
Race conditions

D7: Front-running

#7: Front-running

 A form of a race condition time-of-check vs time-of-use

(TOCTOU) race conditions and transaction ordering

dependence (TOD)
 A classic problem in operating systems

 15.8% of all smart contracts contain a transaction ordering dependence

vulnerability

 Allows a miner to subvert a pending transaction before it has been

committed onto the ledger.

 Term "front-running" from financial trading

Portland State University CS 410/510 Blockchain Development & Security

https://eprint.iacr.org/2016/633.pdf

Front-running in stock trading

 Trading originally done on stock market

floor by paper
 Orders carried by hand between traders

 Broker receives a buy order from client

 Places his/her own order for themselves in

front to clear lower-priced sell orders

 Stock price increases and broker sells at

higher price at the expense of client

 Practice is outlawed for brokers in real-life,

but such laws don't apply on blockchain

 TOC
 Client checking price and deciding to buy

 TOU
 Getting a different price upon execution

due to trader front-running

Portland State University CS 410/510 Blockchain Development & Security

Walkthrough scenario #1

 A prime factoring smart contract publishes an RSA number
N = prime1 x prime2

 A call to its submitSolution() public function with the values

for prime1 and prime2 rewards the caller.

 Alice successfully factors the RSA number and submits a solution.

 Attacker on the network sees Alice's transaction (containing the

solution) waiting to be mined and resubmits it as his/her own with a

higher gas price

 Attacker's transaction gets picked up first by miners due to the

higher paid fee

 The attacker wins the prize.

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

PuzzleSolver()

SetPuzzle

reward=100

PuzzleSolver Contract

SubmitSolution(solution)

if isCorrect(solution):

Send(reward)

UpdateReward(newReward)

reward=newReward

Owner can update

the reward anytime

Anyone can submit a

solution to claim the

reward

Balance: 100

Walkthrough scenario #2

Random
TXs

 Expected operation

Portland State University CS 410/510 Blockchain Development & Security

PuzzleSolver()

SetDifficulty

reward=100

PuzzleSolver Contract

SubmitSolution(solution)

if isCorrect(solution):

Send(reward)

UpdateReward(newReward)

reward=newReward

Miners

Other
TXs

Solution
for

Puzzle
Block

Random TXs

SubmitSolution

Other TXs

+100

Balance: 100Balance: 0

 Malicious contract operator scenario

Portland State University CS 410/510 Blockchain Development & Security

PuzzleSolver()

SetDifficulty

reward=100

PuzzleSolver Contract

SubmitSolution(solution)

if isCorrect(solution):

Send(reward)

UpdateReward(newReward)

reward=newReward

Miners

Other
TXs

Solution
for

Puzzle

Update
Reward
to $0! Block

UpdateReward = 0

SubmitSolution

Other TXs

+0

Balance:100Balance: 0

Intuition

 Observed state != execution state
 Transactions do not have atomicity property

 Can be coincidence
 Two transactions happen at the same time

 But, can be malicious

Portland State University CS 410/510 Blockchain Development & Security

Example

 Front-running the Bancor market-maker for ERC-20 tokens
 Matches buyers and sellers of tokens automatically within a smart-

contract

Portland State University CS 410/510 Blockchain Development & Security

https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798

Mechanism

 Buyer submits a transaction to purchase tokens to the network
 Broadcast immediately to other nodes as a pending transaction and

added to common queue
 Not confirmed until the block confirmation hash mined (~20 seconds)
 Order of pending transactions is malleable until then

 Miners sort transactions by gas price willing to be paid
 Any user running a full-node can spot a pending transaction and

insert their own transaction in front of it by paying 1 Wei more per
gas.

 If a large BUY is about to happen, BNT price will increase (following
deterministic formula in contract)
 Put buy in before that transaction to get an instant appreciation of your

tokens and a guaranteed return on your investment
 If a large SELL is about to happen, BNT price will decrease

 Put a sell in before to get the higher price for you tokens
 Link (6 min)

Portland State University CS 410/510 Blockchain Development & Security

https://www.youtube.com/watch?v=RL2nE3huNiI

Example: Rescuing funds from contracts

 2nd book in "Three-Body Problem" trilogy
 Survival of lower civilizations depends upon not being discovered by higher ones

 Apex predators tracking Ethereum mempool
 Arbitrage bots monitor pending transactions and attempt to exploit profitable

opportunities created by them

 "If the chain itself is a battleground, the mempool is something worse: a dark forest..Detection

means certain death at the hands of advanced predators"

 Rescues of vulnerable smart contracts require obfuscation to hide from

Arbitrage bots
 "If I submitted a transaction calling burn, it would be like a flashing “free money” sign

pointing directly at this profitable opportunity. If these monsters were really in the mempool,

they would see, copy, mutate, and front-run my transaction, taking the money before my

transaction was included."

Portland State University CS 410/510 Blockchain Development & Security

https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff

 Predator wins (taking $12,000 in ETH)

 But subsequently…

Portland State University CS 410/510 Blockchain Development & Security

 Similar vulnerability putting ~$10M USD at risk (9/2020)

 Combine obfuscation from previous rescue attempt with cooperation
 Convince Chinese SharkPool miners to include a transaction in a block that

they would attempt to mine without broadcasting it to others
 If ever there was a time to appeal to a miner to include a transaction without giving front-runners

the chance to steal it, it was now.

 "WhiteHat" API built on the spot once translation issues overcome

Portland State University CS 410/510 Blockchain Development & Security

https://samczsun.com/escaping-the-dark-forest/

Code vulnerability example

 Can also be leveraged by a malicious client
 Bank contract

 userBalances mapping to track account balances per user address (in
storage that only changes after block committed)

 transfer() moves balance from one user to another if sufficient funds
 withdrawBalance() zeros out account and sends user remaining balance

 Issue?

Portland State University CS 410/510 Blockchain Development & Security

contract myBank {
mapping (address => uint) private userBalances;

function transfer(address to, uint amount) {
if (userBalances[msg.sender] >= amount) {

userBalances[to] += amount;
userBalances[msg.sender] -= amount;

}
}
function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.send(amountToWithdraw)());
userBalances[msg.sender] = 0;

}
}

https://hackernoon.com/smart-contract-attacks-part-1-3-attacks-we-should-all-learn-from-the-dao-909ae4483f0a

 Cross-function race condition with external calls
 Found in The DAO (along with re-entrancy)
 Simultaneous execution of transfer() and
withdrawBalance()

 What would you do to avoid this?

Portland State University CS 410/510 Blockchain Development & Security

contract myBank {
mapping (address => uint) private userBalances;

function transfer(address to, uint amount) {
if (userBalances[msg.sender] >= amount) {

userBalances[to] += amount;
userBalances[msg.sender] -= amount;

}
}
function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.send(amountToWithdraw)());
userBalances[msg.sender] = 0;

}
}

https://hackernoon.com/smart-contract-attacks-part-1-3-attacks-we-should-all-learn-from-the-dao-909ae4483f0a

Remediation

 Mutexes, semaphores/locks, condition variables, etc. (critical sections)
when external calls unavoidable
 But, prone to deadlock and livelock issues.

Portland State University CS 410/510 Blockchain Development & Security

contract mutexExample {
mapping (address => uint) private balances;
bool private lockBalances;
function deposit() payable public {

require(!lockBalances);
lockBalances = true;
balances[msg.sender] += msg.value;
lockBalances = false;

}

function withdraw(uint amount) payable public {
require(!lockBalances && amount > 0 && balances[msg.sender] >= amount);
lockBalances = true;
if (msg.sender.call(amount)()) {

balances[msg.sender] -= amount;
}
lockBalances = false;

}
}

https://hackernoon.com/smart-contract-attacks-part-1-3-attacks-we-should-all-learn-from-the-dao-909ae4483f0a

D8: Time Manipulation

#8: Time manipulation

 also known as timestamp dependence

 Time tracked via block.timestamp (or its Solidity alias now)
 Locking a token sale

 Unlocking funds at a specific time for a game

 Timestamp value determined by miner that successfully mines block
 Miner has leeway to manipulate actual value

 Contracts must avoid relying strongly on advertised time
 e.g. using it to generate random numbers critical to smart contract

execution

Portland State University CS 410/510 Blockchain Development & Security

Example #1

 Lottery that uses block.timestamp to generate numbers

 Miner either
 Selects block.timestamp so he/she can win

 Otherwise, selects block.timestamp so no one else can win in current

block

Portland State University CS 410/510 Blockchain Development & Security

Code vulnerability example #1

 A game pays out the very first player at midnight.

 A malicious miner includes his or her attempt to win the game and

sets the timestamp to midnight.
 Just before midnight, miner submits attempt and begins mining the

block

 Even, though real current time slightly before midnight, miner includes

timestamp that is "close enough" to be accepted by all nodes in network

Portland State University CS 410/510 Blockchain Development & Security

function play() public {
require(now > 1521763200 && neverPlayed == true);
neverPlayed = false;
msg.sender.transfer(1500 ether);

}

Renamed since unknown unknowns would be blank

D10: Everything else (Unknown

unknowns)

Usage and logic errors

Logic errors

 Code takes your money if you send less than 1000

 Code takes your money if you are not player1 or player2

Portland State University CS 410/510 Blockchain Development & Security

 Game implements bit-commitment protocol
 2-players publish a keyed hash of their random numbers

 Subsequently reveal the numbers to determine winner

 Upon seeing a key that reveals a committed number, the other player

fails to reveal his/her key if it is a losing move
 e.g. player1 opens move, but player2 refuses to open move since

there is do no incentive to do so

 Must add a deposit to play and timeout player (forfeiting the deposit)

No penalty for bad behavior

Portland State University CS 410/510 Blockchain Development & Security

Malicious contracts

Intentional Backdoors

Portland State University CS 410/510 Blockchain Development & Security

"Blockchain gives us confidence that smart contracts will operate as coded,

but regular users can’t always be confident they will operate as intended."

K. Petrie (7/2019)

https://www.trustnodes.com/2018/11/10/concerns-rise-over-backdoored-smart-contracts

 "Vulnerabilities" that allow owner to totally drain balance, that allow

owner to prevent users from withdrawing ETH forever, or that

allows anyone to steal new deposits reported (9/27/2019)
 FairWin could “be one of the biggest scams ever

seen in Ethereum.”

Portland State University CS 410/510 Blockchain Development & Security

Example: FairWin (9/2019)

https://cointelegraph.com/news/from-10m-to-zero-in-10-days-eth-smart-contract-fairwin-is-empty
https://explore.duneanalytics.com/public/dashboards/GBCqJoDFdQwWLrqIEQJ9Hvdoi4zphn2Wjsh3eGYV

 Oyster Token (11/2018)
 ICOs typically have one event to sell tokens

 Oyster Token smart contract allows director to reopen

Portland State University CS 410/510 Blockchain Development & Security

 FunFair token (11/2018)
 Controller has ability to wipe out balance of contract (if hacked

presumably, but even if not!)

 Does a token purchaser have any recourse if it's in the contract code?

Portland State University CS 410/510 Blockchain Development & Security

Incorrect assumptions

Initial contract state

 Contract authors assuming
 No one knows contract addresses until they are created

 Are initialized with no balance (e.g. hold no ETH)

 Can only be sent ETH via payable functions including the fallback

function

 But
 Contract addresses predictable

 Given the creator's address and nonce

 Nonce starts at 1 and is incremented after each transaction from address

 Contract addresses can be sent and have ETH associated with them

before they are even created

 Can be sent ETH via self-destruction of a contract

Portland State University CS 410/510 Blockchain Development & Security

 Gridlock bug on Lockdrop contract (7/2019)

 Fixed-size token purchase done in multiple steps
 Wallets signal interest to buy

 Wallets then commit ETH (steps 1, 3, 5) for 3-12 months in contract

Portland State University CS 410/510 Blockchain Development & Security

https://medium.com/@nmcl/gridlock-a-smart-contract-bug-73b8310608a9

 Locks up ETH for the msg.sender (typically a smart contract) of
the amount msg.value
 Get msg.value amount of ETH from sender
 Create a new contract using the ETH that locks it up for a period
 After creation, ensure that the contract created has the correct balance

 assert assumes contract didn't receive any other ETH either before or after
creation
 Function is jammed forever if someone pre-sends ETH to address
 Nonce only changes when a contract is successfully created
 Assert will fail and roll-back results without advancing the nonce
 Fix via

Portland State University CS 410/510 Blockchain Development & Security

function lock(Term term, bytes calldata edgewareAddr, bool isValidator)
external payable didStart didNotEnd {

uint256 eth = msg.value;
address owner = msg.sender;
uint256 unlockTime = unlockTimeForTerm(term);
// Create ETH lock contract
Lock lockAddr = (new Lock).value(eth)(owner, unlockTime);
// ensure lock contract has all ETH, or fail
assert(address(lockAddr).balance == msg.value);
emit Locked(owner, eth, lockAddr, term, edgewareAddr, isValidator, now);

}

assert(address(lockAddr).balance >= msg.value);

Remediation

 Don't over-assert

 Remove any non-obvious behavior from the programming language

and virtual machine

 Assume smart contracts will always contain bugs (unless proven

otherwise)

 Audit via code analysis
 Example: Slither's dangerous-strict-equality detector (Trail of Bits,

crytic.io)

Portland State University CS 410/510 Blockchain Development & Security

