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ABSTRACT
As a result of physically owning the client machine, cheaters
in online games currently have the upper-hand when it comes
to avoiding detection. To address this problem and turn the
table on cheaters, this paper presents Fides, an anomaly-
based cheat detection approach that remotely validates game
execution. With Fides, a server-side Controller specifies how
and when a client-side Auditor measures the game. To accu-
rately validate measurements, the Controller partially emu-
lates the client and collaborates with the server. This paper
examines a range of cheat methods and initial measurements
that counter them, showing that a Fides prototype is able
to efficiently detect several existing cheats, including one
state-of-the-art cheat that is advertised as “undetectable”.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Invasive Software

General Terms
Security

Keywords
Online Games, Anti-cheating, Anomaly-based Detection,
Remote Measurement, Partial Client Emulation

1. INTRODUCTION

1.1 The Cheating Problem
Multiplayer online games simulate complex environments.

Due to limited server computation and player sensitivity to
network latency, games are designed to offload computation
to the client which is expected to run accurately and keep
secret state hidden from the player. Cheat software violates
this trust by altering the local simulation to give the cheater
an unfair advantage.
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While the motives vary, cheating has become widespread.
Many cheat communities write and sell cheats which range
from automated bots that treasure hunt virtual items, level
up characters, and attain ranks for cheaters unwilling to play
the game, to cheats that provide perfect aim, reveal secret
knowledge, and force opponents to disconnect (and thereby
concede) for cheaters unable to win unaided. Legitimate
players are frustrated by cheaters to the point where they
seek other games that are more resilient to cheating. Since
losing existing and potential paying players directly impacts
revenue, developers must thwart cheating in their games.

1.2 A Distinct Security Problem
Cheaters have one clear advantage over developers – they

control the machines on which they cheat. This means cheat
software is granted all the necessary privileges and may run
before anti-cheat software is ever loaded. State-of-the-art
cheats conceal their presence by modifying the operating
system, disabling or spoofing anti-cheat software, and even
cloaking their code just before routine anti-cheat software
runs. Fortunately, cheats are a weak threat compared to other
security problems like rootkits, botnets, and worms.

At the granularity of individual cheaters, the problem is
not urgent. There is no need for rigorous cheat prevention
or immediate containment; sensitive information (such as
passwords and personal information) is not being stolen and
the machine is not being used to attack other network hosts.
To easily access game data and functionality, cheats embed
themselves inside the game process, drastically limiting their
ability to conceal their presence indefinitely.

Cheating damage is easily undone; by confiscating their
ill-gotten gains and disabling their account, a cheater can no
longer affect legitimate gameplay. The full extent of cheating
damage is easily determined and cleanup is comprehensive.
Unusual for a network adversary, cleanup directly punishes
the cheater, since disabling their account annuls all invested
time and confiscates both the software purchase and paid
subscription fees.

Due to the long-term connected nature of online games,
the server has many lengthy client interactions where the
cheater need only be detected once to halt their disruption.
Reversing an adversary’s traditional advantage, the cheater
must anticipate and guard against every detection technique
to succeed while the developer need only detect a single unau-
thorized change to thwart them. With no need for urgency,
being able to eventually detect the cheater is sufficient to
address the cheating problem, which is supported by the
widespread use of cheat detection.



1.3 Contributions
This paper presents Fides1 which is, to our knowledge,

the first anomaly-based cheat detection approach in literature
and useable on commercial-off-the-shelf online games. The
system is designed to dovetail with prevalent client-server
game architectures in order to minimize the modifications
necessary for adoption and efficiently detect cheats that di-
rectly alter or automate game clients. Cheating external
to the game software (e.g., cheating through collusion or
“roboting”) is not addressed by this approach.

Fides is a promising generalized cheat detection approach
that is game-independent; the approach works across games,
game genres, operating systems, and hardware architectures.
Fides applies anomaly-based application integrity research
to the game domain avoiding the detractions of existing
signature-based detectors. Specifically, Fides does not re-
quire human intensive maintenance and can quickly detect
cheats without first knowing their operational minutia.

Anomaly-Based Cheat Detection. Similar to other
security problems, there are two general cheat detection
methodologies. Signature-based detection learns what cheats
look like and actively searches for those patterns while the
game is running – scanning not only the game but every ac-
tive process on the system. Anti-spyware tools observe that
this maintenance-heavy methodology is the current choice of
game developers [13], likely because it can be implemented
after game release.

In contrast, anomaly-based detection understands how the
legitimate unmodified game operates and periodically audits
the client searching for unexpected deviations that indicate
the presence of cheat software. This detection methodology
only inspects the client process which is feasible since most
cheats currently embed themselves in the client process. As
a result the search space is well bounded; other processes do
not affect the speed nor accuracy of this methodology.

Restricting the search space to the game process yields
security benefits too. Primarily there is no risk of privacy
breach [20]; sensitive data that exists in foreign processes
is not read and cannot be leaked. Additionally, adversaries
cannot exploit the scanning of unfamiliar processes namely
by injecting false positives. This avoids attacks similar to
one where an IRC message containing the binary pattern
of a cheat signature was broadcast to a clan channel, was
falsely detected by Punkbuster, and resulted in more than
300 legitimate players being incorrectly banned [22].

Anomaly-based detection is cheat agnostic and requires
fewer developer resources (i.e., manpower and storage) to
maintain as the game is readily accessible for study by its
own developers – cheats do not need to be captured and
studied to create signatures as only knowledge about the
game is used. The perpetually increasing collection of cheats,
cheat variations, and polymorphic cheats does not inflate the
knowledgebase which only changes when the game does.

Furthermore, anomaly-based detection is not reactionary.
Signature-based detection relies on manually finding cheats
and cataloging their signatures causing a lag between when
a cheat is first used and when its signature can be detected.
This gap is often artificially increased by the developer to
avoid tipping off cheaters as to when and how they were
caught, however, legitimate players may perceive that per-
sonally observed cheating behavior is going unpunished.

1Fides was the goddess of trust in Roman mythology.

For anomaly-based detection to work properly, all host
variation that affects the game client (i.e., library versions
and mapped locations) must be accommodated so that all
legitimate game operation is recognized and will not be mis-
classified as cheating. With such accommodations, anomaly-
based detection may be advantageous in terms of efficiency,
maintenance costs, and accuracy.

Continued Random Remote Measurement. A novel
feature of Fides is that it performs continued random remote
measurements of the game client during gameplay. Towards
this approach, the system comprises a simple client-side Au-
ditor that is directed by a robust server-side Controller. The
Auditor supports a selection of parameterized functions to
measure the client and return the results to the Controller.
The system complexity is located in the Controller which
dictates the audit strategy (i.e., what gets measured as well
as when), and validates all measurements taken.

Minimizing the Auditor’s complexity allows the developer
to strengthen it against attack through the use of execution
entanglement, rapid polymorphism, and lightweight tamper-
resistant co-processors. These techniques, discussed further
in Section 5.2, can provide better assurances about the Au-
ditor’s integrity and measurement accuracy.

Additionally, employing a partially randomized strategy
and placing it in the Controller avoids telegraphing audits
and allows the developer to change strategy surreptitiously.
The fear of the unknown, specifically not knowing when
cheat techniques believed to be detection-proof become ob-
solete (with dire consequences for the cheater), has been
shown to be an effective deterrent for would-be cheaters [14].
Continued random measurements will eventually detect a
persistent cheater and such a strategy is suitable due to the
always-on nature of the game client.

Partial Client Emulation. Another novel feature of
the Fides system is that the Controller partially emulates
the game client to accommodate any client system varia-
tion that affects measurement validation. The Controller
includes routines for mapping the client’s virtual memory
and learning its execution patterns during player logon. This
compiled knowledge is relevant for the duration of gameplay
and is used to validate each Auditor measurement; deviation
indicates the presence of cheat software.

Static game data and code are learned by parsing binary
and library files, and rebasing them to match the client
which must be designed to relate pertinent library details at
logon. Dynamic data is semantically identified using source
code and debugger files so that the Controller may query
the server to corroborate those values, meaning the server
must be designed to respond to such queries.

Client execution patterns are learned by disassembling the
mapped code sections and creating a graph of legitimate
execution describing the range of and relationship between
all client functions. This knowledge allows the Controller to
know what code should be executing given an instruction
pointer, and whether specific code locations represent CALL

instructions linking two legitimate functions.
To better learn commercial-off-the-shelf games (which may

be obfuscated and for which one may not have source files)
that run in common environments, the emulator includes
tools for sampling and profiling legitimate client execution
in a secure server-side environment. These tools can provide
client understanding where static learning routines cannot.



2. CHEAT METHODS
This section reviews formerly surveyed cheat methods [9].

While this paper references Windows specific functions and
Intel R© specific architecture features, these methods apply
to other operating systems and architectures.

2.1 Altering Memory Contents
Code Manipulation. Many cheats change the game

functionality by overwriting (i.e., hot patching) existing code,
usually via the WriteProcessMemory() function. Often hot
patches are used to redirect execution to more complex cheat
code, however, some cheats can be implemented in place and
do not require additional code. For example, cheats that
disable undesirable game mechanics (such as flash grenade
blinding effects) merely replace select game instructions with
NOPs. The instructions that call the undesired function are
typically overwritten rather than the function itself.

Code Injection. Cheats that involve relatively small
changes but cannot be done in place usually inject code into
pockets of allocated but unused executable memory (i.e.,
code caves). This only works if there is enough allocated
but unused memory. More substantial cheats must allocate
new pages via VirtualAllocEx() and make them executable
via VirtualProtectEx() before code can be injected with
WriteProcessMemory().

DLL Injection. One method for injecting substantial
amounts of cheat code into the game process is Dynamic
Link Library (DLL) injection [10, 31]. This method is popu-
lar due to the ease of writing and loading libraries. There are
several ways that a library containing cheat payload can be
loaded; calling the LoadLibrary() function, hooking Load-

Library() as it is used to load legitimate game DLLs, or
modifying the AppInit_DLL registry entry to automatically
load the library at game start up.

Data Manipulation. Some cheats directly modify game
data using functions such as WriteProcessMemory() [3]. Of-
ten these cheats target static data (e.g., the gravity constant
to enable wall-walking, or memory-mapped wall textures to
make them transparent) even though static data modifica-
tion is easy to detect since modified values are made invalid.
Other cheats toggle dynamic data between two or more valid
values in an illegitimate way (e.g., quickly alternating be-
tween teams to trick the game client into revealing enemy
locations via the radar).

File Replacement. A historic method (surprisingly still
employed) involves modification of files on disk before they
are loaded into memory, such as the game binary and data
files, or libraries which the game uses. For example, some
wall hacks replace texture files with transparent alternatives.

2.2 Altering The Execution Path
Thread Injection. Once cheat code is injected into the

game it must be executed. Cheats that operate in parallel
with game code (e.g., automation cheats) accomplish this
by injecting a new thread into the game process using the
system function CreateRemoteThread().

Thread Hijacking. More commonly, an existing thread
is temporarily hijacked using a detour (or trampoline) [15].
This involves redirecting execution by hot patching a few
bytes of a game function to jump to cheat code. After the
cheat has finished, execution returns to the original function.

Function Pointer Hooking. A thread may alterna-
tively be hijacked by hooking a function pointer; the pointer
used to call a game function is redirected to instead point
to cheat code. Susceptible function pointers are prevalent in
any running process and include:

• Return addresses on the stack. Modification returns
execution to injected code rather than to the original
caller. This is the basis for return-to-libc attacks [32].

• Function pointers that implement run-time binding of
operations or jump table implementations of switch
statements in compiled C and C++ code.

• Import Address Table (IAT) entries that point to the
specific functions imported when loading linked DLLs.

• Interrupt Descriptor Table (IDT) entries that point to
interrupt handlers.

• System Service Dispatch Table (SSDT) entries that
point to system call functions.

• I/O Request Packet (IRP) Function Table entries that
point to the kernel’s I/O processing functions.

• Structured Exception Handler (SEH) values on the
stack that point to exception handlers.

• Windows’ inter-window messaging function pointers.
These are easily hooked using the SetWindowsHookEx()
function.

Direct Function Calls. Rather than re-implement
game or system functions, cheat code often directly calls
those functions. This is especially true for automation cheats
which collect game state, make game-play decisions, and
then call game functions to take action.

Software Debugging. Some cheats attach to the game
process as a debugger using DebugActiveProcess(). The
game can then be suspended by injecting INT3 breakpoint
instructions and waiting for debugger breakpoint exceptions
with WaitForDebugEvent(). At that point, execution can
be trivially redirected via SetThreadContext().

2.3 Hardware Facilities
Hardware Debugging. Modern processors support de-

bug registers that stop execution and throw a breakpoint
exception whenever the specified code locations are reached
or the specified memory locations are accessed. Cheats (like
Hoglund’s World of Warcraft “Supervisor” [14]) use this fa-
cility to hijack execution without injecting any breakpoint
instructions into the game code.

Memory Management Manipulation. To gain access
to memory, cheats may manipulate the processor’s memory
management subsystem including the control and segment
registers. For example, tampering with the IA-32 control
registers (CR0 - CR3) allows cheats to modify pages flagged
as read-only.

Register Manipulation. Some cheats exploit hardware
registers to avoid hooking function pointers. For example,
by modifying the Interrupt Descriptor Table Register (IDTR)
which points to where the IDT resides, a cheater redirects
interrupts to a completely different table containing pointers
to cheat code while leaving the original IDT unaltered.



3. THE FIDES SYSTEM
This section presents Fides, a novel system for detecting

cheaters in online games. The system performs anomaly-
based detection via remote measurements that are validated
through client emulation and server corroboration.

3.1 Architecture Overview
Fides works by auditing the client and validating those

measurements against a set of expected legitimate values.
Figure 1 shows the system’s two components: the client-
side Auditor takes measurements of the game client when
the server-side Controller requests them. The Controller
decides what to measure and when, validates measurements
through client emulation and server corroboration, and logs
cheat activity to the cheater’s account. The communica-
tion channel between the Auditor and Controller must be
authenticated and encrypted so that detections may not be
attested as the results of possible man-in-the-middle attacks.

ControllerAuditor

Game
Client

Game
Server

Player
Account

Figure 1: Game interaction after the addition of the
Auditor and Controller. Dashed arrows represent
request traffic, while solid ones represent data flow.

While the Auditor and Controller are shown as separate
from the game, they could be implemented within the client
and server. Locating the Auditor in the client enables the
polymorphic patching discussed in Section 5.2. Locating
the Controller in the server streamlines the validation of
dynamic data.

3.2 The Auditor
The Auditor (shown in Figure 2) accepts the Controller’s

instructions, performs the requested measurements, and re-
turns the results. Table 1 highlights the cheat methods best
detected by each of the initial measurement routines.
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Figure 2: The Auditor and its initial measurement
routines for collecting client state.

Measurement Cheat
Sample Memory Dynamic Data Manipulation

Hash Page

Static Data Manipulation
Code Manipulation
Code & DLL Injection
File Replacement
Memory Management Manipulation

Trace Stack

Thread Injection
Thread Hijacking
Function Pointer Hooking
Direct Function Calls
Register Manipulation

Detect Debugger
Software Debugging
Hardware Debugging

Table 1: Summary of cheat methods best detected
by the initial measurements of the Auditor.

3.2.1 Auditor Measurements
Sample Memory. This routine returns the contents and

read-write-execute permission flags of the specified memory
range, facilitating the detection of cheats targeting dynamic
data. Since the range contains dynamic data, every client
thread must be briefly suspended to get a quiescent reading.

Hash Page. This routine uses a cryptographic hash
function (e.g., SHA1 [21]) to hash the specified memory page
and return the digest along with the page’s permission flags,
facilitating efficient detection of cheats targeting static data
and code. If unspecified, the page currently executed by a
randomly selected thread is hashed. This measurement does
not require suspending any client threads because the target
memory page should be static.

Trace Stack. This routine suspends one client thread,
chosen at random if unspecified, and obtains the current in-
struction pointer (EIP) and stack pointer (EBP) which are
the representative registers of the stack frame (i.e., client
function executed). Recording all encountered instruction
pointers, the routine recursively descends the stack, obtain-
ing each previous stack frame by dereferencing the stack
pointer of the current frame, until it reaches the frame cor-
responding to the thread entry point (i.e., EBP = null) at
which point the measurement is done and the client thread
may be resumed. The n recorded instruction pointers list
the function calls that the client thread used to get from
the entry point to the current point of execution and are re-
turned to the Controller, facilitating the detection of cheats
that hijack game execution, redirecting it to unrecognized
locations or between unrelated functions.

Detect Debugger. This routine detects whether the
game is being manipulated by a cheat attached to it as a
debugger, and returns the Boolean result to the Controller.
If the game has a debugger attached, the corresponding flag
in its Process Execution Block (PEB) should be set to true
(though most cheats set it to false) which can be tested via
the CheckRemoteDebuggerPresent() function. The routine
may attach to the client (even if located within the client)
using DebugActiveProcess() which always fails if another
debugger is present. Attaching as debugger is relatively ex-
pensive (roughly 9ms) and should only be done if the first
test is negative. This measurement detects all software de-
bugger cheats and most hardware debugger cheats.



3.3 The Controller
The Controller (shown in Figure 3) hosts the complexity of

the Fides system. Its Client Emulator learns the game client
properties that remain constant (i.e., static data, code, and
function relationships) and identifies dynamic data sections.
The Audit Strategist uses the compiled knowledge to orches-
trate a game-specific audit strategy during gameplay. The
Audit Validator uses emulated state to verify audits of static
client properties and corroborates with the server to verify
audits of dynamic client state.
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Figure 3: The internal operation of the Controller.
Arrows show the data flow between external data
sources and the Client Emulator, Audit Strategist,
and Audit Validator components.

3.3.1 Client Emulator
The hardware and software of the machine on which the

client runs varies from player to player, and even changes
between play sessions for individuals who play on different
machines. Such variation affects the memory layout and
contents of the client process. For example, the libraries
loaded by the game differ between operating systems and
system versions. Additionally, memory layout differs be-
tween executions on systems that randomly rebase libraries
via Address Space Layout Randomization (ASLR) [30].

The Client Emulator accommodates for host variation by
thoroughly mapping the code and static data and identifying
the dynamic data for each client at logon. Clients must
communicate the pertinent layout details (i.e., the name,
version, and base location of every library loaded) to the
Controller via the server. The emulator owns a copy of every
known legitimate library so the client need not relay actual
files. The client is behooved to accurately report its layout
otherwise inconsistencies will be detected as cheating.

Game clients may run on operating systems without ASLR
(or with ASLR disabled) and share common library content
and layout. Core system libraries (e.g., KERNEL32.DLL and
NTDLL.DLL) often contain thousands of small functions that
comprise much of any client application’s complexity. The
emulator can leverage commonality to reuse significant por-
tions of the emulated state between clients, and learn only
truly variable client structure at logon.

The Client Emulator uses two routines for learning client
structure: a Binary Parser and a Code Disassembler. The
emulator also contains an Execution Sampler and Execution
Profiler to better understand the client application when it
runs in a cheat-free environment.

Binary Parser. The primary learning routine is the
Binary Parser which maps the client virtual memory from
the executable, all linked libraries, and data files. Using
the client-provided layout information, the routine rebases
the libraries to know the location and properties (i.e., read-
write-execute permissions) of every memory section in the
client. Function pointers (e.g., IAT pointers) are corrected
so that page hashes may be generated for static data and
code sections, reducing emulator state for those pages to a
small digest later used to validate page hash audits. The
emulator uses source code and debugger database files to
learn the semantics of variables in dynamic data sections.
This information helps the Controller properly query the
server about the correct client state during the validation of
memory sample audits. Clearly, the game server must be
designed to corroborate queries about dynamic variables.

Code Disassembler. The secondary learning routine is
the Code Disassembler which uses the code sections mapped
by the Binary Parser to learn the range of and relation-
ship between every function in the game client. The routine
starts at the entry point of the executable and traverses the
code, observing the memory range of the each function and
the location of instructions that relate functions, creating
an execution graph (like the one shown in Figure 4) similar
to the “callgraph” model [34]. This knowledge is used when
validating stack trace audits.

Figure 4: One game’s partial execution graph.
Nodes represent functions while edges represent the
CALL instructions that relate any two functions.

Execution Sampler. The above routines are sufficient
to learn client applications for games designed to work well
with Fides, however, to better learn commercial-off-the-shelf
games (which may be obfuscated and for which one may not
have source code) running in non-ASLR environments the
emulator includes an Execution Sampler. The tool executes
the client application in a cheat-free environment, like that
which the actual client should be running in. The sampler
then exhaustively hashes all the non-writeable pages of the
game, furnishing the knowledge to the emulator so it may
be used to validate page hash audits of the actual client.

Execution Profiler. The emulator also includes an
Execution Profiler to learn the instruction range of and the
relationship between client functions (specifically observing
indirect function calls), reinforcing the execution graph used
to validate stack trace audits. This tool executes the client
application in a secure cheat-free environment, attaches to
it as a debugger, and uses hardware debugging routines
(i.e., register manipulation and single-step interrupts) to
step through its execution. The profiler records details about
instruction counts, code timing, and function execution fre-
quencies. These execution patterns may also be used to
improve audit strategies.



3.3.2 Audit Strategist
The Audit Strategist orchestrates the detection strategy,

dictating the ordering, timing, and details of every audit
request. Locating all the strategy in the Controller avoids
telegraphing measurements, allows the developer to change
strategy surreptitiously, and minimizes Auditor complexity.
The strategy may be game-specific using developer intuition
regarding data or code likely to be attacked, however, a
good strategy must employ some randomization to prevent
cheaters from predicting audits and developing a successful
cloaking routine. As cheaters will be audited countless times
while they are online, a strategy with randomness will, with
good probability, eventually catch them red-handed.

3.3.3 Audit Validator
After measurements have been returned to the Controller,

the Audit Validator validates them through different means
according to their type as follows.

Hash Page. These audits measure static data, so they
should remain unchanged. The validator does a simple bi-
nary comparison of the audited digest against the stored
digest. Any bitwise difference means that the page has been
modified, indicating cheat behavior.

Sample Memory. Although an easy audit to perform,
validating sampled dynamic data is difficult and involves
corroboration by the server. The validator must determine
the semantics of the data (i.e., which variable or structure it
represents) and query the server regarding what the proper
value or range of values should be.

Consider for example, the cheat that frequently toggles
the team variable to reveal enemy locations via the radar.
To validate an audit of that variable, the validator must
request from the server which team the player is supposed
to be on and compare the two values. This is a straight-
forward example because there only two valid options and
the variable should change very infrequently, perhaps on the
order of once per match.

Next consider, teleport cheats that adjust the player’s in-
game coordinates. Validating an audit of this data must
request from the server what it believes the proper value
should be. However, in this case there are innumerable
valid values, the value changes frequently, and due to dead-
reckoning techniques a legitimate client will have a value a
few steps ahead of that held by the server. In this case, the
server must provide a range of locations where the player
could legitimately be according to game physics.

Stack Trace. Validating a stack audit involves walking
the execution graph according to the sequential list of in-
struction pointers returned by the audit. If an instruction
pointer calls an unknown location in memory (referencing a
nonexistent graph node) or represents a call to a function
from an unrecognized location (referencing a nonexistent
edge from the last visited node) client execution has been
high jacked. Indirect function calls are handled by validating
every direct call up to it and immediately (without resuming
the client thread) hash auditing the functions called after it
ensuring that they have not been detoured.

Detect Debugger. The simplest audit to validate; a
detect debugger audit should be false otherwise the client is
being manipulated by a debugger.

4. EVALUATION

4.1 Software Prototype
To demonstrate the utility and easy deployment of the

Fides approach, a software prototype was implemented con-
sisting of two applications (corresponding to the Auditor and
Controller) that communicate through a TCP socket. The
prototype is game-agnostic and has been tested successfully
with several games.

Auditor Details. The Auditor employs functions of the
Windows debugging API to conveniently read client virtual
memory using ReadProcessMemory() and access the client’s
registers using GetThreadContext(). When necessary, the
Auditor suspends a client thread using SuspendThread()

which is three orders of magntitude faster than attaching
as a debugger.

Controller Details. The Binary Parser processes files
of the Windows Portable Executable (PE) format, maps
those files to virtual addresses, fixes the IAT for each file, and
hashes the static sections with SHA1. The implementation
challenges included resolving circular linking dependencies,
evaluating forwarded exports, handling aliased functions,
and locating anonymous import tables. When available, the
parser also processes files of the Program Database (PDB)
format to uncover un-exported function symbols and iden-
tify dynamic data variables.

The Code Disassembler is a basic x86 disassembler which
walks client code starting at the entry point of the binary
and following function calls to determine the range of and
relationship between client functions. Implementation chal-
lenges included resolving functions that terminate in incon-
sistent ways, functions that use discontinuous memory, func-
tions that embed return instructions in the middle (in par-
ticular those protected by the Windows implementation of
StackGuard [5]), and handling IAT function calls that vary
between 2 levels of indirection and 3 levels of indirection.

To better understand the client structure, the Execution
Sampler uses CreateProcess() to run the client applica-
tion local to the Controller – assuming for portions of this
evaluation that the client and Controller share a common
non-ASLR operating system (i.e., Windows XP SP3). The
sampler exhaustively scans for and hashes every user-space
page (between 0x00000000 and 0x7FFFF000) that is static –
allocated and non-writeable.

The Execution Profiler also runs the client, but attaches
to it as a hardware debugger to learn the function frequency
and indirect function calls unhandled by the disassembler.
The implementation challenges included avoiding the game’s
anti-debugging techniques, resolving timing delay caused by
the debugger interrupts, and guiding the game into its game-
play loop to be measured.

Measurement Strategy. The Controller uses a straight
forward game-independent audit strategy that takes mea-
surements at a specified interval. To avoid predictability,
timing jitter is added (uniformly random between -5% and
+5% of the interval length). Throughout each experiment
the chosen measurement routine was kept constant, but the
target of each individual measurement was left unspecified.
For a stack trace audit, this simply means a thread was se-
lected at random. For a hash audit, this means a thread was
selected at random and its executing code page was hashed.



Auditor Task Cycles Time
Null 82 ± 18% 34.6ns
Sample Memory 87,941 ± 21% 36.8µs
Suspend Threads 54,960 ± 22% 22.9µs
Read Memory 11,947 ± 35% 5.0µs
Fetch Page Flags 21,854 ± 30% 9.1µs
Resume Thread 4,249 ± 97% 1.8µs
Hash Page 112,885 ± 21% 47.2µs
Suspend Thread 4,843 ± 33% 2.0µs
Get EIP 19,760 ± 44% 8.3µs
Resume Thread 4,153 ± 65% 1.7µs
Read Page 15,597 ± 32% 6.5µs
Hash Contents 55,391 ± 23% 23.2µs
Fetch Page Flags 11,031 ± 42% 4.6µs
Trace Stack 64,399 ± 27% 26.9µs
Suspend Thread 4,844 ± 25% 2.0µs
Get EIP & EBP 26,042 ± 45% 10.9µs
Get Stack Range 15,782 ± 42% 6.6µs
Traverse Stack 13,462 ± 37% 5.6µs
Resume Thread 4,292 ± 31% 1.8µs
Detect Debugger 23,246,056 ± 1.5% 9.7ms
Test Debug Flag 2,998 ± 43% 1.3µs
Attach Debugger 21,411,428 ± 1.2% 8.9ms
Detach Debugger 1,828,041 ± 7.0% 0.8ms

Controller Task Cycles Time
Null 85 ± 19% 35.6ns
Parse Binaries 236,322,896 ± 0.1% 98.8ms
(single file) 17,221,136 ± 2.5% 7.2ms
Memory Map File 741,448 ± 5.0% 0.3ms
Identify Sections 4,774 ± 20% 2.0µs
Allocate IAT 388,067 ± 19% 0.2ms
Populate IAT 5,193,318 ± 2.1% 2.2ms
(single entry) 58,517 ± 4.4% 24.5µs
Hash Sections 10,893,211 ± 4.5% 4.6ms
(single page) 46,908 ± 6.7% 19.6µs
Disassemble Code 205,290,560 ± 0.2% 85.9ms
Isolate Function 1,165,818 ± 6.3% 0.5ms
Validate Result varies as follows ...
Sample Memory overwhelmingly data dependent
Hash Page 3,170 ± 20% 1.3µs
Trace Stack 10,808,131 ± 10% 4.5ms
Detect Debugger 130 ± 21% 52.4ns

Table 2: Average number of cycles (also expressed
as time) to perform Auditor and Controller tasks.

4.2 Experiments and Results

4.2.1 Benchmarking
The routines of the Auditor and Controller were bench-

marked to demonstrate that Fides can be incorporated into
commercial products without imposing a significant negative
compute burden in exchange for its cheat detection benefits.
Using a 2.39GHz Intel R© Core2 machine, each routine was
executed 1,000,000 times recording the average and variance
in the number of cycles to complete them, shown in Table 2.

The results demonstrate that the Auditor’s measurements
complete very quickly. The three most common routines
(sample memory, hash page, and trace stack) operate on
the order of tens of microseconds, adding imperceptible over-
head to the game. The most expensive routine (detect de-
bugger) takes 9.7ms and only adds a perceptible hiccup to
the game if done in a tight loop.

The Controller’s learning routines take under 100ms and
do not impose a meaningful burden to the game consider-
ing they are only run once at client logon, and represent the
time to learn the real game described in the next subsection.
The number of subtasks to learn a game depends on its com-

plexity. This game imports 17 DLLs representing 4103 total
functions, many of which belong to system libraries and are
not linked. The memory sections represent 1649 total pages
of which 1619 are flagged as static and can be expressed by
a mere 32KB of hash digests. This indicates library lay-
out commonality (specifically on non-ASLR systems) could
reduce per-client emulator state by upwards of 98%.

The validation routines are very quick. Validating a hash
page audit involves a binary comparison of the 20B digest
and validating a debugger audit evaluates the Boolean value,
both very efficient routines. Validating a stack trace audit
is more involved because each instruction pointer in the list
must be looked up as to which function it belongs to, and if
it can legally call the next function. The effort to validate
such an audit depends on the stack depth and the number
of functions in the game.

4.2.2 Commercial-Off-The-Shelf Game: Warcraft III
The Fides approach works best on games designed with it

in mind. However, to demonstrate that the Fides approach
works on commercially deployed games, this section explores
the detection of cheats for the popular Real Time Strategy
(RTS) game Warcraft III [2]. The game was released in 2002
and has remained extremely popular since then, especially as
the game of choice for professional video game competitions.
Weekly, thousands of players continue to play it online in
competitive ladder-ranked matches. The developer, Blizzard
Entertainment, has patched the game regularly throughout
the years (the latest patch was in October 2008) to fine-tune
game balance and attempt to stay ahead of cheaters.

Warcraft III has several security features that make it
complex. The game client is designed so that the executable
is simply a launcher, and all game functionality is located
in a library appropriately named GAME.DLL. This library
is loaded at runtime via the LoadLibrary() function, and
is obfuscated to hinder disassembly. The client is heavily
multi-threaded, employing 22 threads of which only 8 are
active during normal gameplay. Threads have assigned tasks
that include rendering the world, loading map and texture
info, gathering player input, managing network connections,
running AI for computer opponents, hosting games locally,
and performing anti-cheating / anti-debugging (the client
attempts to kill any process that attaches as a debugger).

Game Profile. Using the Execution Profiler, the pro-
files of the threads active during the gameplay loop are
shown collectively in Figure 5 (presented on a time axis
rather than cycles for readability). On the test system, the
game loop takes only 15.6ms to complete, equal to a frame
rate of 64.2fps. Game threads execute system functions
(in NTDLL.DLL and KERNEL32.DLL), core game functions (in
GAME.DLL), render graphics (in OPENGL32.DLL), process au-
dio (in MSS32.DLL), and access game data (Blizzard games
use STORM.DLL to load data from disk). The game uses Wait-
ForSingleObject() to sleep while waiting for I/O; if an
input event occurs the function returns early, otherwise is
sleeps for the full duration. Without active input, the game
spends roughly 77% of its loop sleeping. With 22 threads to
randomly choose from when auditing the game, the prob-
ability of hashing game code pages targeted by a cheat is
naturally low. An audit strategist aware of these facts could
bias against inactive threads to increase the frequency where
audits target pages other than the system page containing
that idling function.
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Figure 5: Code pages executed during the Warcraft III gameplay loop.
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Figure 6: Hash Page detection of select Warcraft III
cheats with varying time between audits.

Cheat Detection. Several communities are dedicated
to cheating in Warcraft III. They produce and sell numer-
ous cheat binaries, very rarely revealing actual source code.
Since cheat-software sales are at stake, cheat authors com-
pete to be the first to publish a cheat that works against the
newest patch level of the game. Ironically, many authors
steal other authors’ cheat codes and techniques to spread
them to new communities claiming them as their own work
– there truly is little honor amongst cheaters.

Fortunately, Warcraft III was recently patched meaning
a spectrum of first-to-release cheats were available for this
experiment. Cheats were run in isolation by hosting non-
ranked LAN games to avoid disturbing legitimate players.
Fides was able to detect every cheat collected; the five most
prominent cheats (all originals, not variants) being: Bendik’s
MapHack which is very minimalist and reveals no more than
hidden units on the main map, Kolkoo’s MapHack which
patches code over a few pages, the Revealer MapHack which
hot patches a small number of bytes over fewer pages but
also injects code that hooks game input functions so that it

may be toggled on or off, the Simple MapHack which hot
patches a mere 61 bytes but over a number of pages, and
Perma’s Nemesis MapHack which is the prominent success
of this experiment.

Perma is viewed in many communities as the foremost
Warcraft III cheat author. His Nemesis MapHack (which he
advertises as “undetectable”) is the sequel to his infamous
Zerocraft cheat which went undetectable for just short of two
years before it was discontinued (Blizzard finally obtained
a copy and developed a signature for it). In an attempt
to prevent Blizzard from obtaining Nemesis, the process to
obtain a copy requires one to have a profile with good stand-
ing in his home cheat community and purchase the cheat for
$25 – amazingly more than the purchase price of the game.
This cheat has more features than the other cheats and is
heavily obfuscated to prevent Blizzard (as well as rival cheat
authors) from learning his tricks.

Figure 6 shows that the Warcraft III cheats are detected
using upwards of two hundred Hash Page audits which is
not surprising given that the game has 22 threads and sleeps
roughly 77% of the time. At this scale one can see a trend
that the number of audits required to detect a cheat tapers
off. This occurs because at larger audit frequencies the inter-
arrival randomness grows to the point where the randomness
(between ± 5% of the frequency) surpasses the loop dura-
tion of 15.6ms so the probability of detection asymptotically
approaches the probability to detect the cheat with a single
random audit.

Logically, the probability to detect a cheat grows with
respect to the changes that the cheat makes to the game
(i.e., a cheat that modifies more code pages becomes easier
to detect). To our satisfaction, this makes the feature-rich
Nemesis MapHack among the easiest cheats to detect with-
out ever reverse engineering it. The number of audits re-
quired to detect Nemesis taper off somewhere around 300,
meaning it can be detected in about 5 minutes when auditing
at a leisurely frequency of once per second, or in 20 seconds
when auditing at a more aggressive frequency of once every
100ms. In contrast, Bendik’s MapHack which makes almost
no changes to the game would take 22 minutes to detect
when auditing once per second, or 2 minutes to detect when
auditing once every 100ms.



5. DISCUSSION
5.1 Limitations

Attacks on the Auditor. Cheaters own the systems
they cheat with so they may tamper with any component to
evade detection. Likely an adversary would directly target
the Auditor. A number of techniques could bolster Fides
against such attacks including directly accessing memory,
audit entanglement, Auditor and client polymorphism, or
leveraging tamper-resistant co-processors. These techniques
are elaborated upon in Section 5.2.

Elementary Measurements. While the measurements
presented in this paper detect current and foreseeable cheats,
cheaters may evolve methods that the measurements cannot
detect efficiently. It is important to note that Fides is not
restricted to the four presented measurements and can be
easily extended to include new measurement types.

Timing Difficulties. Network latency and jitter add
timing inaccuracy at a resolution several magnitudes greater
than that which code executes at, preventing any remote
software integrity system (including Fides) from predicting a
client’s exact execution state upon receiving an audit packet.
Thus such systems are forced to validate the correctness of
whichever state the client is observed to be in rather than
demand the client be in precisely one state.

External Cheats. Fides focuses on cheats that affect
the proper execution of the game client and does not address
cheating external to it. For example, online poker cheaters
collude by sharing private information (i.e., the cards in their
hand) to defraud legitimate players. Other cheaters em-
ploy robotic peripherals to automate repetitive or precision-
based gameplay (e.g., the Guitar Hero robot [36]). Cheats
that never modify the client cannot be caught by detection
of anomalous client execution but instead may be caught
by detection of anomalous player behavior (e.g., observing
wins correlated to unusual gameplay, abnormal grouping
patterns, or highly erratic player skill).

Poor Game Design. Cheat detection may not address
behavior that is against the spirit-of-the-game yet is possible
without modifying the client or employing external devices.
For example, “player achievements” create noteworthy in-
game objectives (publicized when a player accomplishes one)
but when implemented improperly are trivialized by players
who design custom levels to do so. Such problems should be
solved by better game design, in this case disallowing players
from attaining achievements while playing custom levels.

Macros and Keybindings. Many developers relax the
prohibition on automation by allowing players to customize
their game interfaces with macros of and keybindings for
authorized game commands. Games like World of Warcraft
use execution-tainting mechanisms to distinguish permitted
customization from excessive automation [37]. For accurate
anomaly detection, these interface customizations should be
isolated to well-defined regions of client memory where they
will not interfere with audits of game code or data. Indirect
jumps that access them can be easily validated if the jumps
are restricted into those isolated regions. Furthermore, the
client must commit to the customizations (i.e., send them
to the server) before using them so that the server may ver-
ify their legality and Fides may validate that they are not
modified at inappropriate times during gameplay.

5.2 Future Work
There are a number of techniques that could be explored

to strengthen the Fides approach (specifically the Auditor)
against evasion by the cheater.

Direct Access. Locating the Auditor within the client
process provides direct access to its virtual memory without
relying upon system functions like ReadProcessMemory().
This eliminates a number of opportunities for a cheater to
manipulate data collected by the Auditor.

Audit Entanglement. Fides may authenticate audited
data by entangling the measurements with time-sensitive
cryptographic computations, similar to Pioneer [29]. Each
entangled computation would depend upon a random nonce
(sent as part of the request) and be constructed such that
modification to the measurement alters the correctness or
timeliness of the generated result. A valid Auditor response
would then be the measured data and the proper computed
result, both returned within the time limit.

Auditor Polymorphism. Rather than support defined
measurement types, the Auditor could instead accept and
execute short auditing routines crafted arbitrarily by the
Controller. The measurement types and targets may be
changed surreptitiously at any time, dynamically adjusting
how the client is audited. Cheaters cannot evade detection
by simply using static virtualization; they must understand
precisely what each audit routine is measuring and formulate
coherent responses (through their own client emulation).

To effectively manipulate data collected by the Auditor,
cheaters must completely interpret every audit routine and
emulate legitimate client operation sufficiently to generate
correct responses on the fly. This is challenging for cheaters
to accomplish in a timely fashion, especially when auditor
polymorphism includes audit entanglement. Cheaters who
fail to completely cloak their changes or virtualize the en-
tire system will be detected by the first measurement that
cannot be spoofed, similar to how“undetectable”virtualized
rootkits (e.g. BluePill [25]) are detected when unpredicted
system functions (like cpuid()) behave erratically [24].

Auditor polymorphism would make the Fides approach
more like the Warden system [20] in that frequent updates
to client-side detection software keeps cheaters on guard.

Client Polymorphism. Using this technique, the game
server periodically instructs the game clients to shuffle their
memory layouts by rebasing loaded libraries to arbitrarily
specified new locations. This changes the structure of the
client without affecting legitimate operation, dynamically
adjusting how the client must be targeted by cheats. Runtime
library rebasing may be done similarly to how in-memory or
reflective DLL injection [10, 31] loads libraries from within
the process’ memory (i.e., not from disk) at runtime.

Each time a new client layout is specified, cheaters must
adjust their code accordingly, particularly code hotpatch-
ing long jumps or code overwritten during the rebasing.
Cheaters attempting to manipulate measurement data must
correct their emulation and system virtualization to remain
consistent with legitimate clients. The server can update
its emulated state before making the changes known to the
clients, however, cheaters cannot respond until after they
know the layout changes. Additionally this technique could
reduce emulator state by dictating the same new layout for
all clients using common libraries.



Hardware-Based Stealth Measurements. The Fides
system was designed so that the Auditor could leverage a
hardware component within the client machine for providing
tamper-resistant measurements of the game. The hardware
component must be isolated from the host processor so that
it cannot be affected by the system owner, yet it must have
sufficient access to measure the system to determine if cheat
software has compromised the game client.

CPU Memory
Controller

Memory

Auditor (ME)
I/O Controller Network

Controller

Peripherals Interfaces

OS
Game

Figure 7: Functional location of one instance of
Intel R© AMT’s Manageability Engine (ME).

The Intel R© Active Management Technology (AMT) [17]
platform is one such suitable hardware component. Figure 7
shows the current architecture of the AMT, specifically the
location of the trusted Manageability Engine (ME). While
the ME is not a full-blown CPU (i.e., it lacks the speed and
features necessary to run the game client), it has been used
to detect rootkits [7] and peripheral automation cheats [27].
The ME would be a good location for the Auditor because
it has access to the entire contents of physical memory, it
is controllable through a secure (i.e., authenticated and en-
crypted) network connection, and it only executes signed
code assuring players that their privacy is safe.

While challenges remain to employing such a hardware
component (e.g., register and memory caching, and virtual
to real memory mapping), hardware support could facilitate
additional measurements for detecting more subtle forms of
cheating. Specifically, the addition of memory watchpoints
would allow the Auditor to observe unusual memory accesses
in terms of timing, source process, and frequency. Such a
feature could reveal information exposure cheats where data
is only read but not modified by external processes in an
unexpected manner. Similarly, memory watchpoints could
more quickly detect unauthorized modification to dynamic
data by observing unusually frequent variable modification.

5.3 Related Work
Anomaly-Based Detection. Anomaly-based detection

is a well explored research area. The methodology has often
been applied to strong security problems like intrusion and
rootkit detection [16, 18, 23, 35]. In such applications, the
detector must understand the characteristics of a complex
multi-faceted system. Much knowledge is required for those
approaches to perfectly characterize all legitimate operation
so they accept some misclassification in exchange for more
manageable state. In contrast the cheating problem has a
limited search space (i.e., the well-define game client) and
can be efficiently learned using mostly static analysis.

The branch of research most related to the Fides approach
is anomaly-based application integrity [8, 12, 28, 34] which
focuses on the application’s system call behavior from the
point of view of a secure operating system. The “VtPath”
method even investigates anomalies in the process stack, but
only builds legitimate understanding through training and
does not consider static analysis.

Some research has applied anomaly-based detection to
player behavior [4, 19, 38]. This approach can detect cheats
external to the game such as player collusion and “robot-
ting” by analyzing high-level player behavior and win-loss
statistics. However, this approach is very game-dependent
and requires a deep understanding of the game rules, game
maps, and what normal behaviors looks like. Acquiring an
understanding of “normal” player behavior often requires a
lot of trusted gameplay samples and can be expensive in
terms of human involvement. This problem is exacerbated
in persistent games (such as massively multiplayer online
games) where the popularity of in-game activities change
over time (sometimes in unpredictable ways) as the virtual
world evolves.

Trusted Computing. Trusted computing approaches
leverage secure cryptographic software, virtual machines, or
hardware components to verify that the application code is
operating as intended on the remote machine. Sometimes
referred to as a “root-of-trust,” the trusted system is used as
the starting point to make statements about the integrity of
the application. Prominent systems include Terra [11], the
TPM architecture [26], and Pioneer [29]. While these ap-
proaches quickly discover changes made to the application,
they add overhead to the application’s execution that may
be prohibitively expensive for the real-time demands of re-
sponsive gameplay. Instead, the Auditor has fewer real-time
requirements and may employ a trusted computing approach
to guarantee its integrity.

Proof-of-Correctness. The proof-of-correctness ap-
proach focuses on cheat prevention rather than cheat detec-
tion, ensuring that the game client is running correctly [1]
according to game rules and physics. This approach catches
unauthorized manipulation of client state but fails to ad-
dress client automation – a prevalent and disruptive form of
cheating which is detected by anomaly-based detection.

Anti-Cheating. Many game developers use anti-cheat
software: Blizzard R© games (e.g., Diablo II, StarCraft, War-
craft III, and World of Warcraft) use the Warden system [20],
Valve R© games (e.g., Counter-Strike, Left4Dead, and Team
Fortress) use the Valve Anti-Cheat (VAC) [33]. Other games
(e.g., Battlefield 1942, Call of Duty, and Quake) support the
use of third party anti-cheat systems like PunkBuster [6].
Unfortunately, these existing systems use signature-based
detection, promiscuously scanning each and every process
on the client machine leading to problems with accuracy
and real attacks on the detection mechanisms [22].

6. CONCLUSIONS
Cheaters use advanced methods to manipulate games and

avoid detection. This paper presented Fides, an anomaly-
based cheat detection system that continuously, randomly,
and remotely measures client execution. The server-side
Controller specifies how and when the client-side Auditor
measures the game. To accurately validate audits, the Con-
troller emulates the game client and corroborates dynamic
data with the server. A software prototype demonstrated
that Fides is able to efficiently detect several existing cheats,
including one cheat that is advertised as “undetectable”.
Employing techniques like audit entanglement, Auditor or
client polymorphism, or placing the Auditor on secure hard-
ware would make audits more tamper-resistant.
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