
1

Got MIPS?
The in On-line Games

Wu-chang Feng
Portland State University

Sponsored by:

2

Games

n A big business
n $25.4 billion market in 2004
n $54.6 billion market in 2009 (projected)

n Drives advances in computing platforms
n Intel vs. IBM

n PC platform vs. console platform

n This talk
n What functions do these platforms need to support for future

games?

3

Outline

n From client to server
n Humans as input devices
n Procedural content
n Simulation
n AI in breadth
n Cheat detection and prevention
n Scaling users and worlds

4

Humans as input devices

n Physical gaming
n Blurring the real and virtual

n Physical motion initiating virtual equivalents
n Prevalent in high-end video arcades in Asia

n Faster CPUs at clients enabling richer HCI
n Real-time image and sensor processing
n Used for traditional video games & augmented reality games

5

EyeToy

n Entire body as input
n Real-time image processing
n Arm, leg, head tracking
n Embedded in game or

driving game actions

6

Karaoke Revolution

n Voice pitch as input
n Not enough MIPS to detect enunciation

n The humming cheat
n BNL’s-”One Week” or REM’s-”It’s the End of the World …”
n Simon would not be impressed

n But humming works in the American Idol game, too!

7

Human Pacman

n Physical location as input
n Virtual overlaid on physical via goggles
n Similar to NFL first-down markers

8

Future directions

n Higher-resolution input
n Real-time speech recognition
n Stereo EyeToy for depth

n Motion capture akin to current production of
sports games

n Obviate the need for motion-sensor suits?

n Facilitated by 100-fold increase in processing
PS2 to PS3

9

Future directions

n Multi-modal input
n Karaoke Revolution Party

n EyeToy
n DDR pad
n Microphone

10

Future directions

n Other input
n Psychophysiologic sensors

n Sensing and using emotional state via
passive monitoring

n Gesture-based input
n Accelerometer tilt sensors
n Gyroscopic motion sensors (Nintendo

Revolution magic wand controller)
n Not far from a “Minority Report” interface

11

Outline

n From client to server
n Humans as input devices
n Procedural content
n Simulation
n AI in breadth
n Cheat detection and prevention
n Scaling users and worlds

12

Procedural content

n Run-time generation of audio and visual effects
n Why?

n Artists are a huge part of budget
n Higher resolutions exacerbate problem

n Increases development time and cost
n Content generation dominates cost of MMORPG after launch

n Increases storage and/or bandwidth costs of game
n Example: Everquest 2 on 10 CDs!
n Xbox 360 games on 4 dual-layer DVDs?

n Send new “tree generation algorithm” vs. new trees
n Procedurally generate all objects, textures, and sound
n Demo coders can generate a 3D game in 64KB

13

Generate character aging

n Versus static pre-rendered models of discrete ages
n 3 pre-rendered ages of Sims in original (baby, kid, adult)

n Simulate aging and continuously update model
n Avoid 1000 renderings of same character

14

Generate character animation

n Versus manually generating static animations
n Example: The Sims 2 with 22,000 different animations

n Procedural animation based on player’s character design
n Will Wright’s Spore
n GDC 2005 talk

15

Generate weathering effects

n Versus pre-rendered images of discrete levels of decay
n Simulate rust, stains, and moss growth

n See Chen et. al. SIGGRAPH 2005
n MasterWorks talk “Computing Visual Effects is like Compiling Code”

16

Generate lighting

n Versus fixed levels of lighting in virtual worlds
n Shadows and lighting pre-rendered in textures/maps apriori and

shipped to client
n Example: Counter-Strike

n Two pre-rendered versions of a tunnel in cs_militia

17

Generate lighting

n Simulate lighting effects dynamically
n Lighting to reflect time of day and available light sources
n Global illumination simulation (photon mapping)

n Photon maps calculated at server based on virtual world
n Allow server to control time of day on map
n Allow player “flashlights”, shooting lights out, opening doors, etc.

n See Henrik Jensen’s animations at
http://graphics.ucsd.edu/~henrik

n More later in talk…

18

Generate character voices

n Versus static pre-recorded dialogue
n Example: Call of Duty 2 battle chatter system (10/2005)

n 20,000 lines with static levels of hoarseness and tones
n Takes up more space than original CoD!
n 8% of $14.5 million budget on audio

n Run-time speech synthesis
n Epson/Fonix 5 language TTS chip (11/2005)
n http://www.tmaa.com/tts/engine_listing.htm

19

Future directions

n Better algorithms
n Can we write good artwork generators?

n Need trees not fractals
n SpeedTree http://www.speedtree.com/
n Film CGI tools in games

n NaturalMotion Ltd.’s endorphin http://www.naturalmotion.com
n Maxon
n Lucasfilm

n Need human not computer voices

20

Outline

n From client to server
n Humans as input devices
n Procedural content
n Simulation
n AI in breadth
n Cheat detection and prevention
n Scaling users and worlds

21

Simulation

n Low-level modeling of objects and activity
n Done at run-time (a form of procedural content)

n CPU advances driving simulations at all levels
n Physics,
n People
n Civilizations

22

Serious games

n Large-scale simulations for education, training, and
forecasting
n Made possible by recent CPU advances

n Can finally simulate something useful
n Pioneered by the military (largest consumer)

n Economy simulator
n Japanese Finance Minister game:

http://www.mof.go.jp/zaisei/game.html

n Trauma care center trainer
n Healthcare games http://gamesforhealth.org/

n University simulator
n University management game http://www.virtual-u.org/

n Iraqi cultural simulator
n Interaction with allies and local communities (USC/DoD)

23

Serious games

n Non-entertainment games for training and education
n Military

n 24 Blue : flight deck operations simulator
n Public safety personnel trainer
n Secret service building security analysis

n Leadership
n Virtual leader: http://www.simulearn.net/

n Business
n Business War Games: http://www.prisim.com/

n Planning and government
n Traffic simulators http://www.traffic-simulation.de/
n Government (Civilization, SimCity, Diplomacy)

n Biology
n ImmunoAttack (see next talk)

24

Serious games

n Non-entertainment games for training and education
n People

n PsychSim http://www.isi.edu/isd/carte/proj_psychsim/
n Bio-terrorism

n University of Chicago: http://www.uic.edu/sph/cade
n Science

n Aerospace simulators
n Vehicles

n Cars (GT4, Need for Speed)
n Airplanes (Flights Simulator)

n More information on serious games
n http://www.seriousgames.org/
n http://www.gamasutra.com

25

Physics simulation

n Scaling collision detection
n Per-polygon collision detection

n Polygons increasing rapidly
n CPU becoming a severe bottleneck

n Inverse Kinematics (tackling in Madden ’06)
n Large particle systems (rain, fire, etc.)

n Custom physics
n Vehicles (cars, planes)
n Weapons (recoil, ricochets, shrapnel spray)
n Fluids (water, wind)
n Activities (parachuting, sailing,

snowboarding)
n SIGGRAPH virtual canoe with algorithm-

driven fluid resistance oar

26

Audio

n High-fidelity, 3D audio
n Environmental effects on sound propagation
n Doppler effects (bullet localization in Dolby 5.1)
n Reverberation and echo effects
n Non-repetitive procedural sounds (footstep sounds of FPS games)
n Per-player VoIP mixing based on virtual player positions

n Creative X-Fi (Extreme Fidelity)
n 51 million transistors, 10,000 MIPS

27

Graphics

n Next-generation graphics
n Consoles leading the way
n 3 year window ahead of PC platforms

n Key feature: Highly programmable shaders
n Dominates current generation of graphics hardware
n Examples: UE3, Xbox 360, PS3

n Dependent texture mapping (procedural generation of textures)
n Realistic fluids, cloth, sweat
n UE3’s water demo

n Per-pixel processing (“per-frame” Photoshop)
n Soft shadows
n Depth of field

28

Graphics

n Highly programmable shaders
n Dependent texture mapping

n Realistic fur and grass
n Concentric layers with programmable textures based on motion

n Alpha-blending (transparency effects)
n Per-pixel color/texture combination

n Specific pixel effects “per-frame PhotoShop”
n Z-buffering (depth of field)

n Per-pixel blurring based on focus of player
n Stencil-buffering (soft shadows)
n Blooming and starring effects

n Light bending around objects
n Tone mapping

n Blinding effects based on eye adjustment time
n Anti-aliasing
n Radiosity

n Simulating reflected light
n Motion blurring

29

Graphics

n Highly programmable shaders
n Requires massive memory bandwidth and close CPU/GPU coupling

n GPU is main memory controller of Xbox 360
n Up to 100 instructions per pixel in shader (versus 1)!
n Accesses across 5-10 textures per pixel (versus 1)
n Memory bandwidth from CPU to GPU

n Xbox 360 = 25 GB/s
n PCI-E = 4.1 GB/s
n 8x AGP = 2.1 GB/s

n Internal GPU memory bandwidth
n PS3 and Xbox 360 = ~256 GB/s

n Xbox 360 = 10MB of EDRAM for per-pixel processing

30

Graphics

n Highly programmable shaders
n Unified shader architecture of Xbox 360

n Observation
n Resource consumption of different stages changes with scene

n Dynamic ALU allocation between vertex/shader operations
n Similar to Intel IXP µ-engines
n 3 banks of 16 shaders

n Each shader with 4 ALUs
n 64 hardware threads

31

Graphics

n Increasing polygon counts
n UE1 (200 polygons)
n UE2 (2000 polygons)
n UE3

n 4,000,000 polygons (Pre-
rendered, cut-scenes)

n 7000 polygons (real-time)
n Avenues of improvement

n Parallel rendering on clusters
n Chromium (Stanford)

n Out-of-core rendering
n Large maps and worlds
n UE3 streaming from disk

32

Future directions

n Hardware acceleration
n Identify common functions, put in specialized hardware
n Ageia PhysX physics acceleration chip

n Hardware acceleration for physics and collision detection
n 120 million transistors
n Go from 200 simultaneous objects to 32000

n Supported in UE3
n Falling rocks demo

n Rumored hardware support in PCs (Dell?)
n A threat to Intel?

n Havok
n GPU-based physics acceleration

33

Future directions

n Physiological simulation
n Face simulation

n Simulate facial motion based on audio phenomes
n Examples

n FaceFX face animation (UE3)
n Di-o-matic LipSync and Facial Studio (http://www.di-o-matic.com)

n Muscle simulation
n Simulate human muscular and nervous system to synthesize animations
n NaturalMotion Ltd.’s endorphin http://www.naturalmotion.com

n Evolutionary simulation
n Other simulations?

34

Outline

n From client to server
n Humans as input devices
n Procedural content
n Simulation
n AI in breadth
n Cheat detection and prevention
n Scaling users and worlds

35

AI in breadth

n George Lucas at SIGGRAPH 2005
n “The next breakthrough in games will be artificial intelligence and

voice recognition”

n AI providing more separation in games vs. graphics and art
n 7-fold increase in CPU time devoted to AI since 1997
n Killzone (PS2) devotes 12% of CPU to AI
n NPCs no longer need to “cheat”

36

AI in breadth

n State of AI in games
n Dominant at static, turn-based games

with strict rules of movement
n Example: Chess and Deep Blue

n AI developers have difficulty with
n Games with heavy independent

thought and action
n Dynamic, open-ended games with

emergent behavior (Counter-Strike)
n Games that require diverse virtual

characters, allies, and opponents
n Need better breadth!

37

Path-finding

n Age-old AI problem still
consuming most of CPU
n Find shortest, safest,

most tactically
advantageous path

n Consumes 40% of CPU
for bots on FPS games
n Map complexity
n Updates every 50ms

n Path-finding in WoW
n Too difficult
n Too many creatures
n Mobs go directly to

points in world
n SDKs for pathfinding

n PathEngine

38

Minimally scripted AI

n Riots in State of Emergency
n Soldiers in Metal Gear Solid
n Police tactics in GTA3
n Platoons in Far Cry

39

Minimally scripted AI

n The Sims
n Free-will button allows characters to take care of

themselves indefinitely based on goals

40

Role-specific intelligence

n Better NPC allies
n Automating WoW?

n Fix class imbalance
n Everyone wants to play the hero
n No one wants to heal the hero

n Coordination and protection in Halo

n Better NPC enemies
n Provide diverse opponents

n Munch’s Oddysee: Monster-specific intelligence
n AI based on skills, experience, equipment, race, etc.

n Understanding and adapting to players
n Play at the level of the person paying you money
n Play to keep customer happy

41

Personality training and acquisition

n Pavlov dog training on a grand scale
n Psychological simulation

n Mimicry and penalty-reward training
n Nintendogs
n Black & White Titans (pets)

n Continuous training to train titan (pet)
n Glutton, killer, care-taker, athlete, etc.

n Non-programmed behavior
n Eating its own arm when starving
n “My ape couldn’t find someone to heal. He got

pretty upset. So he threw a guy against a
mountain. Then he healed him”

42

Game Master replacement

n Humans that keep game running at a huge cost
n Detect and ban cheaters
n Observe and ban griefers
n Free players who are stuck
n Provide technical support

n Game Master automation
n Currently primitive
n HLGuard for cheaters
n Swear filter for griefers

n The Sims On-line
n AMX plug-in (In action at cs.mshmro.com)

43

Future directions

n Hardware acceleration
n AIseek AIS-1 “AI chip”

n Path-finding and terrain analysis
n Squad formation and movement

n Is there an AI ISA that works across games?
n Counter-Strike vs. Chess
n Civilization vs. Nintendogs

n Combining a variety of techniques
n http://www.cgf-ai.com/links.html

44

Outline

n From client to server
n Humans as input devices
n Procedural content
n Simulation
n AI in breadth
n Cheat detection and prevention
n Scaling users and worlds

45

Cheat detection and prevention

n Cheating impacts bottom-line of any game
n Wrecks virtual economies
n Causes legitimate, paying players to quit
n Creates bad word-of-mouth to discourage new players

n The Achilles heel of the PC gaming platform
n Must be fixed to compete with consoles

46

Information exposure cheats

n Server or peer sends complete information to other client
n Cheat reveals information that should be hidden

n Wallhack
n Quake 4 – released 10/18/2005
n Call of Duty 2 – released 10/25/2005 (Server boycott due to cheats)

47

Information exposure cheats

n Maphack (reveal map and enemy units)
n Warcraft3 without Maphack

48

Information exposure cheats

n Maphack (reveal map and enemy units)
n Warcraft3 with Maphack

49

Information exposure cheats

n Counter-measures (MIPS to the rescue!)
n Remote rendering

n Games symmetrically designed currently
n Both sides run exact simulation
n Client gets all data about world
n Bad for preventing cheating

n Sending the deck in on-line poker
n Server rendering

n Fixes information exposure problem
n Can aid mobile game playing as well

n Client no longer has to be powerful enough to run full engine
n Example: PS3 to PSP

n Problems
n Not scalable, only simple games
n Latency issues

50

Information exposure cheats

n Counter-measures (MIPS to the rescue!)
n Data culling

n Cull data based on player’s location and field of view
n Example: Cheating-Death for Half-Life (client only)

n Does not work for P2P games
n No authoritative server to perform culling (Starcraft)?
n No trusted third-party (i.e. non-player)

51

Information exposure cheats

n Counter-measures (MIPS to the rescue!)
n Data culling with bit-commitment

n Distributed game simulation (can’t trust each other)
n Data culling combined with cryptographic move and game state

signing followed by post-game verification
n Shameless plug #1: see our work in NOSSDAV 2005! ☺

n http://www.thefengs.com/wuchang/work/cstrike

52

Automation cheats

n Automate game activities via Bots
n Aimbots

n Automate aiming in FPS

n Macros and game bot farming
n Automate wealth acquisition via

programs

53

Bots and farming cheats

n Counter-measures (MIPS to the rescue!)
n Continuous player performance monitoring

n Example: HLGuard
n Machine learning of reasonable human reaction time
n Ban those who react too fast
n Prone to false positives

n Cal-I (Cyberathlete league) players

n Reverse turing tests
n Captchas

n Solve a hard problem in pattern recognition to cheat

n Personal favorite: secure mice/keyboards
n Hardware signing its movement and clicks

n Solve a hard problem in robotics and image processing to cheat!

54

Bug exploitation

n Exploit inconsistencies and errors in game code
n Item duping

n Disconnect while dropping item
n Ambiguity in whether event happened globally

n Other game glitches and errors
n Magic “pizza” machine in The Sims On-line
n Vending machine and pawn shop hack in Lucasfilm’s Habitat

n Counter-measures (MIPS to the rescue!)
n Formal verification

n NetGames 2004
n Wealth heuristics

n Analyze “Gross Game Product” continuously
n Check per-player anomalies (i.e. use credit card fraud detection

algorithms)
n Personal favorite

n Monitor currency devaluation on Ebay ☺ (Eve On-line, EverQuest)

55

Future directions

n Generic solutions
n Use of cryptographic mechanisms

n Authenticity, attestation, non-repudiation

n Machine learning, clustering, anomaly detection
n Security folks: sound familiar?
n Learn normal behavior, flag abnormal

n HLGuard for reaction-time (see Bots and Farming cheats)
n Wealth acquisition for MMORPG (see Bug Exploitation)

n Scanners
n Continuously scan memory for foreign libraries and cheats

n Steam and VAC, PunkBuster
n Heuristics not perfect: Steam and modified OpenGL drivers

56

Future directions

n Generic solutions
n Trusted computing (LaGrande, TPM)

n Software integrity
n Ensure no other foreign library is loaded

n Curtained memory
n Peripherals

n Keyboard, mice
n Secure remote screenshots

n PunkBuster
n Sign geometry info or raster output

n Trusted network output
n Cryptographic timestamping/ordering
n Prevent look-ahead cheats

n Issues
n Customization vs. Trusted Computing

n Mods and macros are successful parts of games
n Counter-Strike, Neverwinter Nights, and Second Life

57

Outline

n From client to server
n Humans as input devices
n Procedural content
n Simulation
n AI in breadth
n Cheat detection and prevention
n Scaling users and worlds

58

Scaling users

n Goal
n A single virtual world with everyone in it

n Current games
n Entire game application replicated into separate instances

n Socket, thread, memory limitations

n FPS
n Single server with 32-64 players
n Run 20,000 – 50,000 independent servers to support large numbers of

users

n MMORPG
n Single server and DB with 5,000-10,000 players
n Run hundreds of independent instances to support large numbers of

users

59

Fixing FPS

n Parallel and clustered FPS server implementations
n Parallel Quake II (Glenn Deen, OptimalGrid, IBM Research)
n Clustered implementation with 70ms transition between nodes
n ICPP keynote http://www2.dnd.no/icpp2005/keynote_icpp2005.pdf

60

Fixing MMORPG

n Next generation game engines and scripting environments
n Massive per-entity multithreading (> 20,000)

n Event-driven programming too difficult
n Efficient threading, scheduling, synchronization

n Transparent thread migration between processors
n Serialization and migration of entity objects

n Flexible scripting languages
n Interpreted languages for rapid prototyping and debugging

n Lua (WoW)
n UnrealScript (Lineage II, Unreal games, America’s Army, Deus Ex)
n Python (Civilization, Eve On-line, Kaneva engine, BigWorld)
n Torque (Torque game engine)

61

Fixing MMORPG

n Solutions
n Unreal Engine 3 with UnrealScript
n Next-generation scripting with Stackless Python

http://www.stackless.com/
n Cooperative user-level multithreading (minimize synchronization)

n “Tasklets” and “microthreads” (think user-level threads and co-routines)
n Heap-based stacks (vs. 1MB per pthread for OS threads)

n Massive threads with slight heap overhead
n O(1) RR scheduler (minimize scheduling)
n “Pickling” (think Java serialization) to swap to disk and to migrate to

other processors
n Examples:

n Eve On-line http://www.eve-online.com/
n BigWorld game engine http://www.bigworldtech.com/
n Butterfly.net

62

Scaling users

n Databases for MMORPG games
n DB performance a limiting factor
n Most use relational DB backends

n May not need flexibility of relational model

n Application-specific or hierarchical databases
n Restrict queries and data representations in exchange for speed
n Hierarchical DBs

n No longer taught in database classes
n Used in credit card transaction processing (IMS)
n Large MMORPGs need transaction rates akin to credit cards

63

Scaling worlds

n Large, deformable, persistent worlds
n Currently, server and client share identical maps, textures, & models

n Small and static

n Want worlds that are large (do not have to fit entirely in memory)
n Streaming large maps on-demand (UE3)
n Does one need to deliver worlds on CD or download them entirely

beforehand?

n Want deformable worlds with persistent and shared effects
n Persistent "worlds" not just "characters“
n Terrain that reflects results of the day’s battles

n Digging a hole and covering it up with grass

n Enabled via remote rendering, out-of-core rendering?
n Second Life and a new PSU course

n www.secondlife.com
n PSU CS 199: Introduction to Video Game Development (Winter 2007)

64

Scaling users and worlds

n Hosting infrastructure for large workloads
n Enabling games on grids

n IBM on-demand services for games, Butterfly.net
n Dynamically allocate resources based on predicted load
n Reduce risk in hardware purchasing at game launch
n Shameless plug #2: See our game workload studies at IMC 2005

n http://www.thefengs.com/wuchang/work/cstrike

65

Outline

n From client to server
n Humans as input devices
n Procedural content
n Simulation
n AI in breadth
n Cheat detection and prevention
n Scaling users and worlds

n Wrapping up
n Other areas
n The future

66

Other areas

n Development engines CPU hungry
n Engines merging with most games 3D (FPS, RPG, RTS)

n Unreal Engine 3 (Deus Ex, Lineage II, Splinter Cell, Unreal II, AA, etc.)
n Modeling, rendering, animation on large clusters

n User content
n Remote execution of code written by players in VMs (Second Life)
n Ensuring safety and preventing cheating

n Virtual machines (Vanderpool?)
n Language-level mechanisms
n Code inspection, analysis, and verification
n Execution monitoring

n OS and networking issues
n Large number of sockets and threads
n Large bursts of small packets
n Efficient handling of one-to-many broadcasts (NOSSDAV 2005)

67

Other areas

n Game services
n Geographic and multi-player server selection
n Reputation and ranking systems
n Game broadcasts and game replay sharing

n Multi-modal output
n Force-feedback control

n Electric shock? (Manipulate balance through ear)
n Sensory surround experience

n Philips amBX system http://ambx.com
n Control ambient light, sound, heat, and airflow during gameplay

68

Outline

n From client to server
n Humans as input devices
n Procedural content
n Simulation
n AI in breadth
n Cheat detection and prevention
n Scaling users and worlds

n Wrapping up
n Other areas
n The future

69

Crystal ball

n The killer application for multi-core CPUs
n Both at the client and server

n All three consoles multi-core
n PC platform becoming multi-core

n Most functions in talk are independent
n Rapidly growing CPU budget allows for interesting new combinations

n But which is the most appropriate “core” for future games?
n x86
n Cell
n GPU shaders
n PhysX ALUs

n Roadblocks
n Most game engines are single-threaded
n Most developers are not trained to write parallel code

70

Acknowledgements

n Sponsors
n Intel Research Council award
n IBM Faculty Partnership award

n The Game Group at Portland State University
n http://games.cs.pdx.edu/
n Faculty

n Nirupama Bulusu, Bryant York, Wu-chi Feng, Melanie Mitchell
n Students

n Chris Chambers
n Jim Snow, Francis Chang, Ed Kaiser

n ACM NetGames and mshmro.com communities

71

Final note

n You can upgrade the CPU in the computer, but not
the one in the person

n Questions?

72

73

Caveats about talk

n If you’re looking for deep CS research, move along
n Breadth not depth

n Gaming landscape is massive
n Talk is not

74

Doom (1993)

Doom 3 (2004)

75

Caveats about talk

n MIPS numbers hard to come by
n Not really publicized by makers
n Talk is qualitative not quantitative

76

Real Tournament

n Physical location and direction as input
n Virtual game world displayed on attached iPaq
n Remote simulation

n Position and direction of gun determine where shot goes

77

Current consoles

n PS2, Xbox, Gamecube
n ~5-10 GFLOPS

n PS3, Xbox 360
n ~1-2 TFLOPS

78

Supporting “Emergence”

n Process of complex pattern formation from simpler rules
n Create larger behaviors by simulating many smaller

interactions
n Unscripted interactions
n Varying game play under same set of rules
n Large number of outcomes and end-states

n Keeps game interesting and new for players
n Examples: SimCity, Civilization, Black & White, Spore

79

Bots and farming attacks

n Automating game activities
n Real-world farming

n Use workers in third-world countries to generate wealth
n Counter-measures

n Machine learning of language and behavior
n Lawyers
n http://www.gameguidesonline.com/guides/articles/ggoarticleoctobe

r05_01.asp

80

Other cheats

n Collusion
n On-line poker, bridge
n StarCraft ladders

n Look-ahead (timing) cheat
n Strategy games

n Speed-hack
n Half-Life

n Disconnect cheat
n Madden on-line

n Denial-of-service
n Time-sensitive P2P games with remote score tracker
n Go, Chess

n Performance enhancing drugs

81

Detailed sims

n Teams
n Sports management
n Tournament Dreams

http://www.400softwarestudios.com/tdcb

82

Generate lighting

n Simulate lighting effects dynamically
n Lighting to reflect time of day and available light sources
n Global illumination simulation (photon mapping)

n Photon maps calculated at server based on virtual world
n Allow server to control time of day on map
n Allow player “flashlights”, shooting lights out, opening doors, etc.

n See Henrik Jensen’s animations at http://graphics.ucsd.edu/~henrik
n More later in talk…

83

A word about games in curricula

n Now is the right time to teach Math and CS
through games

n Why?
n Plummeting enrollments in Computer Science

n Many students turned off by the way CS is being taught
n Games keep students engaged!

n Advanced tools allow CS to be taught “top-down”
n Currently, CS taught “bottom-up”
n Game engines allow non-CS majors to build a game easily

n Build a modern game first, then teach underpinnings

84

A word about games in curricula

n Examples at Portland State University
n Algorithms, data structures and math via games

n PSU CS 442: Combinatorial Games
n Artificial intelligence via games

n PSU CS 410: Interactive Games and Cognition
n Systems programming via games

n PSU CS 200: Computer Systems Programming
n The “top down” approach

n PSU CS 199: Introduction to Video Game Development (Winter 2007)
n Freshman non-major course

n Second Life www.secondlife.com
n Leverage built-in physics, graphics, scripting engines

n Build on top of engine
n Art, audio, video tools for content generation
n Introduction to programming

