
Towards Public Server MMOs

Chris Chambers Wu-chang Feng Wu-chi Feng
Portland State University

chambers@cs.pdx.edu wuchang@cs.pdx.edu wuchi@cs.pdx.edu

ABSTRACT
While massively multiplayer on-line games (MMOs) are enor-

mously popular, their use of the client-server architecture

causes them to suffer from scalability issues and high main-

tenance costs. In contrast, the public server architecture em-

ployed by most first-person shooter (FPS) games scales more

easily by relying on user-supplied hosting and user-generated

content, but lacks persistence between servers that is re-

quired in the MMO genre. This paper examines an archi-

tecture that leverages the resources of the public server ap-

proach to support a scalable, persistent MMO.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose

and Application-based Systems

General Terms
Design

Keywords
Online games, MMO

1. INTRODUCTION
On-line games of every sort are enormously popular with

the most popular selling millions of copies and having more

than 100,000 players concurrently active [1, 2, 3]. Hosting a

popular interactive application with high concurrent usage

and constant uptime is a challenging task. There are three

main architectures used to host on-line games: peer-to-peer,

client-server, and public server. In peer-to-peer (P2P) on-

line games, the game publisher ships each client a complete

copy of the game and players connect to each other directly

in order to play against each other. In this architecture,

there is no central host and no peer is given special authority.

Instead, the game is simulated independently by each peer.

Figure 1: MMO subscriber growth over time by

game

Such an architecture is typically used for head-to-head real-

time strategy (RTS) games. In public server on-line games,

the publisher sells the game client to players and gives away

the server binary to anyone who wants to run a game server.

Anyone can choose to put up servers or take them down as

they see fit. Given this, the publisher’s only involvement in

the process is in tracking the servers that are up and help-

ing to connect individual players to running servers. This is

the most popular architecture for first-person shooter (FPS)

games such as Half-life. In client-server on-line games, the

publishers sell the game client to players, but host all of

the game servers themselves. While the architecture gives

the game publisher fine-grained control over content, it re-

quires the game publisher to host and maintain a significant

amount of computing infrastructure. This architecture is

the most popular for subscription-based games with persis-

tent content such as massively multi-player on-line (MMO)

games.

Fueled by recent successes such as World of Warcraft and

Lineage, MMO games have become particularly popular over

the last several years. Figure 1 shows the steep growth

in subscribers to MMOs since 1998 as compiled by Bruce

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Netgames'06, October 30–31, 2006, Singapore.
Copyright 2006 ACM 1-59593-589-4. $5.00.

1

Game User Architecture Persistent

Content

Typical MMO Client-server X

Typical FPS X Public server

Typical RTS Peer-to-peer

Second Life X Client-server X

Neverwinter Nights X Public server

PS MMO X Public server X

Table 1: Game architectures

Woodcock [4]. As the figure shows, popular MMO games

have several million subscribers. In an MMO, players pay

a subscription fee to control a single avatar and adventure,

socialize, or compete with thousands of other gamers in a

persistent world. Although MMO games are some of the

most lucrative games for game publishers, their use of the

client-server architecture also makes them some of the most

expensive to deploy and maintain.

One of the largest costs for a game publisher in running an

MMO game is the hardware, software, and support costs

associated with hosting the game in the client-server ar-

chitecture. Because each server can typically handle sev-

eral thousands of players concurrently, most popular MMO

games require large server farms in order to support its large

population of players. Such a cost does not exist in either

the public server architecture where players host the game

on their own dedicated servers.

In addition to hosting costs, persistent on-line games also

require an enormous amount of content generation to keep

subscribers playing. If the game is lacking in novel activities

or progression, avid gamers will become bored and unsub-

scribe. In stark contrast to a linear single-player game that

can be mastered in dozens of hours, publishers would like

MMO players to be able to enjoy their game indefinitely,

regardless of how much time they put into the game. Thus,

continuing content development is critical to the longevity

of a MMO. Unfortunately novel content is typically devel-

oped by the publisher at a slower rate than it can be played

through, resulting in bored gamers. Some games, such as

Second Life and public server games like Half-life are de-

signed to allow user-generated content or mods that extend

the lifetime of the game considerably.

Because the public server architecture can potentially min-

imize the hosting and content generation costs of an MMO,

this paper examines an approach for running a persistent

MMO game using the public server model. Table 1 sum-

marizes the state of on-line gaming with respect to user-

generated content, architecture and persistence. Only Sec-

ond Life allows for user generated content along with a per-

sistent world, but it takes place in a client-server architec-

ture. Our solution to the hosting and content creation chal-

lenges posed by MMOs is to move to a public-server archi-

tecture and allow users to generate content. We call this

architecture Public Server MMO (PSMMO). The intended

goal of PSMMO is to inexpensively scale hosting resources

and content generation with the number of users playing

the game. This PSMMO architecture introduces some fun-

damental challenges that this paper addresses: (1) trust and

authentication (2) content creation and (3) content distri-

bution and exchange. We address these issues using a com-

bination of incentives and public-key cryptography.

The rest of the paper is outlined as follows: In Section 2 we

discuss work related to ours, in Section 3 we discuss user

resources, in Section 4 we present our PSMMO design, and

in Section 5 and Section 6 we share our conclusions.

2. RELATED WORK
A number of solutions have been proposed in recent years to

address the problem of hosting MMOs. One solution is to

dynamically host games in an on-demand fashion and take

advantage of economies of scale and differences in gaming

popularity in a centralized or grid-based fashion [5, 6]. We

believe these efforts to be synergistic with our effort to har-

ness user resources.

Another approach is to use clients to form a P2P network re-

sponsible for gameplay computation as well as storage [7, 8,

9]. Our solution is not P2P, but rather public server, which

incurs certain trade-offs. While P2P networks are an attrac-

tive solution due to their scalability properties, they typi-

cally introduce increased latency for multi-hop tasks such

as peer routing. Additionally some game players are unable

or less able to participate in a P2P network due to firewalls

and discrepancies between upload and download speeds in

home networks.

3. HARNESSING USER RESOURCES
While there are inherent risks in using the public server ar-

chitecture to host a persistent MMO game, the clear strength

of the approach is in its ability to harness player resources.

In particular, players have an abundance of hosting infras-

tructure resources they are willing to contribute and content

generation resources they are willing to commit if given the

proper tools and incentives. In this section, we quantify the

extent of these resources and argue that they are significant

enough to justify a public server MMO approach.

3.1 Quantity
The merits of our design rest on the willingness of gamers

to contribute their resources and creative energy to the bet-

terment of a compelling game. There is some empirical ev-

idence that this willingness exists for popular public server

games. Figure 2 shows the cumulative distribution func-

tion (CDF) of the percentage full of all Half-life 2 servers

as polled every 10 minutes from 05/24/2006 to 05/29/2006.

This figure shows that even though Half-life 2 is an enor-

mously popular game with over 100,000 concurrent players

at any moment, the user-contributed server resources are

70% idle. This represents over 18,000 idle Half-life servers.

2 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

0 0.2 0.4 0.6 0.8 1
Percent full

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 2: CDF of public server utilization for Half-

life 2. 70% of all servers are empty.

In addition to being willing to contribute server resources,

players are also keen to contribute game content. In a pub-

lic server game the players typically have access to the art

for the game in addition to the server binaries, and so pub-

lishers often allow players to easily modify and extend the

art and gameplay. As examples of user interest in content

creation, the developers for Half-life and Neverwinter Nights

have released 6 and 7 official gameplay additions and vari-

ants, respectively. Their user bases however have created at

least 492 and 4372 gameplay additions [10, 11]. As another

example, Second Life is a MMO that has minimal developer

content; most of the gameplay is emergent behavior gener-

ated by user behavior and user-driven content creation. Lin-

den Labs estimates that of the 80,000 aggregate hours per

day users spend in Second Life, 25% of user time is spent on

content creation [12]. One concern is that users generate too

much content and that it may be challenging to locate the

high-quality additions. While a content rating system would

help to solve this problem, we believe that the social nature

of persistent on-line games will cause gamers to gravitate to-

wards compelling content without any publisher-sponsored

rating system.

3.2 Quality
User resources may be plentiful but their efficacy is less eas-

ily quantified. Regarding user hosting, the computational

requirements for hosting MMOs are not well known due

to the closed nature of successful industry games. While

users are willing to contribute servers for games with dozens

of clients such as Neverwinter Nights, it is unknown what

sorts of gameplay sacrifices would be required to allow user

machines to host compelling MMO gameplay. We do not

address this issue in this paper and instead assume that

any desired gameplay can be hosted in some way by user-

contributed server resources. We also do not address public

server reliability or response time fairness to clients, and in-

stead assume that whatever service a given client requires

is replicated in depth, as is the case for Half-life players

searching for popular varieties of gameplay.

Regarding quality of content we note that user content can

be extremely popular: the Counter-strike and Capture the

Flag modifications for Half-life and Quake have been more

successful than any publisher-generated content. In addi-

tion, user-generated content is the driving force behind the

Second Life MMO.

As successful on-line games can be profitable and very im-

portant to users, there are certain legal and ethical chal-

lenges inherent in harnessing user resources for profit, such

as intellectual property rights and server liabilities. We be-

lieve these issues are important, but we also believe that

users enjoy contributing building blocks to their gaming

world, and assume that some legal or monetary resolution

for these issues can be achieved that enables the harnessing

of user resources for scalable persistent worlds.

4. DESIGN
We preface the presentation of the nuts and bolts of our de-

sign discussion with a more in-depth description of the tasks

and motivation involved in playing a MMO. Then we present

our design goals and the details of the PSMMO architecture.

4.1 MMOs and Loot
The generic case of MMO gameplay involves controlling a

single avatar with a set of abilities and performing tasks in

world that advance the power, possessions and abilities of

the character. These gameplay tasks can vary widely based

on the genre of the game, from rescuing hostages to compet-

itive fighting to killing monsters. Successful completion of

the tasks generates rewards that slowly advance the state of

the character. While a new character begins the game with

only a few abilities or possessions, as a reward for hundreds

or thousands of hours of playing the game the character typ-

ically has dozens of abilities and hundreds of possessions.

From the perspective of a gameplay host, these various as-

pects of persistence (abilities, possessions, and levels) are

all alike in that they grant the player additional gameplay

effects. Because of this, and in order to maintain general-

ity, we refer to any persistent advancement a character can

achieve as that player receiving loot. The substantial invest-

ment in time played and tasks completed typically means

that players are very attached to their loot, and very inter-

ested in how to get better loot.

Because acquisition of loot is a primary motivator for per-

sistent on-line games, we choose to focus our design on loot

instead of gameplay. This is not to downplay the importance

of gameplay, but rather to allow the publisher and commu-

nity complete freedom to create whatever sort of game they

would like and maintain a valid reward structure. As im-

portant as loot is to individual players, the assurance that

a player’s loot was earned fairly is of critical importance to

the community’s confidence in the virtual economy and the

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 3

lifetime of the game.

4.2 Goals and Pitfalls
Imagine taking an existing public server game such as Counter-

strike and turning it into an MMO with persistent content.

Instead of simply playing for the thrill of victory, players

now compete to advance their persistent character and ac-

quire loot such as better skills, weapons, outfits, and money,

all tracked by each Counter-strike server but shared between

servers. Furthermore, players host the servers and players

design the loot. This system presents several challenges:

How is loot shared? How can a server be assured that a

given player should have a given piece of loot? Can a player

run a server and issue their own avatar loot? Can players

design extremely powerful loot only for their own use? How

can users exchange loot?

We believe the following three design flaws must be avoided

for the game to thrive. First, unauthorized loot creation

must be prevented; players must earn their loot via the

gameplay procedure, and if loot is to be persistent across

servers, the servers must somehow trust that a player has

not simply fabricated the loot. Second, the gameplay effects

loot must be balanced; as users can design loot as well as

gameplay, their incentive may be to create very powerful

loot. However games are not enjoyable when poorly bal-

anced. Third, automated play via computer programs must

be prevented; as persistent games such as MMOs are sup-

posed to reward time put into the game, any automatic way

to earn loot without user interaction will disrupt the fair

gameplay experience to the detriment of the game’s popu-

larity.

Given these pitfalls, we believe that a public server MMO

should (1) authenticate loot in an unforgeable manner, (2)

control the balance of loot and (3) verify users are playing

their game instead of computer programs. The rest of this

section presents our design decisions to meet these goals.

The three key participants in our design are the clients,

public servers, and publisher. Figure 3 shows each of the

three participants and their general role in the architecture:

the publisher handles player authentication, billing, global

gameplay functions such as chat, and loot distribution to

servers, who handle gameplay interactions with clients. In

the rest of this section we present our architecture by focus-

ing on the three challenges it strives to meet: authentication,

persistent content, and the problem of trading persistent

content.

4.3 Authentication
One central challenge in a public server MMO is authentica-

tion and trust. Since clients are paying a subscription, the

loot server must be able to authenticate clients. All partici-

pants must be able to verify loot as authentic and trust that

a given client is allowed to possess it. To meet these needs,

we generate a number of keypairs. Generally, we need a key-

pair to authenticate the client to the authentication server,

a keypair to sign loot, and a keypair to bind loot to a given

Figure 3: Participants in PS MMO

player. In terms of key distribution, each client i keeps a

private key cl privi, with public key cl pubi stored by the

publisher. This is the client authentication keypair. The

publisher advertises a master loot key loot pub but keeps

loot priv secret, and uses loot priv to sign loot. Finally, the

publisher keeps a key pair (bind pubi, bind privi) for each

client i, advertising the public bind key, and uses this key

to bind persistent items to players.

A different but related authentication problem arises from

our incentive-based loot distribution model. Our model is to

grant loot to public servers based on the number of player-

minutes accumulated per server. The loot server needs to

verify that player-minutes are not being granted to a server

without a player actually present on the server. One could

imagine, for instance, a player and public server colluding

to accumulate player-minutes every minute of the day even

when the player was away from the computer. We authen-

ticate player-minutes with the use of periodic CAPTCHA

tests that are known to be challenging for computers but

easy for humans [13]. While CAPTCHA design is outside

the scope of this work, we believe the goal of the tests should

have an additional component aside from differentiating hu-

mans and computers: differentiating gamers from other hu-

mans. A game world has a unique environment and set of

rules; it should be relatively easy to place some of this con-

text into the CAPTCHA, for example with an image from

the game. By binding the player to the domain of our game

we can deter work-arounds such as CAPTCHA farms or

CAPTCHA redirects.

4.4 Persistent Content
Persistent content is issued to the public servers according

to accumulated authenticated player minutes logged at the

server. This creates two incentives. The first is that players

get loot for their invested time, as in a traditional MMO.

The second is that servers are rewarded for hosting players

with loot to distribute as they see fit. The public server re-

ceiving loot dispenses the loot according to its gameplay

rules, which could vary widely. For example the game-

play could require players to compete against each other in

a tournament, with all the combined authenticated player

minutes going towards a prize for the winner. The server

could distribute loot according to the defeat of computer-

controlled scripted encounters, or randomly, or only to cer-

tain people. While the potential for abuse is clear in such a

system, we believe that as users can vote with their attention

4 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

for different servers, they will tend to gravitate towards fair

servers with compelling gameplay. This is the case for other

public server communities such as Half-life where servers

that allow cheating are eventually abandoned.

Our design for content creation is that the user community

and publisher create content of two sorts: gameplay content

such as the environment with which the player interacts and

the available actions, and persistent content such as items or

abilities that are intrinsic to the player and modify their ap-

pearance and gameplay. The community and publisher have

complete freedom to design gameplay content, but persistent

content must be balanced by the publisher before being ad-

mitted to the game. Two strategies for balancing content are

either a human review and approval process or a published

set of rules all loot must follow such as a set of equations

describing a point system for the cost of various abilities.

The security of distributed content is ensured with the bind

keys (bind privi, bind pubi) and the master loot keys (loot pub,

loot priv). A given piece of loot is signed with loot priv and

signed again with bind privi for client i, and then given to

the client. The client can present this loot at any public

server or to any client for verification. No other client j

can forge loot without knowledge of loot priv or bind privj .

This enables each client to store its own loot locally. One

drawback of this design is that a player can never trade or

lose an item. We will describe a way to relax this constraint

later.

Figure 4: Player interactions with public server and

publisher during normal gameplay

Figure 4 shows an overview of the player interactions with

the publisher and public server during normal gameplay.

The player is initially authenticated with the publisher as

a subscribed gamer and receives a play token good for play

on the desired public server for a certain period of time.

That public server’s credit is recorded by the publisher. Us-

ing the play token, the player authenticates itself to the

public server and plays the game. When loot is distributed,

the public server requests the item from the publisher, who

signs it and debits the public server’s account. The public

server then gives the player the item.

4.5 Trading

Figure 5: Example of how trading alters signatures

on items

The trading of items is a backbone of many persistent worlds,

but prohibited in our design so far. We would like to al-

low trading in a way that does not permit item duplication.

The core of the problem is that once an item is traded be-

tween parties it should not be possessed by both parties. As

PSMMO uses cryptographic signatures to indicate item au-

thenticity and ownership, we need a way to invalidate own-

ership. In public key cryptography this problem is called

certificate revocation and the typical solution is a certificate

revocation list (CRL): a list kept by an authority listing in-

valid certificates. For PSMMO, this solution requires (1)

frequently checking the CRL for freshness and (2) main-

taining a CRL for all items for all players over the history

of the game. We propose to avoid the scalability problems

associated with such a list by establishing a globally syn-

chronized trading session in which all items in the game

are re-issued according to a new loot priv, loot pub master

loot key pair. The publisher would host a global market for

persistent items, with players able to bid on items or estab-

lish trades in the time period preceding the trading session.

No actual trading would occur however, until the trading

session, during which each player would have his items re-

issued according to whatever trades had been agreed upon.

Figure 5 shows a pair of players with their items before and

after the trading session, where they each possess the other’s

items. As the loot key has changed, the old items are no

longer valid.

Our scheme requires the periodic re-signing of all items in

the game to a new master loot key. What is the computa-

tional cost of that task? To scale trading with the number

of subscribers, the publisher must possess resources capa-

ble of performing the signing task for all users in a given

window. The free cryptography library crypto++ reports

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 5

signature and signature verification times of 4.75ms and

0.18ms respectively for the RSA1024 public-key cryptogra-

phy scheme on a 2.1GHz Pentium 4 [14]. Assuming each user

has 100 items, and each user’s items are processed (verified

and signed) once, the Pentium 4 would then process 90,947

users in a 12 hour period. This gives a simplistic overview

of the cost of the signing task, but it should be noted that

re-issuing each item can be performed in parallel and can be

performed lazily upon authentication. Computation time

for signing can be further reduced with dedicated hardware

support.

5. DISCUSSION
As our design can accommodate a variety of persistent games,

it may be helpful to present an example game and discuss

the user role in the game. With this basis for discussion, we

detail limitations of our design.

5.1 Example Game
This imaginary game CSX is an adaptation of a FPS game

such as Counter-strike to the persistent content model. As

in Counter-strike, the main gameplay action involves teams

of players acting as a squad to defeat enemies and defuse or

protect bombs. Unlike Counter-strike, players can gain new

abilities, outfits, and weapons by playing CSX and earning

loot. The publisher has set up a loot server (issuing pub-

lisher and user-authored loot), authentication server, and

possibly some other servers to address global functions such

as chat, trade or movement between servers. The rest of the

hosting infrastructure is provided by users.

Users have set up a large number of servers, a portion of

which form a world players can move around and interact

in without performing the main gameplay action. Another

portion of public servers form small instances of the main

gameplay action of a bomb threat. In order to advance in

CSX players must convince a server to issue loot to the

player, by completing gameplay tasks on the server, such as

being on the winning team, or defeating another player. In

CSX loot is issued in very small quantities as coins, which

are redeemable once a month in the monthly trading session

for actual player abilities. Servers may choose to guaran-

tee that each defeated enemy yields loot, in which case the

server will only allow enemies to spawn when the server has

accumulated enough player minutes for the loot. Alterna-

tively, servers may allow enemies to spawn more frequently

and determine if they have loot upon their defeat. The re-

strictions imposed on user created CSX servers are that they

can only issue approved loot, and they can only issue loot

in accordance to cost in player-minutes.

5.2 Limitations
The focus of our design is on working persistent content into

the public server model in a way that allows authentication

of players and items, and the intended benefit is decreased

hosting costs and content creation costs. A first limitation

of our model is the use of clients to store persistent data.

In this situation, the burden of backups, sharing and syn-

chronizing data between different locations is on the client.

We see two other primary sources of limitation: abuses of

the unmonitored channel between clients and public servers,

and scalability of the publisher’s central authentication role.

Regarding hosting scalability, it should be noted that the

publisher’s hosting and content costs do increase with the

number of users as the publisher must orchestrate whatever

global gameplay tasks exist, such as the trading market or

global chat functions. Similarly, a human-supervised con-

tent balance review process that controls loot admission into

the world also becomes more laborious with the number of

users generating content. Thus one limitation of our design

is that we merely reduce the load on the publisher.

Regarding client and public server collusion, we believe our

system incentives work against widespread abuse. The in-

centives in our system are (1) people who contribute servers

want them to be utilized by players and (2) players want to

acquire loot and to have fun. As an example of abuse in

CSX, a hacked public server could have special rules grant-

ing the server administrators very powerful non-authentic

weapons. However a persistent social world such as a MMO

comes implicit with a social reputation system, and in the

long run we believe players will tend to avoid cheating servers.

As a second abuse example, servers and clients could collude

to receive loot without performing any meaningful gameplay

tasks (i.e. clients in CSX log into an empty room with no

bomb or enemies, answer periodic authentication queries,

and eventually leave with loot), but we believe the player

incentive of having fun will instead cause them to gravitate

towards servers with compelling content. As a final exam-

ple, servers could allow non-authenticated players to play on

their server, although they would lose the incentive of gain-

ing credit with the loot server. This leads us to one form

of abuse that players could have incentives to gravitate to-

wards: a free service that was not subscription based, but

rather ran on user-contributed hardware and simply copied

the approved content from the paid service game as it came

out. As the bulk of the artistic content is available to clients

and the server binaries are also available in our model, we do

not believe there is a simple solution to this problem. How-

ever as these copycat publishers become popular they also

become easier to locate and shut down legally. Furthermore,

the cost of taking the publisher’s role is not trivial even if

the copycats do not have to perform the content balance.

6. CONCLUSION
Current MMOs are extremely popular but are costly to host

and require an enormous amount of ongoing content creation

to keep subscribers happy. The public server architecture of-

fers an alternative that harnesses user resources to host and

author content. We focus our design on the management

of persistent content (loot) across public servers. The key

challenges of the public server architecture are authentica-

tion, persistent content creation and distribution, and game

balance.

6 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

Our design uses a central authority (the publisher) and is

incentive-based. Players want better items, abilities, and

other forms of persistent upgrades to their character, while

servers want popularity and to distribute valuable upgrades.

The key mechanism for both of these incentives is that loot

is distributed from the publisher to user-run public servers

based on accumulated player-minutes logged at that server.

Once issued, loot is stored on the client, and cannot be

forged as it is signed with cryptographic keys.

Our incentive-based design has certain limitations, such as

requiring clients to store and backup their own persistent

content and allowing for collusion between players and servers

for short-term benefits. However we believe that the scal-

ability benefits of the public server MMO model outweigh

the limitations.

More broadly, our design ignores the substantial difference

between the high level of performance and reliability of mod-

ern centralized MMOs and the more modest hosting char-

acteristics of a single public server. We assume the over-

abundance of public servers can be used to form a similar

high reliability and performance system for MMO game-

play. Future work would provide a design for this, in ad-

dition to meeting other challenges such as a system for ex-

changing players between servers according to game rules,

a reputation system for public servers, and a more elegant

solution for trading authentic content other than completely

re-issuing all content.

7. REFERENCES
[1] Valve, Inc., “Steam,”

http://www.steampowered.com/, 2005.

[2] Microsoft, “MSN Games,” http://zone.msn.com/,

2006.

[3] World of Warcraft, “World of Warcraft Community

Site,” http://www.worldofwarcraft.com.

[4] SirBruce, “Total MMOG Active Subscriptions,”

http://www.mmogchart.com/Chart4.html.

[5] IBM Corp., “On demand business,”

http://www.ibm.com/ondemand.

[6] A. Shaikh, S. Sahu, M. Rosu, M. Shea, and D. Saha,

“Implementation of a Service Platform for Online

Games,” in NetGames, August 2004.

[7] T. Iimura, H. Hazeyama, and Y. Kadobayashi, “Zoned

Federation of Game Servers: a Peer-to-peer Approach

to Scalable Multiplayer Online Games,” in NetGames,

April 2004.

[8] S. Hu and G. Liao, “Scalable Peer-to-Peer Networked

Virtual Environment,” in NetGames, April 2004.

[9] Y. Kaneda, H. Takahashi, M. Saito, H. Aida, and

H. Tokuda, “A Challenge for Reusing Multiplayer

Online Games without Modifying Binaries,” in

NetGames, October 2005.

[10] Wikipedia, “List of Half-life Mods,” http://en.

wikipedia.org/wiki/List of Half-Life mods/,

2006.

[11] IGN, “Neverwinter Nights Vault,”

http://nwvault.ign.com/, 2006.

[12] C. Ondrejka, “People Powered Places: Second Life,

Saving Games, and 6 Missing Pieces,” in Microsoft

Research Tech Talk, August 2005.

[13] L. von Ahn, M. Blum, N. Hopper, and J. Langford,

“CAPTCHA: Using hard AI problems for security,” in

Proceedings of Eurocrypt, 2003.

[14] Open Source, “Crypto++: A Free C++ Class Library

of Cryptographic Schemes,” http://cryptopp.com/.

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 7

