

Wu-chang Feng Portland State University

1

- A big business
 - \$25.4 billion market in 2004
 - \$54.6 billion market in 2009 (projected)
- Drives advances in computing platforms
 - Intel vs. IBM
 - PC platform vs. console platform
 - This talk
 - What functions do these platforms need to support for future games?

Outline

From client to server

- Humans as input devices
- Procedural content
- Simulation
- AI in breadth
- Cheat detection and prevention
- Scaling users and worlds

Humans as input devices

Physical gaming

- Blurring the real and virtual
 - Physical motion initiating virtual equivalents
 - Prevalent in high-end video arcades in Asia
- Faster CPUs at clients enabling richer HCI
 - Real-time image and sensor processing
 - Used for traditional video games & augmented reality games

EyeToy

- Entire body as input
 - Real-time image processing
 - Arm, leg, head tracking
 - Embedded in game or driving game actions

Karaoke Revolution

- Voice pitch as input
- Not enough MIPS to detect enunciation
 - The humming cheat
 - BNL's-"One Week" or REM's-"It's the End of the World ..."
 - Simon would not be impressed
 - But humming works in the American Idol game, too!

Human Pacman

- Physical location as input
 - Virtual overlaid on physical via goggles
 - Similar to NFL first-down markers

- Higher-resolution input
 - Real-time speech recognition
 - Stereo EyeToy for depth
 - Motion capture akin to current production of sports games
 - Obviate the need for motion-sensor suits?
 - Facilitated by 100-fold increase in processing PS2 to PS3

Multi-modal input

- Karaoke Revolution Party
 - ЕуеТоу
 - DDR pad
 - Microphone

- Other input
 - Psychophysiologic sensors
 - Sensing and using emotional state via passive monitoring
 - Gesture-based input
 - Accelerometer tilt sensors
 - Gyroscopic motion sensors (Nintendo Revolution magic wand controller)
 - Not far from a "Minority Report" interface

Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - Simulation
 - AI in breadth
 - Cheat detection and prevention
 - Scaling users and worlds

Procedural content

- Run-time generation of audio and visual effects
- Why?
 - Artists are a huge part of budget
 - Higher resolutions exacerbate problem
 - Increases development time and cost
 - Content generation dominates cost of MMORPG after launch
 - Increases storage and/or bandwidth costs of game
 - Example: Everquest 2 on 10 CDs!
 - Xbox 360 games on 4 dual-layer DVDs?
 - Send new "tree generation algorithm" vs. new trees
 - Procedurally generate all objects, textures, and sound
 - Demo coders can generate a 3D game in 64KB

Generate character aging

Versus static pre-rendered models of discrete ages

- 3 pre-rendered ages of Sims in original (baby, kid, adult)
- Simulate aging and continuously update model
 - Avoid 1000 renderings of same character

Generate character animation

- Versus manually generating static animations
 - Example: The Sims 2 with 22,000 different animations
- Procedural animation based on player's character design
 - Will Wright's Spore
 - GDC 2005 <u>talk</u>

Generate weathering effects

- Versus pre-rendered images of discrete levels of decay
- Simulate rust, stains, and moss growth
 - See Chen et. al. SIGGRAPH 2005
 - MasterWorks talk "Computing Visual Effects is like Compiling Code"

Generate lighting

- Versus fixed levels of lighting in virtual worlds
 - Shadows and lighting pre-rendered in textures/maps apriori and shipped to client
 - Example: Counter-Strike
 - Two pre-rendered versions of a tunnel in cs_militia

Generate lighting

Simulate lighting effects dynamically

- Lighting to reflect time of day and available light sources
- Global illumination simulation (photon mapping)
 - Photon maps calculated at server based on virtual world
 - Allow server to control time of day on map
 - Allow player "flashlights", shooting lights out, opening doors, etc.
 - See Henrik Jensen's animations at <u>http://graphics.ucsd.edu/~henrik</u>
 - More later in talk...

Generate character voices

- Versus static pre-recorded dialogue
 - Example: Call of Duty 2 battle chatter system (10/2005)
 - 20,000 lines with static levels of hoarseness and tones
 - Takes up more space than original CoD!
 - 8% of \$14.5 million budget on audio
- Run-time speech synthesis
 - Epson/Fonix 5 language TTS chip (11/2005)
 - <u>http://www.tmaa.com/tts/engine_listing.htm</u>

Better algorithms

- Can we write good artwork generators?
 - Need trees not fractals
 - SpeedTree <u>http://www.speedtree.com/</u>
 - Film CGI tools in games
 - NaturalMotion Ltd.'s endorphin <u>http://www.naturalmotion.com</u>
 - Maxon
 - Lucasfilm
 - Need human not computer voices

Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - Simulation
 - AI in breadth
 - Cheat detection and prevention
 - Scaling users and worlds

Simulation

Low-level modeling of objects and activity

- Done at run-time (a form of procedural content)
- CPU advances driving simulations at all levels
 - Physics,
 - People
 - Civilizations

Serious games

- Large-scale simulations for education, training, and forecasting
 - Made possible by recent CPU advances
 - Can finally simulate something useful
 - Pioneered by the military (largest consumer)
 - Economy simulator
 - Japanese Finance Minister game: <u>http://www.mof.go.jp/zaisei/game.html</u>
 - Trauma care center trainer
 - Healthcare games <u>http://gamesforhealth.org/</u>
 - University simulator
 - University management game <u>http://www.virtual-u.org/</u>
 - Iraqi cultural simulator
 - Interaction with allies and local communities (USC/DoD)

Serious games

Non-entertainment games for training and education

- Military
 - 24 Blue : flight deck operations simulator
 - Public safety personnel trainer
 - Secret service building security analysis
- Leadership
 - Virtual leader: <u>http://www.simulearn.net/</u>
- Business
 - Business War Games: <u>http://www.prisim.com/</u>
- Planning and government
 - Traffic simulators <u>http://www.traffic-simulation.de/</u>
 - Government (Civilization, SimCity, Diplomacy)
- Biology
 - ImmunoAttack (see next talk)

Serious games

- Non-entertainment games for training and education
 - People
 - PsychSim <u>http://www.isi.edu/isd/carte/proj_psychsim/</u>
 - Bio-terrorism
 - University of Chicago: <u>http://www.uic.edu/sph/cade</u>
 - Science
 - Aerospace simulators
 - Vehicles
 - Cars (GT4, Need for Speed)
 - Airplanes (Flights Simulator)
- More information on serious games
 - <u>http://www.seriousgames.org/</u>
 - <u>http://www.gamasutra.com</u>

Physics simulation

- Scaling collision detection
 - Per-polygon collision detection
 - Polygons increasing rapidly
 - CPU becoming a severe bottleneck
 - Inverse Kinematics (tackling in Madden '06)
 - Large particle systems (rain, fire, etc.)
- Custom physics
 - Vehicles (cars, planes)
 - Weapons (recoil, ricochets, shrapnel spray)
 - Fluids (water, wind)
 - Activities (parachuting, sailing, snowboarding)
 - SIGGRAPH virtual canoe with algorithmdriven fluid resistance oar

Audio

High-fidelity, 3D audio

- Environmental effects on sound propagation
- Doppler effects (bullet localization in Dolby 5.1)
- Reverberation and echo effects
- Non-repetitive procedural sounds (footstep sounds of FPS games)
- Per-player VoIP mixing based on virtual player positions
- Creative X-Fi (Extreme Fidelity)
 - 51 million transistors, 10,000 MIPS

- Next-generation graphics
 - Consoles leading the way
 - 3 year window ahead of PC platforms
- Key feature: Highly programmable shaders
 - Dominates current generation of graphics hardware
 - Examples: UE3, Xbox 360, PS3
 - Dependent texture mapping (procedural generation of textures)
 - Realistic fluids, cloth, sweat
 - UE3's water demo
 - Per-pixel processing ("per-frame" Photoshop)
 - Soft shadows
 - Depth of field

Highly programmable shaders

- Dependent texture mapping
 - Realistic fur and grass
 - Concentric layers with programmable textures based on motion
 - Alpha-blending (transparency effects)
 - Per-pixel color/texture combination
- Specific pixel effects "per-frame PhotoShop"
 - Z-buffering (depth of field)
 - Per-pixel blurring based on focus of player
 - Stencil-buffering (soft shadows)
 - Blooming and starring effects
 - Light bending around objects
 - Tone mapping
 - Blinding effects based on eye adjustment time
 - Anti-aliasing
 - Radiosity
 - Simulating reflected light
 - Motion blurring

- Highly programmable shaders
 - Requires massive memory bandwidth and close CPU/GPU coupling
 - GPU is main memory controller of Xbox 360
 - Up to 100 instructions per pixel in shader (versus 1)!
 - Accesses across 5-10 textures per pixel (versus 1)
 - Memory bandwidth from CPU to GPU
 - Xbox 360 = 25 GB/s
 - PCI-E = 4.1 GB/s
 - 8x AGP = 2.1 GB/s
 - Internal GPU memory bandwidth
 - PS3 and Xbox 360 = ~256 GB/s
 - Xbox 360 = 10MB of EDRAM for per-pixel processing

Highly programmable shaders

- Unified shader architecture of Xbox 360
 - Observation
 - Resource consumption of different stages changes with scene
 - Dynamic ALU allocation between vertex/shader operations
 - Similar to Intel IXP μ-engines
 - 3 banks of 16 shaders
 - Each shader with 4 ALUs
 - 64 hardware threads

Increasing polygon counts

- UE1 (200 polygons)
- UE2 (2000 polygons)
- UE3
 - 4,000,000 polygons (Prerendered, cut-scenes)
 - 7000 polygons (real-time)
- Avenues of improvement
 - Parallel rendering on clusters
 - Chromium (Stanford)
 - Out-of-core rendering
 - Large maps and worlds
 - UE3 streaming from disk

- Hardware acceleration
 - Identify common functions, put in specialized hardware
 - Ageia PhysX physics acceleration chip
 - Hardware acceleration for physics and collision detection
 - 120 million transistors
 - Go from 200 simultaneous objects to 32000
 - Supported in UE3
 - Falling rocks demo
 - Rumored hardware support in PCs (Dell?)
 - A threat to Intel?
 - Havok
 - GPU-based physics acceleration

- Physiological simulation
 - Face simulation
 - Simulate facial motion based on audio phenomes
 - Examples
 - FaceFX face animation (UE3)
 - Di-o-matic LipSync and Facial Studio (<u>http://www.di-o-matic.com</u>)
 - Muscle simulation
 - Simulate human muscular and nervous system to synthesize animations
 - NaturalMotion Ltd.'s endorphin <u>http://www.naturalmotion.com</u>
- Evolutionary simulation
- Other simulations?

Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - Simulation
 - Al in breadth
 - Cheat detection and prevention
 - Scaling users and worlds

AI in breadth

- George Lucas at SIGGRAPH 2005
 - "The next breakthrough in games will be artificial intelligence and voice recognition"
- All providing more separation in games vs. graphics and art
 - 7-fold increase in CPU time devoted to AI since 1997
 - Killzone (PS2) devotes 12% of CPU to AI
 - NPCs no longer need to "cheat"

AI in breadth

- State of AI in games
 - Dominant at static, turn-based games with strict rules of movement
 - Example: Chess and Deep Blue
 - AI developers have difficulty with
 - Games with heavy independent thought and action
 - Dynamic, open-ended games with emergent behavior (Counter-Strike)
 - Games that require diverse virtual characters, allies, and opponents
 - Need better breadth!

Path-finding

- Age-old AI problem still consuming most of CPU
 - Find shortest, safest, most tactically advantageous path
 - Consumes 40% of CPU for bots on FPS games
 - Map complexity
 - Updates every 50ms
 - Path-finding in WoW
 - Too difficult
 - Too many creatures
 - Mobs go directly to points in world
 - SDKs for pathfinding
 - PathEngine

Minimally scripted AI

- Riots in State of Emergency
- Soldiers in Metal Gear Solid
- Police tactics in GTA3
- Platoons in Far Cry

Minimally scripted AI

The Sims

 Free-will button allows characters to take care of themselves indefinitely based on goals

Role-specific intelligence

- Better NPC allies
 - Automating WoW?
 - Fix class imbalance
 - Everyone wants to play the hero
 - No one wants to heal the hero
 - Coordination and protection in Halo
- Better NPC enemies
 - Provide diverse opponents
 - Munch's Oddysee: Monster-specific intelligence
 - AI based on skills, experience, equipment, race, etc.
 - Understanding and adapting to players
 - Play at the level of the person paying you money
 - Play to keep customer happy

Personality training and acquisition

- Pavlov dog training on a grand scale
 - Psychological simulation
 - Mimicry and penalty-reward training
 - Nintendogs
 - Black & White Titans (pets)
 - Continuous training to train titan (pet)
 - Glutton, killer, care-taker, athlete, etc.
 - Non-programmed behavior
 - Eating its own arm when starving
 - "My ape couldn't find someone to heal. He got pretty upset. So he threw a guy against a mountain. Then he healed him"

Game Master replacement

- Humans that keep game running at a huge cost
 - Detect and ban cheaters
 - Observe and ban griefers
 - Free players who are stuck
 - Provide technical support
- Game Master automation
 - Currently primitive
 - HLGuard for cheaters
 - Swear filter for griefers
 - The Sims On-line
 - AMX plug-in (In action at cs.mshmro.com)

Future directions

- Hardware acceleration
 - Alseek AIS-1 "AI chip"
 - Path-finding and terrain analysis
 - Squad formation and movement
 - Is there an AI ISA that works across games?
 - Counter-Strike vs. Chess
 - Civilization vs. Nintendogs
- Combining a variety of techniques
 - <u>http://www.cgf-ai.com/links.html</u>

W	in32 Applica	ation
1	-22	
General Weighted C	Iraph	AIS Path Findin
1	EN LINE	1
WDM AI	Accelerator De	wice Driver
P HAL	I HAL	R HAL
1	1	1
Embedded Driver	AIS-1 Chip	Multiple Graphs

Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - Simulation
 - AI in breadth
 - Cheat detection and prevention
 - Scaling users and worlds

Cheat detection and prevention

Cheating impacts bottom-line of any game

- Wrecks virtual economies
- Causes legitimate, paying players to quit
- Creates bad word-of-mouth to discourage new players
- The Achilles heel of the PC gaming platform
 - Must be fixed to compete with consoles

- Server or peer sends complete information to other client
 - Cheat reveals information that should be hidden
- Wallhack
 - Quake 4 released 10/18/2005
 - Call of Duty 2 released 10/25/2005 (Server boycott due to cheats)

Maphack (reveal map and enemy units) Warcraft3 without Maphack

Maphack (reveal map and enemy units) Warcraft3 with Maphack

Counter-measures (MIPS to the rescue!)

- Remote rendering
 - Games symmetrically designed currently
 - Both sides run exact simulation
 - Client gets all data about world
 - Bad for preventing cheating
 - Sending the deck in on-line poker
 - Server rendering
 - Fixes information exposure problem
 - Can aid mobile game playing as well
 - Client no longer has to be powerful enough to run full engine
 - Example: PS3 to PSP
 - Problems
 - Not scalable, only simple games
 - Latency issues

- Counter-measures (MIPS to the rescue!)
 - Data culling
 - Cull data based on player's location and field of view
 - Example: Cheating-Death for Half-Life (client only)
 - Does not work for P2P games
 - No authoritative server to perform culling (Starcraft)?
 - No trusted third-party (i.e. non-player)

- Counter-measures (MIPS to the rescue!)
 - Data culling with bit-commitment
 - Distributed game simulation (can't trust each other)
 - Data culling combined with cryptographic move and game state signing followed by post-game verification
 - Shameless plug #1: see our work in NOSSDAV 2005! ③
 - http://www.thefengs.com/wuchang/work/cstrike

Automation cheats

- Automate game activities via Bots
- Aimbots
 - Automate aiming in FPS
- Macros and game bot farming
 - Automate wealth acquisition via programs

Bots and farming cheats

- Counter-measures (MIPS to the rescue!)
 - Continuous player performance monitoring
 - Example: HLGuard
 - Machine learning of reasonable human reaction time
 - Ban those who react too fast
 - Prone to false positives
 - Cal-I (Cyberathlete league) players
 - Reverse turing tests
 - Captchas

- Solve a hard problem in pattern recognition to cheat
- Personal favorite: secure mice/keyboards
 - Hardware signing its movement and clicks
 - Solve a hard problem in robotics and image processing to cheat!

Bug exploitation

- Exploit inconsistencies and errors in game code
- Item duping
 - Disconnect while dropping item
 - Ambiguity in whether event happened globally
- Other game glitches and errors
 - Magic "pizza" machine in The Sims On-line
 - Vending machine and pawn shop hack in Lucasfilm's Habitat
- Counter-measures (MIPS to the rescue!)
 - Formal verification
 - NetGames 2004
 - Wealth heuristics
 - Analyze "Gross Game Product" continuously
 - Check per-player anomalies (i.e. use credit card fraud detection algorithms)
 - Personal favorite
 - Monitor currency devaluation on Ebay
 © (Eve On-line, EverQuest)

Future directions

Generic solutions

- Use of cryptographic mechanisms
 - Authenticity, attestation, non-repudiation
- Machine learning, clustering, anomaly detection
 - Security folks: sound familiar?
 - Learn normal behavior, flag abnormal
 - HLGuard for reaction-time (see <u>Bots and Farming cheats</u>)
 - Wealth acquisition for MMORPG (see <u>Bug Exploitation</u>)
- Scanners
 - Continuously scan memory for foreign libraries and cheats
 - Steam and VAC, PunkBuster
 - Heuristics not perfect: Steam and modified OpenGL drivers

Future directions

- Generic solutions
 - Trusted computing (LaGrande, TPM)
 - Software integrity
 - Ensure no other foreign library is loaded
 - Curtained memory
 - Peripherals
 - Keyboard, mice
 - Secure remote screenshots
 - PunkBuster
 - Sign geometry info or raster output
 - Trusted network output
 - Cryptographic timestamping/ordering
 - Prevent look-ahead cheats
 - Issues
 - Customization vs. Trusted Computing
 - Mods and macros are successful parts of games
 - Counter-Strike, Neverwinter Nights, and Second Life

PunkBuster Screenshot (ᢪ) RvS Airport 000013 10.3.3.222:7777 PB Test *85591312D4D94653B338A859DA09B95A* [PBSTAFF]Tony Attempted: w=320 X h=240 at (x=50%,y=50%) Resulting: w=320 X h=240 sample=1

Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - Simulation
 - AI in breadth
 - Cheat detection and prevention
 - Scaling users and worlds

Scaling users

Goal

- A single virtual world with everyone in it
- Current games
 - Entire game application replicated into separate instances
 - Socket, thread, memory limitations
 - FPS
 - Single server with 32-64 players
 - Run 20,000 50,000 independent servers to support large numbers of users
 - MMORPG
 - Single server and DB with 5,000-10,000 players
 - Run hundreds of independent instances to support large numbers of users

Fixing FPS

Parallel and clustered FPS server implementations

- Parallel Quake II (Glenn Deen, OptimalGrid, IBM Research)
- Clustered implementation with 70ms transition between nodes
- ICPP keynote <u>http://www2.dnd.no/icpp2005/keynote_icpp2005.pdf</u>

Fixing MMORPG

Next generation game engines and scripting environments

- Massive per-entity multithreading (> 20,000)
 - Event-driven programming too difficult
 - Efficient threading, scheduling, synchronization
- Transparent thread migration between processors
 - Serialization and migration of entity objects
- Flexible scripting languages
 - Interpreted languages for rapid prototyping and debugging
 - Lua (WoW)
 - UnrealScript (Lineage II, Unreal games, America's Army, Deus Ex)
 - Python (Civilization, Eve On-line, Kaneva engine, BigWorld)
 - Torque (Torque game engine)

Fixing MMORPG

- Solutions
 - Unreal Engine 3 with UnrealScript
 - Next-generation scripting with Stackless Python <u>http://www.stackless.com/</u>
 - Cooperative user-level multithreading (minimize synchronization)
 - "Tasklets" and "microthreads" (think user-level threads and co-routines)
 - Heap-based stacks (vs. 1MB per pthread for OS threads)
 - Massive threads with slight heap overhead
 - O(1) RR scheduler (minimize scheduling)
 - "Pickling" (think Java serialization) to swap to disk and to migrate to other processors
 - Examples:
 - Eve On-line <u>http://www.eve-online.com/</u>
 - BigWorld game engine <u>http://www.bigworldtech.com/</u>
 - Butterfly.net

Scaling users

Databases for MMORPG games

- DB performance a limiting factor
- Most use relational DB backends
 - May not need flexibility of relational model
- Application-specific or hierarchical databases
 - Restrict queries and data representations in exchange for speed
 - Hierarchical DBs
 - No longer taught in database classes
 - Used in credit card transaction processing (IMS)
 - Large MMORPGs need transaction rates akin to credit cards

Scaling worlds

- Large, deformable, persistent worlds
 - Currently, server and client share identical maps, textures, & models
 - Small and static
 - Want worlds that are large (do not have to fit entirely in memory)
 - Streaming large maps on-demand (UE3)
 - Does one need to deliver worlds on CD or download them entirely beforehand?
 - Want deformable worlds with persistent and shared effects
 - Persistent "worlds" not just "characters"
 - Terrain that reflects results of the day's battles
 - Digging a hole and covering it up with grass
 - Enabled via remote rendering, out-of-core rendering?
 - Second Life and a new PSU course
 - <u>www.secondlife.com</u>
 - PSU CS 199: Introduction to Video Game Development (Winter 2007)

Scaling users and worlds

Hosting infrastructure for large workloads

- Enabling games on grids
 - IBM on-demand services for games, Butterfly.net
 - Dynamically allocate resources based on predicted load
 - Reduce risk in hardware purchasing at game launch
 - Shameless plug #2: See our game workload studies at IMC 2005
 - http://www.thefengs.com/wuchang/work/cstrike

Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - Simulation
 - AI in breadth
 - Cheat detection and prevention
 - Scaling users and worlds
- Wrapping up
 - Other areas
 - The future

Other areas

- Development engines CPU hungry
 - Engines merging with most games 3D (FPS, RPG, RTS)
 - Unreal Engine 3 (Deus Ex, Lineage II, Splinter Cell, Unreal II, AA, etc.)
 - Modeling, rendering, animation on large clusters
- User content
 - Remote execution of code written by players in VMs (Second Life)
 - Ensuring safety and preventing cheating
 - Virtual machines (Vanderpool?)
 - Language-level mechanisms
 - Code inspection, analysis, and verification
 - Execution monitoring
- OS and networking issues
 - Large number of sockets and threads
 - Large bursts of small packets
 - Efficient handling of one-to-many broadcasts (NOSSDAV 2005)

Other areas

- Game services
 - Geographic and multi-player server selection
 - Reputation and ranking systems
 - Game broadcasts and game replay sharing
- Multi-modal output
 - Force-feedback control
 - Electric shock? (Manipulate balance through ear)
 - Sensory surround experience
 - Philips amBX system <u>http://ambx.com</u>
 - Control ambient light, sound, heat, and airflow during gameplay

Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - Simulation
 - AI in breadth
 - Cheat detection and prevention
 - Scaling users and worlds
- Wrapping up
 - Other areas
 - The future

Crystal ball

The killer application for multi-core CPUs

- Both at the client and server
 - All three consoles multi-core
 - PC platform becoming multi-core
- Most functions in talk are independent
 - Rapidly growing CPU budget allows for interesting new combinations
- But which is the most appropriate "core" for future games?
 - **x86**
 - Cell
 - GPU shaders
 - PhysX ALUs
- Roadblocks
 - Most game engines are single-threaded
 - Most developers are not trained to write parallel code

Acknowledgements

- Sponsors
 - Intel Research Council award
 - IBM Faculty Partnership award
- The Game Group at Portland State University
 - <u>http://games.cs.pdx.edu/</u>
 - Faculty
 - Nirupama Bulusu, Bryant York, Wu-chi Feng, Melanie Mitchell
 - Students
 - Chris Chambers
 - Jim Snow, Francis Chang, Ed Kaiser
- ACM NetGames and mshmro.com communities

Final note

You can upgrade the CPU in the computer, but not the one in the person

Questions?

Caveats about talk

- If you're looking for deep CS research, move along
- Breadth not depth
 - Gaming landscape is massive
 - Talk is not

Doom (1993)

Doom 3 (2004)

Caveats about talk

MIPS numbers hard to come by

- Not really publicized by makers
- Talk is qualitative not quantitative

Real Tournament

Physical location and direction as input

- Virtual game world displayed on attached iPaq
- Remote simulation
 - Position and direction of gun determine where shot goes

Current consoles

- PS2, Xbox, Gamecube
 - ~5-10 GFLOPS
- PS3, Xbox 360
 - ~1-2 TFLOPS

Supporting "Emergence"

- Process of complex pattern formation from simpler rules
- Create larger behaviors by simulating many smaller interactions
 - Unscripted interactions
 - Varying game play under same set of rules
 - Large number of outcomes and end-states
- Keeps game interesting and new for players
 - Examples: SimCity, Civilization, Black & White, Spore

Bots and farming attacks

Automating game activities

- Real-world farming
 - Use workers in third-world countries to generate wealth
 - Counter-measures
 - Machine learning of language and behavior
 - Lawyers
 - <u>http://www.gameguidesonline.com/guides/articles/ggoarticleoctobe</u> <u>r05_01.asp</u>

Other cheats

- Collusion
 - On-line poker, bridge
 - StarCraft ladders
- Look-ahead (timing) cheat
 - Strategy games
- Speed-hack
 - Half-Life
- Disconnect cheat
 - Madden on-line
- Denial-of-service
 - Time-sensitive P2P games with remote score tracker
 - Go, Chess
- Performance enhancing drugs

Detailed sims

Teams

- Sports management
- Tournament Dreams <u>http://www.400softwarestudios.com/tdcb</u>

Generate lighting

- Simulate lighting effects dynamically
 - Lighting to reflect time of day and available light sources
 - Global illumination simulation (photon mapping)
 - Photon maps calculated at server based on virtual world
 - Allow server to control time of day on map
 - Allow player "flashlights", shooting lights out, opening doors, etc.
 - See Henrik Jensen's animations at <u>http://graphics.ucsd.edu/~henrik</u>
 - More later in talk...

A word about games in curricula

- Now is the right time to teach Math and CS through games
- Why?
 - Plummeting enrollments in Computer Science
 - Many students turned off by the way CS is being taught
 - Games keep students engaged!
 - Advanced tools allow CS to be taught "top-down"
 - Currently, CS taught "bottom-up"
 - Game engines allow non-CS majors to build a game easily
 - Build a modern game first, then teach underpinnings

A word about games in curricula

- Examples at Portland State University
 - Algorithms, data structures and math via games
 - PSU CS 442: Combinatorial Games
 - Artificial intelligence via games
 - PSU CS 410: Interactive Games and Cognition
 - Systems programming via games
 - PSU CS 200: Computer Systems Programming
 - The "top down" approach
 - PSU CS 199: Introduction to Video Game Development (Winter 2007)
 - Freshman non-major course
 - Second Life <u>www.secondlife.com</u>
 - Leverage built-in physics, graphics, scripting engines
 - Build on top of engine
 - Art, audio, video tools for content generation
 - Introduction to programming