
Vyper

Blockchain Programming

Languages

Turing complete vs. non-Turing complete

 Not to be confused with the "Turing" test for whether you are

human!

 Article on whether "Turing-completeness" is necessary for smart

contracts

Portland State University CS 410/510 Blockchain Development & Security

https://hackernoon.com/should-smart-contracts-be-non-turing-complete-fe304203a49e

But first… a Turing machine

 Machine with an infinite amount of RAM that can run a finite

program that controls the reading and writing of that RAM

 Program also dictates when to terminate itself

Portland State University CS 410/510 Blockchain Development & Security

Turing completeness

 Computability on a Turing machine
 Has the ability to implement any computable function

 Has the ability to have a function that won't terminate by itself (e.g.

infinite loop)

 Has the ability to use an infinite amount of memory

 Q: Sound like something a smart contract needs?

 Q: Then, why do we have Solidity?

Portland State University CS 410/510 Blockchain Development & Security

Non-Turing completeness

 Does not support
 Loops

 Recursion

 Goto constructs which are not guaranteed to terminate

 Constructs that prevent analysis (for security issues)

 Has finite computational and memory resources

Portland State University CS 410/510 Blockchain Development & Security

Analysis of Ethereum contracts

 Study in 3/2019

 6.9% use while loops

 3.6% use recursion

 24.8% use for loops
 But not all are unbounded

Portland State University CS 410/510 Blockchain Development & Security

“Turing-incompleteness is not even that big a limitation; out of all the contract

examples we have conceived internally, so far only one required a loop"

Vitalik Buterin

https://www.researchgate.net/publication/332072371_Do_Smart_Contract_Languages_Need_to_be_Turing_Complete
https://www.researchgate.net/publication/332072371_Do_Smart_Contract_Languages_Need_to_be_Turing_Complete

Vyper

Overview

 Non-turing complete Pythonic programming language
 Language and compiler much simpler

 Limits functionality to remove common avenues for vulnerabilities
 Allows one to build secure contracts more easily

 Simplified programming model to make programs
 Maximally human-readable

 Maximally difficult to have misleading code

 Easy to analyze and audit

 Compiles to EVM bytecode

 Links
 On-line interpreter

 Project page

 Example contracts

Portland State University CS 410/510 Blockchain Development & Security

https://vyper.online/
https://vyper.readthedocs.io/
https://medium.com/@merunasgrincalaitis/the-fastest-way-to-learn-vyper-for-creating-secure-ethereum-smart-contracts-8f9d7289ccea

Enforcing simplicity

 Removes modifiers
function withdraw() ctf { … }

 SI ctf modifier defined in a separate file
 Typically, modifiers are single-condition checks
 Vyper encourages these to be done as in-line asserts for readability

 Removes class inheritance
 Similar issue of code across multiple files
 Inheritance requires knowledge of precedence rules in case of conflicts

 Inheriting from 2 classes that both implement a particular function call

 Removes in-line assembly
 Removes the potential for having assembly-level aliases to variables to

improve code auditability
 Removes function overloading

 SI CTF: withdraw(uint8 amount) vs withdraw(uint amount)

 Confusion over which version is being executed
 Removes operator overloading

 Similar issues to above

Portland State University CS 410/510 Blockchain Development & Security

Avoiding vulnerable patterns

 Removes infinite or arbitrary-length loops
 Hard to analyze run-time execution for (e.g. gas)

 Recall DoS contract bricking attacks on while loops in contracts

 Removes recursive calling (e.g. re-entrancy)
 Prevents one from estimating upper bound on gas consumption for a call

 All integers 256-bit

 Other details
 address(this) in Solidity replaced by self in Vyper

 address(0) in Solidity replaced by ZERO_ADDRESS in Vyper

 require in Solidity is assert in Vyper

Portland State University CS 410/510 Blockchain Development & Security

Other features

 Strongly and statically typed

 Bounds and overflow checking on array accesses

 Overflow and underflow checks for arithmetic operations

 Decimal fixed point numbers

 Precise upper bounds on gas consumption (execution

deterministic)

Portland State University CS 410/510 Blockchain Development & Security

Language syntax

https://vyper.readthedocs.io

https://vyper.readthedocs.io/

Variables and types

 State variables
 Stored in contract storage
 Must have type specified
 Declare myStateVariable as a signed, 128-bit integer

 Boolean type
 Can be either True or False

 Integer types
 Only 256-bit unsigned and 128-bit signed integers

 Decimal fixed-point type
 Values from -2127 to (2127-1) at a precision of 10 decimal places

Portland State University CS 410/510 Blockchain Development & Security

myStateVariable: int128

mySignedInteger: int128

myUnsignedInteger: uint256

myDecimal: decimal

myBooleanFlag: bool

 Address type
 20-byte Ethereum address

 Contains built-in members (e.g. myWalletAddress.<member>)
 balance (returns wei_value for address)

 codesize (returns amount of bytes in bytecode for address)

 is_contract (returns whether address is a contract versus a wallet)

Portland State University CS 410/510 Blockchain Development & Security

myWalletAddress: address

 Strings (as in Python)
 Stored strings with maximum length specified so it can be allocated

 Byte Arrays
 Fixed to 32 bytes (e.g. the size of a uint256)

 Lists
 Fixed-size array of elements of a specified type
 Example

 Declare a list of 3 signed integers, initialize it, then set an element of it

 Mappings (hash tables)
 Example

 Declare a mapping called myBalances that stores values of unit type decimal
and is keyed by an address

 Set the sender's balance to 10.5

Portland State University CS 410/510 Blockchain Development & Security

myBalances: HashMap(address, decimal)

myIntegerList: int128[3]
myIntegerList = [10, 11, 12]
myIntegerList[2] = 42

exampleString: String[100] = "Test String"

codehash: bytes32

myBalances[msg.sender] = 10.5

 Structs
 Declare custom struct data type with attributes and their types

 Cannot contain mappings

 Instantiate an instance, initialize it, then change one of its attributes

Portland State University CS 410/510 Blockchain Development & Security

struct Bid:
id: uint256
deposit: decimal

myBid: Bid

myBid = Bid({id: 10, deposit: 10.5})

myBid.deposit = 11.5

 Operators
 All similar to Python and Solidity

 true and false booleans

 not, and, or, ==, != logical operators

 <, <=, ==, !=, >=, > arithmetic comparisons

 +, -, *, /, **, % arithmetic operators

 Bitwise operators
 Done as function calls
 bitwise_and(), bitwise_not(), bitwise_or(), bitwise_xor(),

shift()

 Built-in functions (selected)
 send() to send a recipient a specified amount of Wei

 clear() to reset datatype to default value

 len() to return the length of a variable

 min(), max() to return smaller or larger of two values

 floor(), ceil() to round a decimal down or up to nearest int

Portland State University CS 410/510 Blockchain Development & Security

 Defining your own functions
 Done via Pythonic method via def keyword

 Return types specified via -> operator

Portland State University CS 410/510 Blockchain Development & Security

def bid():

Check if bidding period is over.

assert block.timestamp < self.auctionEnd

def returnBalance() -> wei_value:

return self.balance

 Visibility declarations
 Default setting on everything is private

 Explicitly denote public variables (via wrapping with public())

 Explicitly denote public functions (via @external decorator)

Portland State University CS 410/510 Blockchain Development & Security

Keep track of refunded bids so we can follow the withdraw pattern

pendingReturns: public(HashMap(address, uint256))

@external

def withdraw():

pending_amount: wei_value = self.pendingReturns[msg.sender]

self.pendingReturns[msg.sender] = 0

send(msg.sender, pending_amount)

 Other function decorators
 @internal (Can only be called within current contract)

 @payable (Can receive Ether)

 @nonreentrant (Cannot be called back into during an external call to stop re-

entrancy attacks)

 @view (Does not alter contract state)

 Default function (a.k.a. Fallback function)
 Function that is executed when receiving a payment only

 Function that is executed when no function matches

 Declared via __default__ syntax

Portland State University CS 410/510 Blockchain Development & Security

@external

@payable

def __default__():

self.funds = self.funds + msg.value

 Constructor function
 Syntax similar to Python

Portland State University CS 410/510 Blockchain Development & Security

Setup global variables

beneficiary: address

deadline: public(uint256)

goal: public(uint256)

timelimit: public(uint256)

@public

def __init__(_beneficiary: address, _goal: uint256, _timelimit: uint256):

self.beneficiary = _beneficiary

self.deadline = block.timestamp + _timelimit

self.timelimit = _timelimit

self.goal = _goal

 Control flow
 if-else as in Python

 for as in Python (with fixed range)

Portland State University CS 410/510 Blockchain Development & Security

for i in range(len(self.funders)):

if self.funders[i].value >= 0:

send(self.funders[i].sender, self.funders[i].value)

clear(self.funders[i])

 Events to send to UI (e.g. web browser)
 Syntax similar to structs

 Use indexed arguments that can be searched for by listeners

 Sent via log command

Portland State University CS 410/510 Blockchain Development & Security

Declare event

event Transfer:

sender: indexed(address)

receiver: indexed(address)

value: uint256

Transfer some tokens from message sender to another address

def transfer(_to : address, _value : uint256) -> bool:

Do transfer here

Then generate event for listeners to update UI

log Transfer(msg.sender, _to, _amount)

 Within Web3.js front-end

Portland State University CS 410/510 Blockchain Development & Security

var abi = /* abi as generated by the compiler */;
var MyToken = web3.eth.contract(abi);
var myToken = MyToken.at("0x1234...ab67" /* address */);

// watch for changes in the callback
var event = myToken.Transfer(function(error, result) {

if (!error) {
var args = result.returnValues;
console.log('value transferred = ', args._amount)

;
}

});

Fe

Fe

 Vyper spin-off
 https://decrypt.co/44961/ethereum-blockchain-gets-new-language-

called-fe

 Syntactic properties from Rust typing added

 Burgdorf: "It's likely that Fe will begin to more closely resemble Rust"

 Note: Vyper compiler written in Rust with Python bindings

https://decrypt.co/44961/ethereum-blockchain-gets-new-language-called-fe

Final projects

DApp of your own in Vyper

 Games

 Auctions

 Parking meter

 Stock market trading application

 Ticket application

 See https://codelabs.cs.pdx.edu for specification

Portland State University CS 410/510 Blockchain Development & Security

https://codelabs.cs.pdx.edu/

