Portland State
& Computer Science /

Blockchain Programming
Languages

e

human!

YOU DIDNT RESPOND
TO MY EMAIL, MY TEXT
MESSAGE, MY VOICE
MAIL, AND THE NOTE I
LEFT ON YOUR DESK.

Dilbert.com DilbertCartoonist@gmail.com

DO YOU KNOW WHAT
THEY CALL HUMANS
WHO FAIL THE TURING
TEST?

8-2-13 ©2013 Scott Adams, Inc./Dist. by Universal Uclick

Turing complete vs. non-Turing complete

® Not to be confused with the "Turing" test for whether you are

THE COMPARED TO
WHAT? YOU, HIGH
\ ACHIEVERS.

Article on whether "Turing-completeness" is necessary for smart

contracts

Portland State University CS 410/ 510 Blockchain Development & Security

https://hackernoon.com/should-smart-contracts-be-non-turing-complete-fe304203a49e

e
But first... a Turing machine

® Machine with an infinite amount of RAM that can run a finite
program that controls the reading and writing of that RAM

® Program also dictates when to terminate itself

Portland State University CS 410/ 510 Blockchain Development & Security

(e
Turing completeness

° Computability on a Turing machine
® Has the ability to implement any computable function

® Has the ability to have a function that won't terminate by itself (e.g.
infinite loop)

® Has the ability to use an infinite amount of memory

* Q: Sound like something a smart contract needs?

® Q:Then, why do we have Solidity? {1z 7SS [IDSTE BEE CRE

Portland State University CS 410/ 510 Blockchain Development & Security

4 _ N
Non-Turing completeness

® Does not support
® Loops
® Recursion
* Goto constructs which are not guaranteed to terminate

* Constructs that prevent analysis (for security issues)

e Has finite computational and memory resources

Portland State University CS 410/ 510 Blockchain Development & Security

4 N
Analysis of Ethereum contracts

* Studyin 3/2019

Do Smart Contract Languages Need to be
Turing Complete?

Conference Paper (PDF Available) - March 2019 with 250 Reads
Conference: International Congress on Blockchain and Applications. Publisher: Springer, At Avila (Spain)

6.9% use while loops
3.6% use recursion

24.8% use for loops

But not all are unbounded
@ DONT USE ANY TURINGC COMPLETE CHARACTERISTICS
® FOR-LOOPS ® RECURSION ® CONTROL FLOW MECHANISM

“luring-incompleteness is not even that big a limitation; out of all the contract

examples we have conceived internally, so far only one required a loop"
P Ly, Ly q P

k Vitalik Buterin /

Portland State University CS 410/ 510 Blockchain Development & Security

https://www.researchgate.net/publication/332072371_Do_Smart_Contract_Languages_Need_to_be_Turing_Complete
https://www.researchgate.net/publication/332072371_Do_Smart_Contract_Languages_Need_to_be_Turing_Complete

Vyper

e

Overview

* Non-turing complete Pythonic programming language

Language and compiler much simpler

Limits functionality to remove common avenues for vulnerabilities
Allows one to build secure contracts more easily

Simplified programming model to make programs
Maximally human-readable

Maximally difficult to have misleading code

Easy to analyze and audit

Compiles to EVM bytecode

e [inks

On-line interpreter

Project page

Example contracts

Portland State University CS 410/ 510 Blockchain Development & Security

https://vyper.online/
https://vyper.readthedocs.io/
https://medium.com/@merunasgrincalaitis/the-fastest-way-to-learn-vyper-for-creating-secure-ethereum-smart-contracts-8f9d7289ccea

e
Enforcing simplicity

® Removes modifiers

function withdraw () ctf { .. }

SI ¢t £ modifier defined in a separate file

Typically, modifiers are single-condition checks

Vyper encourages these to be done as in-line asserts for readability
® Removes class inheritance

Similar issue of code across multiple files

Inheritance requires knovvledge of precedence rules in case of conflicts
Inheriting from 2 classes that both implement a particular function call

® Removes in-line assembly
Removes the potential for having assembly-level aliases to variables to
improve code auditability

® Removes function overloading
SI CTF: withdraw (uint8 amount) vswithdraw (uint amount)
Confusion over which version is being executed

® Removes operator overloading
Similar issues to above

Portland State University CS 410/ 510 Blockchain Development & Security

Avoiding vulnerable patterns

Removes infinite or arbitrary-length loops

Hard to analyze run-time execution for (e.g. gas)

Recall DoS contract bricking attacks on while loops in contracts
Removes recursive calling (e.g. re-entrancy)

Prevents one from estimating upper bound on gas consumption for a call

All integers 256-bit

Other details
address (this) in Solidity replaced by self in Vyper
address (0) in Solidity replaced by ZERO ADDRESS in Vyper

require in Solidity is assert in Vyper

Portland State University CS 410/ 510 Blockchain Development & Security

e
Other features

* Strongly and statically typed

® Bounds and overtlow checking on array accesses

* Overtlow and undertlow checks for arithmetic operations
® Decimal fixed point numbers

® Precise upper bounds on gas consumption (execution

deterministic)

Portland State University CS 410/ 510 Blockchain Development & Security

Language syntax

https: // Vyper.readthedocs.io

https://vyper.readthedocs.io/

Variables and types

® State variables
Stored in contract storage
Must have type specified
Declare mystatevariable as a signed, 128-bit integer
myStateVariable: int128
® Boolean type
Can be either True or False
myBooleanFlag: bool
® Integer types
Only 256-bit unsigned and 128-bit signed integers
myUnsignedInteger: uint256
mySignedInteger: int128
® Decimal fixed-point type
Values from -2'%7 to (2'27-1) at a precision of 10 decimal places

myDecimal: decimal

Portland State University CS 410/ 510 Blockchain Development & Security

4 e Address type

ZO-byte Ethereum address
myWalletAddress: address

Contains built-in members (e.g. myWalletAddress.<member>)
balance (returns wei value for address)
codesize (returns amount of bytes in bytecode for address)

is contract (returns whether address is a contract versus a wallet)

Portland State University CS 410/ 510 Blockchain Development & Security

e Strings (as in Python)
Stored strings with maximum length specified so it can be allocated
exampleString: String[100] = "Test String"
® Byte Arrays
Fixed to 32 bytes (e.g. the size of a 1INt 2506)
codehash: bytes32

® [ists
Fixed-size array of elements of a specitied type

Example
Declare a list of 3 signed integers, initialize it, then set an element of it
myIntegerList: int128[3]
myIntegerList = [10, 11, 12]
myIntegerList|[2] = 42

® Mappings (hash tables)

Example
Declare a mapping called myBalances that stores values of unit type decimal
and is keyed by an address
myBalances: HashMap(address, decimal)

Set the sender's balance to 10.5
myBalances[msg.sender] = 10.5

Portland State University CS 410/ 510 Blockchain Development & Security

e

® Structs
Declare custom struct data type with attributes and their types

Cannot contain mappings

struct Bid:
id: uint256
deposit: decimal

Instantiate an instance, initialize it, then change one of its attributes
myBid: Bid
myBid = Bid({id: 10, deposit: 10.5})

myBid.deposit = 11.5

Portland State University CS 410/ 510 Blockchain Development & Security

e

® Operators
All similar to Python and Solidity
true and false booleans
not, and, or, ==, != logical operators
<, <=, ==, !=, >=>arithmetic comparisons
+, -, *, /, **, %arithmetic operators

Bitwise operators

Done as function calls

bitwise and(), bitwise not(), bitwise or (), bitwise xor (),
shift ()

® Built-in functions (selected)
send () to send a recipient a specified amount of Wei
clear () to reset datatype to default value
len () to return the length of a variable
min (), max () to return smaller or larger of two values

floor (), ceil() toround a decimal down or up to nearest int

Portland State University CS 410/ 510 Blockchain Development & Security

e

o Defining your own functions
® Done via Pythonic method via de f keyword

def bid():
Check 1f bidding period is over.
assert block.timestamp < self.auctionEnd

* Return types specified via —> operator

def returnBalance() -> wei value:
return self.balance

Portland State University CS 410/ 510 Blockchain Development & Security

e

° Visibility declarations
Default setting on everything is private
Explicitly denote public variables (via wrapping with public())

Explicitly denote public functions (via @external decorator)

Keep track of refunded bids so we can follow the withdraw pattern
pendingReturns: public(HashMap(address, uint256))

@external

def withdraw():
pending amount: wei value = self.pendingReturns|msg.sender |
self.pendingReturns|msg.sender| = 0
send(msg.sender, pending_amount)

Portland State University CS 410/ 510 Blockchain Development & Security

4 N

® Other function decorators

@internal (Can only be called within current contract)
dpayable (Canreceive Ether)
@nonreentrant (Cannot be called back into during an external call to stop re-

entrancy attacks)

@view (Does not alter contract state)

® Default tunction (a.k.a. Fallback tunction)
Function that is executed when receiving a payment only
Function that is executed when no tunction matches

Declared via default syntax

@external
@payable
def default ():
self.funds = self.funds + msg.value

Portland State University CS 410/ 510 Blockchain Development & Security

e

e Constructor function

Syntax similar to Python

Setup global variables
beneficiary: address
deadline: public(uint256)
goal: public(uint256)
timelimit: public(uint256)

@public

def init (_beneficiary: address, goal: uint256, timelimit: uint256):
self.beneficiary = _beneficiary
self.deadline = block.timestamp + _timelimit
self.timelimit = timelimit

self.goal = goal

Portland State University CS 410/ 510 Blockchain Development & Security

e

e Control flow
if-else asin Python

for asin Python (with fixed range)

for 1 in range(len(self.funders)):
if self.funders[i].value >= 0:
send(self.funders|[i].sender, self.funders[i].value)
clear(self.funders[i])

Portland State University CS 410/ 510 Blockchain Development & Security

e

* Events to send to UI (e.g. web browser)
® Syntax similar to structs
® Use indexed arguments that can be searched for by listeners

* Sent via 1 0g command

Declare event

event Transfer:
sender: indexed(address)
receiver: indexed(address)
value: uint256

Transfer some tokens from message sender to another address
def transfer(_to : address, _value : uint256) -> bool:
Do transfer here

Then generate event for Llisteners to update UI
log Transfer(msg.sender, _to, _amount)

Portland State University CS 410/ 510 Blockchain Development & Security

4 ® Within Web3.js front-end

var abi = /* abi as generated by the compiler */;
var MyToken = web3.eth.contract(abi);
var myToken = MyToken.at("0x1234...ab67" /* address */);

// watch for changes in the callback
var event = myToken.Transfer(function(error, result) {
if (lerror) {
var args = result.returnValues;
console.log('value transferred = ', args._amount)

});

Portland State University CS 410/ 510 Blockchain Development & Security

e
Fe

® Vyper spin—off
https:// decrypt.co /44961 / ethereum-blockchain- gets—new—language—
called-fe

Syntactic properties from Rust typing added

Burgdorf - "t's likely that Fe will begin to more closely resemble Rust"
Note: Vyper Compiler written in Rust with Python bindings

https://decrypt.co/44961/ethereum-blockchain-gets-new-language-called-fe

Final projects

Portland State
& Computer Science /

e
DApp of your own in Vyper

® (Games

® Auctions

® Parking meter

® Stock market trading application

* Ticket application

® See https://codelabs.cs.pdx.edu for specitication

Portland State University CS 410/ 510 Blockchain Development & Security

https://codelabs.cs.pdx.edu/

