D 7. Front-running

Race conditions

Portland State
& Computer Science /

e
(. Front-running

® A form of a race condition time-of-check vs time-of-use
(TOCTOU) race conditions and transaction ordering
dependence (TOD)
A classic problem in operating systems

15.89% of all smart contracts contain a transaction ordering dependence

Vulnerability

Allows a miner to subvert a pending transaction before it has been

committed onto the ledger.

® Term "front—running" from financial trading

Portland State University CS 410/ 510 Blockchain Development & Security

https://eprint.iacr.org/2016/633.pdf

Front-running in stock trading

° Trading originally done on stock market

floor by paper

® Orders carried by hand between traders

® Broker receives a buy order from client

* Places his/her own order for themselves in
front to clear lower-priced sell orders

* Stock price increases and broker sells at

higher price at the expense of client

® Practice is outlawed for brokers in real-life,

but such laws don't apply on blockchain

e TOC
* Client checking price and deciding to buy

e TOU

® Getting a different price upon execution

due to trader front—running

- /

Portland State University CS 410/ 510 Blockchain Development & Security

e
Walkthrough scenario #1

® A prime factoring smart contract publishes an RSA number
N = primel x prime2

* A call toits submitSolution() public function with the values
for primel and prime2 rewards the caller.

® Alice successtully factors the RSA number and submits a solution.

* Attacker on the network sees Alice's transaction (containing the
solution) waiting to be mined and resubmits it as his/her own with a
higher gas price

* Attacker's transaction gets picked up first by miners due to the
higher paid fee

® The attacker wins the prize.

Portland State University CS 410/ 510 Blockchain Development & Security

g
Walkthrough scenario #2

PuzzleSolver Contract

Balance: 100

PuzzleSolver()
Anyone can submit a SetPuzzle
solution to claim the reward=100

reward

e SubmitSolution(solution)

if isCorrect(solution):

Send(reward)
Owner can update

the reward anytime i UpdateReward(newReward)
/ reward=newReward

Portland State University CS 410/ 510 Blockchain Development & Security

o Expected operation

PuzzleSolver Contract

PuzzleSolver()

SetDitficulty
Block reward=100

Random TXs SubmitSolution(solution)

SubmitSolution if isCorrect(solution):

Send(reward)

Other TXs

Miners

UpdateReward(newReward)

reward=newReward

Portland State University CS 410/ 510 Blockchain Development & Security

e

® Malicious contract operator scenario

for

Solution Reward

-
/

Update

to $0!

Puzzl
-

Miners

Other TXs
<

PuzzleSolver Contract

PuzzleSolver()
SetDifficulty

reward=100

UpdateReward = 0 SubmitSolution(solution)

if isCorrect(solution):

Send(reward)

SubmitSolution

4 UpdateReward(newReward)

reward=newReward

Portland State University CS 410/ 510 Blockchain Development & Security

Intuition

® Observed state |= execution state
Transactions do not have atomicity property
® Can be coincidence
Two transactions happen at the same time

® But, can be malicious

Portland State University CS 410/ 510 Blockchain Development & Security

e
Example

* Front-running the Bancor market-maker for ERC-20 tokens

® Matches buyers and sellers of tokens automatically within a smart-

contract

Implementing Ethereum trading front-
runs on the Bancor exchange in Python

@ ooty
N4 Oct 10, 2017 - 15 min read

running consistently (spoiler]an attacker could have had a ~117% ROI on

the money they invested into the attack over July and August, chipping

away from other Bancor users). Finally, I executed the attack against a

single trade, making~$150 net of all fees, after which I returned the money

to the person I front-ran and stopped the program.

Portland State University CS 410/ 510 Blockchain Development & Security

https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798

: _ I
Mechanism

® Buyer submits a transaction to purchase tokens to the network
® Broadcast immediately to other nodes as a pending transaction and
added to common queue
Not confirmed until the block confirmation hash mined (~20 seconds)
Order of pending transactions is malleable until then
® Miners sort transactions by gas price willing to be paid
® Any user running a full-node can spot a pending transaction and
insert their own transaction in front of it by paying 1 Wei more per
gas.
® It a large BUY is about to happen, BNT price will increase (following
deterministic formula in contract)
Put buy in before that transaction to get an instant appreciation of your
tokens and a guaranteed return on your investment
® It alarge SELL is about to happen, BNT price will decrease

Put a sell in before to get the higher price for you tokens
Link (6 min)

-

Portland State University CS 410/ 510 Blockchain Development & Security

https://www.youtube.com/watch?v=RL2nE3huNiI

e
Example: Rescuing funds from contracts

CIXIN' LIY

TRANSATED BY BOEL MARTINSEN

Ethereum is a Dark Forest

By Dan Robinson and Georgios Konstantopoulos THE‘P:;DARK_

FOREST

0 Dan Robinson Aug 28 - 7 min read

2nd book in "Three—Body Problem" trilogy

Survival of lower civilizations depends upon not being discovered by higher ones

Apex predators tracking Ethereum mempool
Arbitrage bots monitor pending transactions and attempt to exploit profitable
opportunities created by them
"If the chain itself is a battleground, the mempool is something worse: a dark forest.. Detection

means certain death at the hands (y‘" advanced predators"

Rescues of vulnerable smart contracts require obfuscation to hide from
Arbitrage bots

"If I submitted a transaction calling burn, it would be like a flashing “free money”sign
pointing directly at this profitable opportunity. If these monsters were really in the mempool,
they would see, copy, mutate, and front-run my transaction, taking the money before my

transaction was included."

Portland State University CS 410/ 510 Blockchain Development & Security

https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff

e

® Predator wins (taking $12,000 in ETH)

To our surprise, the get transaction would get rejected by Infura even when

we manually overrode the gas estimator. After several failed attempts and
resets, the time pressure got to us, and we got sloppy. We let the second

transaction slip into a later block.

It was a fatal mistake.

Our get transaction did get included—but with a uniswapv2:
INSUFFICIENT LIQUIDITY EURNED error, meaning the liquidity was gone. It

turned out that, in the seconds after our g=t transaction entered the

mempool, someone had executed the call and swept the funds.

The monsters had devoured us.

* But subsequently. ..

Portland State University CS 410/ 510 Blockchain Development & Security

® Similar vulnerability putting ~$10M USD at risk (9/2020)

e Combine obfuscation from previous rescue attempt with cooperation
Convince Chinese SharkPool miners to include a transaction in a block that

they would attempt to mine without broadcasting it to others
Ifever there was a time to appea] to a miner to include a transaction without givingﬁont-runners
the chance to steal it, it was now.

"WhiteHat" API built on the spot once translation issues overcome

Escaping the Dark Forest

On September 15, 2020, a small group of people worked through
the night to rescue over 9.6 MM USD from a vulnerable smart

contract. This is our story.
~ Status

Block

Q SAMCZSUN
24 SEP 2020 10 MIN READ Timestamp

From

@ 7 days 16 hrs ago (Sep-16-2020 11:05-30 AM +UTC)

nteracted With (To) Contract

K _ We had escaped the dark forest.

Portland State University CS 410/ 510 Blockchain Development & Security

https://samczsun.com/escaping-the-dark-forest/

e
Code vulnerability example

® (Can also be leveraged by a malicious client

® Bank contract
userBalances mapping to track account balances per user address (in

storage that only changes after block committed)
transfer () moves balance from one user to another if sufficient funds
withdrawBalance () zeros out account and sends user remaining balance

contract myBank {
mapping (address => uint) private userBalances;

function transfer(address to, uint amount) {
if (userBalances[msg.sender] >= amount) {
userBalances[to] += amount;
userBalances[msg.sender] -= amount;
}
}
function withdrawBalance() public {
uint amountToWithdraw = userBalances[msg.sender];

require(msg.sender.send(amountToWithdraw)());

[ssue? userBalances[msg.sender] = 0;

Portland State University CS 410/ 510 Blockchain Development & Security

https://hackernoon.com/smart-contract-attacks-part-1-3-attacks-we-should-all-learn-from-the-dao-909ae4483f0a

(o Cross-function race condition with external calls
Found in The DAO (along with re-entrancy)
Simultaneous execution of transfer () and
wlthdrawBalance ()

contract myBank {
mapping (address => uint) private userBalances;

function transfer(address to, uint amount) {
if (userBalances[msg.sender] >= amount) {
userBalances[to] += amount;
userBalances[msg.sender] -= amount;

¥
¥

function withdrawBalance() public {
uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.send(amountToWithdraw)());
userBalances[msg.sender] = 0;

What would you do to avoid this?

Portland State University CS 410/ 510 Blockchain Development & Security

https://hackernoon.com/smart-contract-attacks-part-1-3-attacks-we-should-all-learn-from-the-dao-909ae4483f0a

Remediation

® Mutexes, semaphores/locks, condition variables, etc. (critical sections)

when external calls unavoidable
But, prone to deadlock and livelock issues.

contract mutexExample {

mapping (address => uint) private balances;

bool private lockBalances;

function deposit() payable public {
require(!lockBalances);
lockBalances = true;
balances[msg.sender] += msg.value;
lockBalances = false;

}

function withdraw(uint amount) payable public {
require(!lockBalances && amount > O && balances[msg.sender] >= amount);
lockBalances = true;
if (msg.sender.call(amount)()) {
balances[msg.sender] -= amount;

}

lockBalances = false;

Portland State University CS 410/ 510 Blockchain Development & Security

https://hackernoon.com/smart-contract-attacks-part-1-3-attacks-we-should-all-learn-from-the-dao-909ae4483f0a

D&: Time Manipulation

Portland State
& Computer Science /

e
#8: Time manipulation

® also known as timestamp dependence

* Time tracked via block.timestamp (or its Solidity alias now)
Locking a token sale
Unlocking funds at a specitic time for a game

® Timestamp value determined by miner that successtully mines block
Miner has leeway to manipulate actual value

* Contracts must avoid relying strongly on advertised time

e.g. using it to generate random numbers critical to smart contract

execution

Portland State University CS 410/ 510 Blockchain Development & Security

e
Example #1

* Lottery that uses block.timestamp to generate numbers
® Miner either
* Selects block.timestamp so he/she can win

* Otherwise, selects block.timestamp so no one else can win in current

block

Portland State University CS 410/ 510 Blockchain Development & Security

e
Code vulnerability example #1

* A game pays out the very first player at midnight.

function play() public {
require(now > 1521763200 && neverPlayed == true);
neverPlayed = false;
msg.sender.transfer(1500 ether);

}

® A malicious miner includes his or her attempt to win the game and

sets the timestamp to midnight.
Just before midnight, miner submits attempt and begins mining the
block
Even, though real current time slightly before midnight, miner includes

timestamp that is "close enough" to be accepted by all nodes in network

Portland State University CS 410/ 510 Blockchain Development & Security

D10: Everything else (Unknown

unknowns)

Renamed since unknown unknowns would be blank
—— A= 4
== '
T‘\GO\J

2
'. 41"

y" ;

Portland State

Computer Science

Usage and logic errors

a N
Logic errors

def add player():
if not self.storage["playerl™] and msg.value > 1000:

self.storage["playerl”] = msg.sender
self.storage["WINNINGS"] = self.storage["WINNINGS"] + msg.value
return(1)

elif not self.storage["player2”] and msg.value > 1000:
self.storage["player2”] = msg.sender
self.storage["WINNINGS"] = self.storage["WINNINGS"] + msg.value
return(2)

else:
return(0)

® Code takes your money if you send less than 1000
* Code takes your money if you are not playerl or player2

Portland State University CS 410/ 510 Blockchain Development & Security

No penalty for bad behavior

* Game implements bit-commitment protocol
2-players publish a keyed hash of their random numbers
Subsequently reveal the numbers to determine winner
* Upon seeing a key that reveals a committed number, the other player
fails to reveal his/her key if it is a losing move
e.g. playerl opens move, but player2 refuses to open move since
there is do no incentive to do so

Must add a deposit to play and timeout player (forfeiting the deposit)

Portland State University CS 410/ 510 Blockchain Development & Security

Malicious contracts

e
Intentional Backdoors

Concerns Rise Over Backdoored Smart Contracts

"Blockchain gives us confidence that smart contracts will operate as coded,

but regu]ar users can't a]ways be cozzﬁdent they will operate as intended."

K. Petrie (7/2019)

Portland State University CS 410/ 510 Blockchain Development & Security

https://www.trustnodes.com/2018/11/10/concerns-rise-over-backdoored-smart-contracts

/Example: FairWin (9/2019)

* "Vulnerabilities" that allow owner to totally drain balance, that allow
owner to prevent users from withdrawing ETH forever, or that

allows anyone to steal new deposits reported (9/27/2019)

FairWin could "“be one of the biggest scams ever
seen 1in Ethereum.”

From $10M to Zero in 10 Days: ETH
Smart Contract FairWin Is Empty

FairWin
Ox0leacc3aeb9ee/tbbc191d63e8elccfdact1628¢
200k
150k

100k

50k

0
Jul 21 Aug 4 Aug 18 Sep 1 Sep 15 Sep 29
2019

Portland State University CS 410/ 510 Blockchain Development & Security

https://cointelegraph.com/news/from-10m-to-zero-in-10-days-eth-smart-contract-fairwin-is-empty
https://explore.duneanalytics.com/public/dashboards/GBCqJoDFdQwWLrqIEQJ9Hvdoi4zphn2Wjsh3eGYV

- Opyster Token (11/2018)
* [COs typically have one event to sell tokens

® Opyster Token smart contract allows director to reopen

164 -
165
166
167 ~
168
169
170
171
172
173
174
175
176 ~
177
178
179 ~
180
181
182
183
184
185
186
187

/t#
* Director can close the crowdsale
o/
function closeSale() public pnlypirector returns (bool success) {
// The sale must be currently open
require(!saleClosed);

/7 Lock the crowdsale
saleClosed = true;
return true;

}

/##
* Director can open the crowdsale
&/
function openSale() public onlyDirector returns (bool success) {
// The sale must be currently closed
require(saleClosed);

/7 Unlock the crowdsale
saleClosed = false;
return true;

}

Portland State University CS 410/ 510 Blockchain Development & Security

- FunFair token (11/2018)
Controller has ability to wipe out balance of contract (if hacked

presumably, but even if not!)

Does a token purchaser have any recourse if it's in the contract code?

251 ~
252
253
254
255
256
257
258 -
259
260
261
262
263
264
265
266
267
268 -
269
270
271
272
273
274

modifier onlyController() {
if (msg.sender != controller) throw;

=3

}

function transfer(address _from, address _to, uint _value)
onlyController|
returns (bool success) {

if (balanceOf[_from] < _value) return false;

balanceOf[_from] = safeSub(balanceOf[_from], _value);
balanceOf[_to] = safeAdd(balanceOf[_to], _value);
return true;

}

function transferFrom(address _spender, address _from, address _to, uint _value)
onlyController
returns (bool success) {

if (balanceOf[_from] < _value) return false;

var allowed = allowance[_from][_spender];
if (allowed < _value) return false;

balanceOf[_to] = safeAdd(balanceOf[_to], _value);

Portland State University CS 410/ 510 Blockchain Development & Security

Incorrect assumptions

N
Initial contract state

® Contract authors assuming
No one knows contract addresses until they are created
Are initialized with no balance (e.g. hold no ETH)
Can only be sent ETH via payable functions including the fallback

function

® But
Contract addresses predictable

Given the creator's address and nonce

Nonce starts at 1 and is incremented after each transaction from address
Contract addresses can be sent and have ETH associated with them
before they are even created

Can be sent ETH via self-destruction of a contract

Portland State University CS 410/ 510 Blockchain Development & Security

4 e Gridlock bug on Lockdrop contract (7/2019)

Gridlock (a smart contract bug)
Neil M [Follow |
W Jul1-8minread

Edgeware’s Lockdrop smart contract has processed over $900 million of

ETH and locked up over $290 million, all while hiding a fatal bug.

* Fixed-size token purchase done in multiple steps
Wallets signal interest to buy
Wallets then commit ETH (steps 1, 3, 5) for 3-12 months in contract

&

Alice 1

?

Lock contract
owned by Alice

Bob 5 Lockdrop 6 Lock contract
contract owned by Bob

&

Lock contract
k Carol owned by Carol

Portland State University CS 410/ 510 Blockchain Development & Security

https://medium.com/@nmcl/gridlock-a-smart-contract-bug-73b8310608a9

Locks up ETH for the msg. sender (typically a smart contract) of A

the amount msg.value
Getmsg.value amount of ETH from sender
Create a new contract using the ETH that locks it up for a period
After creation, ensure that the contract created has the correct balance

function lock(Term term, bytes calldata edgewareAddr, bool isValidator)
external payable didStart didNotEnd {

uint256 eth = msg.value;
address owner = msg.sender;
uint256 unlockTime = unlockTimeForTerm(term);

Lock lockAddr = (new Lock).value(eth)(owner, unlockTime);

assert(address(lockAddr).balance == msg.value);
emit Locked(owner, eth, lockAddr, term, edgewareAddr, isValidator, now);

assert assumes contract didn't receive any other ETH either before or after
creation

* Function is jammed forever if someone pre-sends ETH to address

* Nonce only changes when a contract is successtully created

* Assert will fail and roll-back results without advancing the nonce

e Fix via

assert(address(lockAddr).balance >= msg.value); ///

Portland State University CS 410/ 510 Blockchain Development & Security

Remediation

® Don't over-assert

® Remove any non-obvious behavior from the programming language
and virtual machine

® Assume smart contracts will always contain bugs (unless proven
otherwise)

* Audit via code analysis
Example: Slither's dangerous-strict-equality detector (Trail of Bits,

crytic.io)

Portland State University CS 410/ 510 Blockchain Development & Security

