
Measurement-based Characterization of a Collection of On-line Games

Chris Chambers Wu-chang Feng
Portland State University

{chambers,wuchang}@cs.pdx.edu

Sambit Sahu Debanjan Saha
IBM Research

{ssahu,dsaha}@us.ibm.com

Abstract
On-line games are a rapidly growing Internet application.
Because of the cost in supporting on-line games and the un-
predictable load on servers, companies are moving toward
sharing infrastructure for game hosting. To efficiently pro-
vision on-line games, it is important to understand game
workloads and the behavior of game players. In this pa-
per, we present a comprehensive analysis of a collection
of on-line game players and game workloads using data
from several sources including: a 13-month trace of an ex-
tremely busy game server containing over 2.8 million con-
nections, a two-year trace of the aggregate game popula-
tions of over 550 on-line games, and a 4-month trace of
a content-distribution network used to deliver games. The
key findings from our measurement study are: (1) these
gamers are an extremely difficult set of users to satisfy and
unless game servers are properly set up and provisioned,
gamers quickly choose to go elsewhere, (2) the popularity
of these games follows a power law making games diffi-
cult to provision at launch time, (3) game workloads are
predictable only over short-term intervals, (4) there are sig-
nificant challenges in hosting games on shared infrastruc-
ture due to temporal and geographic synchronization across
different games and other interactive applications, and (5)
game software updates are a significent burden on game
hosting that must be planned for. Our results have impli-
cations for both game publishers as well as infrastructure
providers.

1 Introduction

On-line gaming is an increasingly popular form of enter-
tainment on the Internet, with the on-line market predicted
to be worth over $5 billion dollars in 2008 [1]. As an ex-
ample of a popular, money-making game, EverQuest [2]
has over 450,000 subscribers each paying a monthly fee
and purchasing two yearly expansions. Unfortunately for
game companies, the success of a game is highly unpre-

dictable. To make matters worse, there are substantial
costs in developing and hosting on-line games. As a re-
sult, such companies are increasingly exploring shared,
on-line hosting platforms such as on-demand computing
infrastructure provided by companies such as IBM and
HP [3, 4, 5, 6, 7, 8, 9, 10].

In order to judge the feasibility of such an approach, it
is important for game and hosting companies to understand
how gamers and game workloads behave. Knowing the be-
havior of players, the predictability of workloads, and the
potential for resource sharing between applications allows
infrastructure to be tailored to the needs of games. While
there has been a substantial amount of work characterizing
web and peer-to-peer users and workloads [11, 12], there is
very little known about game players and workloads.

In order to provide insight into such issues, this paper ex-
amines several large traces of aggregate player populations
of a collection of popular games as well as the individual
player population of a busy game server. We present a de-
tailed analysis of on-line game players and workloads that
targets several key areas which are important to game and
hosting providers including:

• How easy is it to satisfy gamers?: One of the key
issues in providing a successful game is to understand
how players connect to servers and how long they play
on them. By understanding what players are willing
to put up with, game and hosting companies can tailor
their infrastructure and content to maximize player
satisfaction. For example, one of the challenges with
using on-demand computing infrastructure for games
is the latency associated with re-purposing a server. It
would thus be useful to characterize how patient game
players are in connecting to a game before deploying
such infrastructure. To this end, we characterize
individual player behavior of an extremely popular
Counter-Strike game server over a long period of
time. Our results show that gamers are an extremely
difficult set of users to satisfy and that unless game



servers are properly set up and provisioned, gamers
quickly choose to go elsewhere.

• How predictable are game workloads? Another
problem in hosting on-line games is determining
the amount of hardware and network bandwidth
that is required. Hosting a game is an expensive
proposition, costing the game provider more than
30% of the subscription fees in just hardware and
bandwidth per month [13]. Hosting is made all the
more difficult by variations of popularity as the game
moves through its life cycle. Game companies face
the provisioning problem both in determining the
amount of resources to provide at launch time and in
allocating spare resources to support dynamic usage
spikes and subscriber growth. Characterizing the
diversity and predictability of game workloads allows
companies to more accurately provision resources.
To this end, we examine the real-time aggregate
game player population of more than 550 on-line
games, the most popular of which are first-person
shooters. Our results show that the popularity of
these games follows a distinct power law distribution
making the provisioning of resources at launch-time
extremely difficult. However, as games mature,
their aggregate populations do become predictable,
allowing game and hosting companies to more easily
allocate resources to meet demand.

• Can infrastructure be shared amongst game and
other interactive applications? With the advent of
commercial on-demand computing infrastructure, it
is becoming possible to statistically multiplex server
resources across a range of diverse applications,
thus reducing the overall hardware costs required
to run them. In order for such shared infrastructure
to provide any savings, peak usage of applications
must not coincide. To characterize the amount of
sharing benefit that is available, we examine the usage
behavior of a number of popular on-line games and
compare them against each other and against the
usage behavior of several large distributed web sites.
As on-demand infrastructure is distributed, we also
examine the client load of a number of servers based
on geographic region. Our results show that usage
behavior of interactive applications follows strict,
geographically-determined, time-of-day patterns with
limited opportunities for resource sharing.

Section 2 describes the methodology behind our study.
Section 3 analyzes properties of individual gamers. Sec-

cs.mshmro.com trace
Start time Tue Apr 1 2003
End time Mon May 31 2004
Total connections 2,886,992
Total unique players 493,889

GameSpy trace
Start time Fri Nov 1 2002
End time Fri Dec 31 2004
Total games 550
Total player time 337,765 years

Steam CDN trace
Start time Mon Sep 27 2004
End time Mon Apr 8 2005
Content transferred 6,193 TB
Average transfer rate 3.14 Gbs

Table 1: Data sets

tion 4 describes trends of on-line gaming in aggregate. Sec-
tion 5 evaluates the potential for multiplexing games and
web traffic together, and Section 6 discusses our conclu-
sions.

2 Methodology

The study of on-line game usage is typically limited due
to the proprietary nature of the industry. To overcome this,
we have collected several unique data sets that allow us to
analyze properties that have not been possible previously.
These data sets include the following:

Individual player data: In order to study the behavior of
individual players playing a representative on-line game,
we examined the activity of one of the busiest and longest
running Counter-Strike servers in the country located at
cs.mshmro.com [14, 15]. Counter-Strike (a Half-Life
modification) is currently the dominant on-line game with
the largest service footprint of any game at 35,000 servers
and over 4.5 billion player minutes per month [16]. Of all
of the active Counter-Strike servers, cs.mshmro.com is
among the busiest 20 servers as ranked by ServerSpy [17].
The server averages more than 40,000 connections per
week, has hosted more than 400,000 unique players within
the last year, and has logged more than 60 player years in
activity since its launch in August 2001. Table 1 describes
the trace collected from the server.

GameSpy aggregate player population data: One prob-
lem with measuring on-line game usage is the limited ac-
cess to game server hosting data. Game companies typi-
cally keep the access and usage behavior of their players
confidential. There are two factors that enable the mea-
surement of aggregate game player populations, however:



(1) on-line games use a centralized authentication server to
keep track of the players that are playing and (2) informa-
tion on overall player numbers per game is usually exported
publicly. Several game portal services collect such player
numbers over a large number of games and report the infor-
mation in real-time. Among these services is the GameSpy
network, which provides real-time player population data
on individual games in a structured format that can readily
collected and analyzed [18]. Currently, there are over 550
on-line games that are being tracked across various gen-
res including first-person shooter games (FPS), massively
multi-player on-line role-playing games (MMORPG), real-
time strategy games (RTS), card and board games, and
sports games. The most popular games tracked by the
Gamespy network are from the FPS genre however, and
therefore when we refer to gamers we are predominately
referring to FPS gamers. To study on-line game population
behavior, we have collected a data feed from GameSpy for
more than two years since November 2002. Our redundant
collection facility periodically samples the GameSpy data
every 10 minutes. Note that the availability of the data is
sensitive to many factors, including service outages at the
portal and our own outages. These outages have been man-
ually removed from the data analysis. Table 1 describes the
data set which includes over 50 million measurements and
represents more than 300,000 years of player time spent on
games over the course of the last two years.

Content-distribution network: One of the common fea-
tures of on-line games is their ability to dynamically update
themselves. To support this feature, many games employ
custom, game-specific, content distribution networks that
deliver new game content and software patches to clients
when needed. One such network is Steam [19], a multi-
purpose, content-distribution network run by Valve which
is used to distribute run-time security modules as well as
client and server software patches for Half-Life and its
mods such as Counter-Strike and Day of Defeat. The net-
work consistently delivers several Gbps of content spread
across over 100 servers. In order to analyze the resource us-
age of Steam, we have collected its data feed over the last
6 months, a duration that has seen Steam deliver more than
6 petabytes of data. Table 1 describes the trace collected.

3 Gamers as individuals

It is important for game providers to understand the usage
behavior of its players in order to adequately address their
needs. In order to study player characteristics, we analyze
the trace of cs.mshmro.com to track individual gamers
throughout their play cycle. Specifically, we track gamers
attempting to connect to the server, gamers playing on the
server, and the likelihood of a gamer returning to the server.

We first demonstrate that gamers are difficult to please.
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Figure 1: PDF of player impatience based on number of
acceptable reconnects

In particular, they 1) have no tolerance for busy servers,
often connecting once while the server is busy and never
reconnecting again for the entire trace, 2) have very specific
gameplay needs and if those needs are not met in the first
few minutes of play, their likelihood of continuing to play
at the server drops off dramatically, and 3) they often have
no loyalty or sense of community tied to a specific server
and do not return after playing a handful of times. For those
that do return often, we also demonstrate that their session
times show a marked decline and their session interarrival
times show a marked increase just as they are ready to quit
playing on the server altogether.

3.1 Gamers are impatient when connecting

Quantifying the patience of on-line gamers is important for
adequate server provisioning. For some Internet applica-
tions, such as web-browsing, users are known to be impa-
tient [20]. For others, such as peer-to-peer services such as
Kazaa, users are very patient [12].

Our trace of cs.mshmro.com records successful con-
nections as well as connection attempts, when players con-
nect to the server and are refused service. The latter is ex-
tremely common; every day, the server turns away thou-
sands of people. Browsing the trace, it is not unusual to see
the same player reconnect to the server several times in a
row, waiting for a spot on the server to free up. We operate
on the assumption that a player’s willingness to reconnect
to the same busy server repeatedly is an indication of their
patience.

In order to quantify player patience we group each
player’s connection history into sessions, and consider a
session of length N evidence of that player’s willingness
to reconnect after N − 1 connections. Figure 1 shows
the probability distribution of acceptable reconnections per
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Figure 2: Session time results for cs.mshmro.com trace

player. As the figure shows 73% of the players are unwill-
ing to reconnect to the server enough to play even once.
One of the reasons players do not reconnect is that game
clients have a “Quick Start” mechanism that many players
use. The mechanism works by downloading a list of can-
didate servers from the master server and cycling through
them one by one until a successful session is established.
Thus, such clients may not lack patience, but rather are au-
tomatically redirected elsewhere. For the rest of the play-
ers, however, 13% are willing to reconnect one time on
average with the percentage sharply decreasing on succes-
sive reconnects. Aside from the first data point, the rest
of the graph represents a client’s patience in connecting
to our busy server and, not surprisingly, can be fit very
closely with a negative exponential distribution. As Fig-
ure 1 shows, a negative exponential distribution with pa-
rameters α = 0.2677 and β = −0.5687 fits the data with a
correlation coefficient of 0.998. Players, therefore, exhibit
a remarkable degree of impatience with busy game servers.

3.2 Gamers have short attention spans

Using the same trace, we extracted the total session time of
each player session contained in the trace. Figure 2 plots
the session time distributions of the trace in unit increments
of a minute 1. The figure shows, quite surprisingly, that a
significant number of players play only for a short time be-
fore disconnecting and that the number of players that play
for longer periods of time drops sharply as time increases.
Note that in contrast to heavy-tailed distributions reported
for most source models for Internet traffic; the session ON

1Note that a preliminary version of our results here were first reported
in a short paper at the NetGames 2003 Workshop [21]

times for game players is not heavy-tailed. To further illus-
trate this, Figure 2(b) shows the cumulative density func-
tion for the session times of the trace. As the figure shows,
more than 99% of all sessions last less than 2 hours.

Unlike the player patience data, session times can not
be fitted with a simple negative exponential distribution.
However, the data can be closely matched to a Weibull dis-
tribution, a more general distribution that is often used to
model lifetime distributions in reliability engineering [22].
Since quitting the game can be viewed as an attention “fail-
ure” on the part of the player, the Weibull distribution is
well-suited for this application. The generalized Weibull
distribution has three parameters β, η, and γ and is shown
below.

f(T ) = β
η (T−γ

η )β−1e−( T−γ
η )β

In this form, β is a shape parameter or slope of the distri-
bution, η is a scale parameter, and γ is a location parameter.
As the location of the distribution is at the origin, γ is set
to zero, giving us the two-parameter form for the Weibull
PDF.

f(T ) = β
η (T

η )β−1e−( T
η )β

Using a probability plotting method [22], we estimated
the shape (β) and scale (η) parameters of the session time
PDF. As Figure 2(a) shows, a Weibull distribution with β =
0.5, η = 20, and γ = 0 closely fits the PDF of measured
session times for the trace.

This result is in contrast to previous studies that have
fitted a negative exponential distribution to session-times
of multiplayer games [23]. Unlike the Weibull distribu-
tion which has independent scale and shape parameters, the
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Figure 3: Player failure rates for individual session times
for cs.mshmro.com trace

shape of the negative exponential distribution is completely
determined by λ, the failure rate. Due to the memory-less
property of the negative exponential distribution, this rate is
assumed to be constant. Figure 3 shows the failure rate for
individual session durations over the trace. As the figure
shows, the failure rate is higher for flows of shorter dura-
tion, thus making it difficult to accurately fit it to a negative
exponential distribution. While it is difficult to pinpoint
the exact reason for this, it could be attributed to the fact
that Counter-Strike servers are notoriously heterogeneous.
Counter-Strike happens to be one of the most heavily mod-
ified on-line games with support for a myriad of add-on
features [24, 25]. Short flows could correspond to players
browsing the server’s features, a characteristic not predom-
inantly found in other games. As with player patience, it
may be possible to fit a negative exponential for longer ses-
sion times. As part of future work, we hope examine this as
well as characterize session duration distributions across a
larger cross-section of games to see how distributions vary
between games and game genres.

3.3 Gamers are not loyal

Public-server games such as Half-life provide users with
a large choice of servers located all around the world.
Gamers can switch between servers as often as they like.
Some reasons to continue playing on the same server are
simplicity, a known low-latency connection, preference for
server options, or a sense of community. It is natural to
wonder whether servers continue to serve the same group
of clients and to what extent these reasons or others keep
clients at a specific server.

Our trace contains the connection records for each client

via their unique player identification number (WONID).
We quantify loyalty to the server by counting the number
of times a player returns to play after a successful playing
session. Figure 4(a) shows the probability density function
of additional game sessions per player for players who re-
turned at least once to the server while Figure 4(b) shows,
on a logarithmic scale, the cumulative distribution. As the
figure shows, 42% of the players in our trace returned to
play only once and 81% played less than 10 times. On
the other hand, the top 1% of loyal gamers return to play
hundreds of times (hence the logarithmic scale). It appears
that the majority of clients have very little loyalty to pub-
lic servers, and only a small fraction have grown strongly
attached. We hypothesize that, due to a large population of
servers to choose from (over 30,000), clients rarely select
the same server twice.

3.4 Gamers reveal when they lose interest

Players of a game have some discretion about how fre-
quently they play a game and for how long. Players of-
ten lose interest in a game and cease playing altogether at
some point. Before that happens, however, there may be
noticeable indications that their interest is waning. Such in-
dications are extremely useful to game providers who can
detect waning interest and react to it on a macro level with
new content or on a per-player basis via customized incen-
tives for continued play.

We determine the average player interest curve by cal-
culating each player’s sequence of play sessions from their
first session to their last recorded session. This is a player’s
play history. Since each player may progress through his
or her game interest at a different rate, we normalize each
of these data sets based on the duration each player is ac-
tive on the server. We then examine the average session
times and session interarrival times of all players through-
out their playing careers. Figure 5(a) shows that player
session times are relatively constant halfway through their
play history and fall off to just more than 50% of the ini-
tial session time before the player loses interest completely.
Figure 5(b) shows that the time between player sessions is
minimized before the halfway point and increases steeply
until the player’s interest has fully waned. The variance on
this data is extremely high, due in part to the fact that play-
ers only spend a portion of their time on this single server,
and therefore this data is unsuitable for predicting the inter-
est of a given player. However we believe this methodology
can be used for games with a centralized session-tracking
authority as an early indicator of peaking player interest
and that game publishers should use these measurements
to trigger the delivery of new content or incentives for the
individual player.
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Figure 4: Distribution of sessions per player on the server
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Figure 5: Player behavior throughout their playing careers

4 Game populations

Hosting games is challenging, in part, due to the difficul-
ties of accurate provisioning. Under-provisioning can test
gamer patience, while over-provisioning can be costly. We
look at two facets of gaming integral to successful game
provisioning: overall game popularity and predicting game
workloads. We show that (1) there are, and will be, very
few extremely popular games, and (2) game workloads are
periodic and predictable over short-term intervals.

4.1 Game popularity follows a power-law

To determine the distribution of on-line game popularity,
we analyzed a nine-month subset of the GameSpy data set

described in Section 2, starting March 1st 2003. Of the
games, we consider only the top 50 games, as the remain-
ing games averaged a minimal number of players through-
out the trace. To average popularity rankings we first cal-
culated the rank ordering of the games and the number of
players at a given rank for each day. Then we averaged
these daily rankings over the nine-month period to show the
distribution of players across the games regardless of fluc-
tuations in individual game popularity. Figure 6 shows the
popularity data on a log-log scale. As the figure shows, this
distribution is heavily skewed in favor of the most popu-
lar games, with the first ranked game having over ten times
the number of players of the next most popular. This dis-
tribution of popularity is most similar to a power-law dis-
tribution. Power-law distributions are of the form y = axλ
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and occur in a number of places including the frequency of
words in the English language, the popularity of web pages,
and the population of cities. An intuition for these distri-
butions is that whenever choices are made between many
options, and each choice affects other choices, the choices
tend to pile up on a few popular selections. Games and
servers create communities: in selecting one, each player’s
choice affects and is affected by the popularity and rep-
utation of that game or server. A perfect power-law dis-
tribution would graph as a straight line on a logarithmic
scale in both the x and y axis. The relatively straight line
(correlation coefficient -0.98 for a simple linear regression)
demonstrates that the GameSpy data does follow a power
law distribution. This distribution has an interesting, albeit
unfortunate, implication for provisioning server resources
for on-line games: the host must plan for several orders
of magnitude of change in popularity (and therefore re-
sources) in either direction. As a result, this indicates that
on-demand infrastructure can significantly reduce the costs

and risks of launching and hosting on-line games.

4.2 Game workloads have varying degrees of
predictability

Accurately predicting game workloads allows game host-
ing providers to allocate the appropriate amount of re-
sources for a game. In order to determine whether this is
feasible, we analyze the GameSpy trace for different sets
of games. Specifically, we investigate whether any sim-
ple trends or patterns can be used to accurately predict the
game workload, whether the workload is stable and if so,
over what time scale.

4.2.1 Game workloads exhibit predictable daily and
weekly changes

Intuitively, it is reasonable to assume that usage is strongly
tied to the daily and weekly activities of players. Fig-
ure 7 shows the global player population of four consecu-
tive weeks starting from 3/1/2003 for three popular games:
America’s Army, Half-Life, and Neverwinter Nights. As
expected, the figure shows that the workload has regular
daily cycles and that over this one month period the work-
load does not vary significantly from week-to-week. In
fact, for all three games, the trends as well as the maxi-
mum and minimum points match up at identical points in
time during the week. We observe similar results over other
parts of the year with the only anomalies caused by service
outages and by holidays. To further demonstrate the cycli-
cal nature of gaming workloads, we take one year’s worth
of game server load samples across a variety of games and
plot the Fast Fourier Transform (FFT) of the data. The
FFTs have been scaled so that they can be plotted together.
As Figure 8 shows, the FFT contains strong peaks at the 24-
hour cycle for each of the games. There is also a significant
peak at the 168-hour (one week) cycle for two of the games
as well. This corresponds to an increase in player usage on
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Figure 8: FFT of the player load from four games over one
year.

the weekends during some parts of the year. Papagiannaki
et. al use wavelet multiresolution analysis (MRA) on an-
other long-term data series [26], and model their series as
a 12-hour and 24-hour cycle plus a trend. We were un-
able to apply this technique however, due to the reliance of
wavelet MRA on resolutions that are factors of two apart.
The difference between our two cycles is seven.

In order to quantify the week-to-week variation of game
workloads, Figure 9 shows distribution of week-to-week
load changes of the top 5 games during 2004: Half-Life,
Battlefield 1942, Medal of Honor: Allied Assault, Amer-
ica’s Army, and Neverwinter Nights. Figure 9(a) plots the
distribution of instantaneous load changes between identi-
cal points in time of consecutive weeks, while Figure 9(b)
plots the change in average daily load between the same
day of the week of consecutive weeks. Finally, Figure 9(c)
plots changes in maximum daily load between the same
day of the week of consecutive weeks. The figures fit a ‘t’
location-scale distribution, which has three parameters, a
scale parameter σ > 0, a location parameter µ, and a shape
parameter ν > 0. The density function for this distribution
is as follows:

f(x) = Γ( ν+1
2 )

σ
√

νπΓ( ν
2 )

(ν+( x−µ
σ )2

ν )−
v+1
2

Note that if x is ‘t’ location-scale distributed, x−µ
σ is Stu-

dent’s ‘t’ distributed with ν degrees of freedom. As illus-
trated in Figure 9, we find a very good fit for all the three
plots. Based on this observation, we draw two main con-
clusions with regard to resource usage:

• As the figures show, almost all week-to-week load
variations are under 10% of the previous week’s work-
load. Such behavior makes it relatively easy for game

and infrastructure providers to provision and predict
resource usage on a weekly basis.

• The above distribution fitting of load variations indi-
cates that it is feasible to model the week-to-week load
variations using such standard distributions. We are
exploring the feasibility of online parameter estima-
tions for using this model in resource provisioning.

4.2.2 Game workloads exhibit unpredictable long-
term fluctuations

While the daily and weekly cycles in server load are clear,
the duration of our trace allows us to examine longer term
cycles. We examine the trend of three games of similar
popularity as well as the trend of the most popular game,
Half-life, over the period of just over two years. We com-
pute the trend as the moving average of the data with a
window size of one week. Figure 10 shows the trends of
the respective games. The underlying trend of these games
does not reveal periodicities on a monthly timescale, and
the limits of our trace prevent us from drawing any strong
conclusions about annual cycles. There are several points
in trace where the games appear to be synchronized, but the
explanation for the concurrent peaks or valleys is not neces-
sarily predictable. We observe peaks in all games near the
Christmas season, but, for example, all four games expe-
rience a drop during the unpredictable weeks of the Sobig
virus [27].

5 Potential for multiplexing gain

With the movement toward hosted game services [28, 29]
as well as on-demand computing infrastructure for games
such as Butterfly.net [30], there has been a great deal of in-
terest in reducing the cost of running game servers by shar-
ing server resources dynamically across multiple games
and applications. We explore two likely scenarios: host-
ing multiple games on the same servers, and hosting web
sites along with game servers. In addition, we study the
usage behavior of a content-distribution network for sup-
porting games. Our results show that there are significant
challenges in multiplexing interactive applications on the
same server infrastructure and that only limited opportuni-
ties for reducing peak resource usage exist.

5.1 Game workloads are synchronized

There are two ways games can be multiplexed with each
other. One way would be to coarsely and statically assign
physical servers to particular games based on the popularity
of the game. Results from Section 4 clearly show that this
can provide a lot of benefit for game companies. Another
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Figure 9: Week-to-week PDF of percent load changes for the top 5 games of 2004
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Figure 10: Population trends for Half-life and other games with an averaging window of one week

Game Average number of players
Half-Life 80324
America’s Army 5791
Battlefield 1942 5402
Neverwinter Nights 4579

Table 2: Mean player populations for week of May 23,
2004

way would be to dynamically re-allocate servers based on
instantaneous demand for a particular game. An implicit
assumption that gives value to the latter method is that dif-
ferent games have usage patterns that are substantially dif-
ferent. Thus, rather than have each game provision server
resources based on the peak usage of their game, server re-
sources would be provisioned for the global peak.

In order to investigate the extent to which different
games can be multiplexed with each other, we exam-

ined the aggregate player populations of four popular
games. The games examined include FPS games (Half-
Life, Battlefield 1942, and America’s Army), as well as
an MMORPG (Neverwinter Nights). Player populations of
these games were collected over a one week period (Sun-
day May 23, 2004 to Saturday May 29, 2004) from the
GameSpy trace. In order to compare the games directly, in-
dependent of their popularity, each game’s population data
was normalized by the mean population for that particular
game during the week. Table 2 lists the mean player pop-
ulations for the four games examined. Figure 11 plots the
normalized player loads for the four games during the one
week period. As the figure shows, player populations fluc-
tuate significantly based on the time of day from lows close
to half of the mean to peaks close to twice the mean. In ad-
dition, populations across games have peaks in close prox-
imity to each other, making it difficult to achieve significant
statistical multiplexing gain between different games. Fi-
nally, as indicated in the FFTs from Figure 8, games show
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Figure 11: Aggregate normalized load across four popular
games for week of May 23, 2004

slight peaks on the weekends with slightly more players
on-line than during the week.

5.2 Games and interactive application work-
loads are synchronized

While Section 5.1 shows the difficulty in obtaining statisti-
cal multiplexing gain between different games, on-demand
computing infrastructure could still be useful for multiplex-
ing between other applications such as web servers. In
order to examine this, we obtained web server logs over
a week for three commercial sites. The sites included
those for a North American cereal manufacturer, a North
American credit card company, and an international bever-
age manufacturer. Table 3 describes the traces of the web
servers, all from the week of August 13, 2001. The servers
themselves were located in geographically distributed data
centers and the individual logs from each site were aggre-
gated and sorted into a single log file. Using these traces,
we plotted the normalized load for the web server against
the normalized global aggregate load of Half-Life during
the same week in August 2004.

As Figure 12 shows, workloads for web and on-line
games share similar daily periodic peaks. This particular
week of game traffic does not have a strong weekend rise
(perhaps due to being from the summer), but the web traffic
does slump during the weekends as Figures 12(a) and 12(b)
show. Interestingly, Half-life shows considerably less vari-
ance than the North American websites, but similar vari-
ance to the international beverage manufacturer website.
Intuitively, it makes sense that applications and web sites
with global usage patterns are more consistently busy and
have less daily variance. Due to the international popularity
of Half-Life, its usage pattern is quite similar to that of the

North American cereal manufacturer
Start time Mon Aug 13 2001
End time Sun Aug 19 2001
Total requests 10,368,896
Content transferred 59.6 GB

North American credit card company
Start time Tue Aug 14 2001
End time Mon Aug 20 2001
Total requests 112,590,195
Content transferred 366.4 GB

International beverage manufacturer
Start time Tue Aug 14 2001
End time Sat Aug 18 2001
Total requests 11,932,946
Geographically resolvable 11,829,429
Content transferred 51.1 GB

Table 3: Web site logs for week of August 13, 2001

Total connections 71,253
Geographically resolvable 30,226
From North America 9,414
From Asia 9,814
From Europe 8,788
From other continents 2,210

Table 4: Connection data for cs.mshmro.com for week
of May 23, 2004

international beverage company’s web site. Overall, these
results indicate that infrastructure sharing between applica-
tions during the week will have a somewhat limited benefit
with some potential for multiplexing gain during the week-
ends and during the “off hours” for geocentric applications.

5.3 Games exhibit strong, diurnal geo-
graphic patterns

One of the salient features of globally distributed, on-
demand computing infrastructure is that it can easily shift
resources geographically close to where the demand is
coming from. Intuitively, it makes sense that a predictable,
diurnal pattern drives global resource consumption and
hence, the provisioning of server resources. This is espe-
cially the case for applications that require human partic-
ipants such as games. To study this phenomenon, we ex-
amined a one-week period of cs.mshmro.com (Sunday
May 23, 2004 to Saturday May 29, 2004). Using this log
and a commercial geographic IP address mapping tool [31],
the location of each player connecting was resolved. As Ta-
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ble 4 shows, a significant portion of the load is from outside
of North America. Using the resolved connections, the per-
continent load normalized by the mean connection arrival
rate was plotted. As Figure 13 shows, each continent shows
a predictable, diurnal pattern of activity with the only dif-
ference being a time-zone shift. It is interesting to note that
in contrast to the Half-Life aggregate load and international
beverage company web site load (Figure 12(c)), the per-
continent load of cs.mshmro.com exhibits a large vari-
ance similar to the North American web site loads shown
in Figures 12(a) and 12(b). We hypothesize that when the
usage patterns of international services are broken out into
individual regions, the resulting load variances are similar
to those of regional servers such as the cereal manufacturer
and the credit card company.

To test this hypothesis, we compared the per-continent
load between cs.mshmro.com and the international bev-

erage company web server trace 2. Figure 14 shows the
per-continent, normalized load of the game and web server
for North America and Europe. The loads from other con-
tinents show similar results. As expected, the per-continent
load fluctuations and variance are similar to those found in
the two regional web sites. The figure also shows that usage
of both applications are highly synchronized when broken
down into geographic regions. The degree of synchroniza-
tion thus limits the benefits that geographically distributed,
on-demand computing infrastructure has on interactive ap-
plications such as games and web.

5.4 Game updates significantly impact re-
source usage

The infrastructure required to host on-line games must also
account for the mutability of the games over time. Software
patches to fix bugs, prevent cheats, and deliver new content
to end-users are an expected component of many on-line
games. These patches can vary greatly in size, from a few
bytes to several gigabytes. Understanding the impact of
these patches on hosting, and adequately provisioning for
them is an important part of supporting on-line games. We
use the trace of the Steam content delivery network to ex-
amine this aspect of games. Our Steam trace includes the
initial download of the popular FPS game Half-Life 2 as
well as a number of sizable content updates for both clients
and servers.

The Steam network is utilized for both player authenti-
cation and content distribution. Players are authenticated
to Steam for each game session, via the download of an au-
thentication module. Content is distributed to players (and

2Note that in comparing the geographical resolution data of Tables 3
and 4, a much larger percentage of the IP addresses in the beverage com-
pany trace is resolvable. This is due to the fact that the trace (and the set of
IP addresses in it) is much older, giving services such as GeoBytes more
time to identify their locations
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servers) via Steam at irregular intervals and irregular sizes.
These two functions are not distinguished in the data set
we have collected. However, we can differentiate them by
utilizing the GameSpy dataset, which tracks player load,
by assuming that player load and game authentication are
linearly correlated.

As a way of validating that the Steam data and the Game-
Spy data are tracking the same thing (i.e. player load), we
consider a week without a Steam update. Figure 15 shows
a scatter plot of Steam data (in megabits per second) versus
GameSpy data (in players), and the least-squares fit line.
The correlation coefficient for this week is 0.86, indicating
a roughly linear relationship. We attribute the inexact na-
ture of the correspondence to small changes in the size of
the authentication module and sampling error.

We use the GameSpy dataset to subtract the authentica-
tion data from Steam and focus on the bandwidth require-
ments of a patch. Figure 16 shows a two week period of
Steam activity, with a single patch occurring three days into
the period. Also graphed is the authentication data com-
ponent, computed from the GameSpy dataset with a ratio
of players to megabits/second of 1 to 0.0291. By integrat-
ing these two signals and subtracting, we estimate the patch
burden on Steam for this patch to be 129.7 terabytes, which
is 30% of that week’s total load including authentication.

We use this same methodology on four patches deliv-
ered during our trace, and chart the bandwidth impact of
the patches over a two-week period in Figure 17. Three
anomalies deserve explanation: patch p3 is cut short of the
full two week period analysis because of the release of p5,
patch p2 shows a rise in bandwidth after one week due to
erroneous player data from GameSpy, and (according to
Steam’s press releases) the two weeks of patch p7 contain
numerous patches. One question to address is how long it
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Figure 15: Half-Life player population versus Steam CDN
usage

takes to deliver a patch: the cumulative distribution func-
tion (CDF) of the patch delivery data in Figure 18 shows
that 80% of the load occurs in the first 72 hours for the three
single-patch traces, whereas the various patches in trace p7
are delivered throughout a two-week period.

Our observations on patch distribution bring up several
issues. We believe content delivery for games is a signifi-
cant burden that must be provisioned for, as it can greatly
increase the hosting bandwidth requirement. At this point,
however, it is unclear what the optimal strategy would be
for delivery and scheduling. Our inital observations are
that to avoid the stacking effect seen in Figure 18, content
should be spaced for delivery such that the bulk of each
patch is delivered before the next patch begins. Further, if
minimizing the combined content and authentication load
is a goal, then patches should be released at the lowest peak
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in the weekly and daily cycle. For example, a patch re-
leased Monday evening may potentially miss the daily af-
ternoon peak as well as the weekend peak. As part of fu-
ture work, we plan on examining the proper scheduling of
patches based on measured game workloads.

6 Conclusions

On-line gaming is an increasingly popular form of enter-
tainment on the Internet. Unfortunately, effectively hosting
on-line games is a difficult, expensive proposition made
more onerous by the lack of workload models for games
or known characteristics of gamers. Due to the unpre-
dictable nature of the popularity of a game, combined with
the high barrier to entry for hosting, a number of academic
and industry projects have focused on providing a shared
on-demand infrastructure to solve the hosting problem.

To understand the benefits of such infrastructure, this pa-
per presents a comprehensive analysis of a collection of on-
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Figure 18: Cumulative distribution function of patch data.

line game players and game usage data from a number of
unique sources, mostly biased towards the FPS genre. Our
results show that gamers are difficult to satisfy throughout
the gameplay process: they are likely to leave and never re-
turn if they can’t connect, they are likely to leave within the
first few minutes if they don’t enjoy the server’s character-
istics, and they are unlikely to become loyal to a server. In
addition, the popularity of this collection of games follows
a power-law distribution, with a small number of games
having orders of magnitude more players than the rest. This
makes resource provisioning very difficult for the initial re-
lease of a game when popularity has not been established
and provides a promising area where shared hosting can
provide benefit. Although initial provisioning is difficult,
our results also show that once established, game work-
loads are relatively stable from week to week, allowing
game providers to more easily allocate resources to meet
demand. In addition, we determine that game workloads
are synchronized amongst themselves and other interactive
applications and that they follow strong diurnal, geographic
patterns. Such synchronization makes it difficult to obtain
statistical multiplexing gain between games and other in-
teractive applications when using shared infrastructure. Fi-
nally, we show that game software updates provide a sig-
nificant burden on game hosting and must be scheduled and
planned for accordingly.
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