contract's withdraw() function allows you to retrieve ether

donated to the contract as long as your balance remains

positive after the operation.

 An attacker attempts to withdraw more than his or her

current balance.
 The check in withdraw() function is done with unsigned

(positive) integers, resulting in an always positive condition.

 Attacker withdraws more than allowed and the resulting

balance underflows and becomes orders of magnitude larger

than it should be.

Portland State University CS 410/510 Blockchain Development & Security

Example

 April 22, 2018
 https://peckshield.com/2018/04/22/batchOverflow/

Portland State University CS 410/510 Blockchain Development & Security

https://peckshield.com/2018/04/22/batchOverflow/

Code vulnerability example #1

 Underflow Code Example

 Using uint makes require statement useless (uint can never be <

0!
 Attacker has 5 tokens and withdraws 6

 Ends up with 2255-1 tokens instead in balance

 What would make this code problematic?

 Brick a contract by popping it when its length is 0

Portland State University CS 410/510 Blockchain Development & Security

function withdraw(uint _amount) {

require(balances[msg.sender] - _amount >= 0);

msg.sender.transfer(_amount);

balances[msg.sender] -= _amount;

}

function popArrayOfThings() {

require(arrayOfThings.length >= 0);

arrayOfThings.length--;

}

Code vulnerability example #2

 Overflow Code Example
 Code seeks to send each address in _receivers, a certain _value amount of

ETH from their account (balances[msg.sender])

 Line 257, the amount local variable is calculated as the product of cnt (the
number of receivers) and _value (the amount to send each receiver)

 Line 258 ensures there are only 1-20 receivers
 Line 259 ensures the amount in our balances is more than the amount
 Line 261 updates our balances
 Line 263 updates the balances for each of the _receivers
 Any errors here?

Portland State University CS 410/510 Blockchain Development & Security

 Contract Exploit
 Pass two _receivers into batchTransfer()

 Pass 2255 for _value (an arbitrary 256 bit integer)

 What is the value of amount?

 Do the checks in lines 258-259 pass?

 What is the effect of line 261?

 What happens in line 263 to the balance of each of the two

receivers?
 Receivers get an extremely large _value added to their accounts

without costing a dime in the attacker’s pocket!

Portland State University CS 410/510 Blockchain Development & Security

Remediation

 Validation: validate all arithmetic operations

Portland State University CS 410/510 Blockchain Development & Security

contract Overflow {
uint private sellerBalance = 0;
function unsafe_add(uint value) returns (bool) {
sellerBalance += value; // possible overflow

}

function safe_add(uint value) returns (bool){
require(value + sellerBalance >= sellerBalance);
sellerBalance += value;

}
}

 Using SafeMath library (or an equivalent)
 https://ethereumdev.io/safemath-protect-overflows/

Portland State University CS 410/510 Blockchain Development & Security

library SafeMath {
function mul(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a * b;
assert(a == 0 || c / a == b);
return c;

}

function div(uint256 a, uint256 b) internal constant returns (uint256) {
// Note: Solidity automatically throws when dividing by 0
uint256 c = a / b;
return c;

}

function sub(uint256 a, uint256 b) internal constant returns (uint256) {
assert(b <= a);
return a - b;

}

function add(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;

}
}

https://ethereumdev.io/safemath-protect-overflows/

 Replacing native opeartors with SafeMath in contracts

Portland State University CS 410/510 Blockchain Development & Security

contract MyContract {

using SafeMath for uint256;

uint256 result;

function MyAdd(uint256 a, uint256 b) {
result = 0;
result = a.add(b);

}
}

SI CTF Lab 3.3: D3_TokenSale

