
Approximate Caches for Packet Classification

This work supported by the National Science Foundation under Grant EIA-0130344 and the generous donations of Intel
Corporation. Any opinions, findings, or recommendations expressed are those of the author(s) and do not necessarily reflect the
views of NSF or Intel.

Francis Chang, Wu-chang Feng
Systems Software Laboratory

OGI School of Science and Engineering at OHSU
Beaverton, Oregon, USA

{francis, wuchang}@cse.ogi.edu

Kang Li
Department of Computer Science

University of Georgia
Athens, Georgia, USA

kangli@acm.org

Abstract—Many network devices such as routers and

firewalls employ caches to take advantage of temporal locality of
packet headers in order to speed up packet processing decisions.
Traditionally, cache designs trade off time and space with the
goal of balancing the overall cost and performance of the device.
In this paper, we examine another axis of the design space that
has not been previously considered: accuracy. In particular, we
quantify the benefits of relaxing the accuracy of the cache on the
cost and performance of packet classification caches. Our cache
design is based on the popular Bloom filter data structure. This
paper provides a model for optimizing Bloom filters for this
purpose, as well as extensions to the data structure to support
graceful aging, bounded misclassification rates, and multiple
binary predicates. Given this, we show that such caches can
provide nearly an order of magnitude cost savings at the expense
of misclassifying one billionth of packets for IPv6-based caches.

Keywords— Bloom filter; packet classification; caches;
probabilistic algorithms

I. INTRODUCTION
Modern network devices such as firewalls, network

address translators, and edge routers rely on fast packet
classification in order to perform well. These services require
that packets be classified based on a set of rules that are
applied to not only the destination address, but also flow
identifiers such as source address, layer-4 protocol type, and
port numbers. Unfortunately, packet classification is a very
complex task. Because of this, there has been a large amount
of work in developing more efficient classification algorithms
[2][12][17][22][30][33]. Still, in the context of high-
performance networks, the hardware requirements of
performing full classification on each packet at line rates can
be overwhelming[25].

To increase the performance of a packet classification
engine, a cache is often employed to take advantage of
temporal locality [8]. For example, caching has been shown
to increase performance significantly with route lookups
[21][34]. Caches are typically evaluated along two axes: size
and performance. As additional storage is added, cache hit
rates and performance increase. Unlike route caches that only
need to store destination address information, packet

classification caches require the storage of full packet headers.
Unfortunately, due to the increasing size of packet headers
(the eventual deployment of IPv6 [18]), storing full header
information can be prohibitive given the cost of the high-
speed memory that would be used implement such a cache.
To address this problem, this paper examines a third axis for
designing packet classification caches: accuracy. In
particular, we seek to answer the following question:

What are the quantifiable benefits that relaxing the
accuracy of a cache has on the size and performance of packet
classification caches?

While there are many ways of exploring this axis, this
paper examines one approach for doing so through the use of a
modified Bloom Filter. In this approach, classified packets
satisfying a binary predicate are inserted into the filter that
caches the decision. Subsequent packets then query the filter
to quickly test membership before being processed further.
Packets that hit in the filter are processed immediately, based
on the predicate, while packets that miss go through the full
packet classification lookup process.

In this paper, we briefly describe the Bloom filter and
analyze its properties. In particular, we examine the exact
relationship between the size and dimension of the filter, the
number of flows that can be supported, and the
misclassification probability incurred. While Bloom filters are
good for storing binary set membership information, realistic
network devices classify packets into many, possibly disjoint,
sets. To address this limitation, we extend the basic approach
to support multiple binary predicates and analyze its expected
performance. Another issue in using Bloom filters in such a
manner is the highly dynamic nature of the "dictionary" of
packet headers. In particular, such a cache must be able to
evict stale entries and preserve a bounded maximum
misclassification rate. To address these issues, we present the
design and evaluation of extensions for gracefully aging the
cache over time to minimize misclassification. We also
explore the design and implementation of such a cache on a
modern network processor platform.

Section II covers related work and Section III introduces
Bloom filters. Section IV extends the Bloom filters to support
multiple binary predicates while Section V analyzes

extensions for gracefully aging the cache. Section VI explores
the performance impact of running a Bloom filter on a
network processor, while Section VII discusses the potential
results of misclassification.

II. RELATED WORK
Due to the high processing costs of packet classification,

network appliance designers have resorted to using caches to
speed up packet processing time. Early work in network cache
design borrowed concepts from computer architecture (LRU
stacks, set-associative multi-level caches) [6][26]. Some
caching strategies rely on CPU L1 and L2 cache [21] while
others attempt to map the IP address space to memory address
space to use the hardware TLB [25]. Another approach is to
add an explicit timeout to an LRU set-associative cache to
improve performance by reducing thrashing [34]. More
recently, in addition to the leveraging the temporal locality
observed on networks, approaches to improving cache
performance have applied techniques to compress and cache
IP ranges to take advantage of the spatial locality in the
address space of flow identifiers [7][16]. This effectively
allows multiple flows to be cached to a single cache entry, so
that the entire cache may be placed into small high-speed
memory such as a processor's L1/L2 cache.

Much of this work is not applicable to layer-4 flow
identification that is the motivation for our work. Additionally,
all of these bodies of work are fundamentally different from
the material presented in this paper, because they only
consider exact caching strategies. Our approach attempts to
balance performance and resource requirements with an
allowable error rate.

III. THEORY
We use a Bloom-filter to construct our approximate cache.

A Bloom filter is a space-efficient data structure designed to
store and query set-membership information [1].

Bloom filters were originally invented to store large
amounts of static data (for example, hyphenation rules on
English words). In recent years, this data structure has been
rediscovered by the networking community, and has become a
key component in many networking systems [3][24][32].

Applications of Bloom filters in computer networking
include web caching [11], active queue management [13], IP
traceback [28][29], and resource routing [4][9].

A. The Bloom Filter
In our implementation, a Bloom filter data structure

consists of LNM ×= bins. (Each bin consists of one bit.)
These bins are organized into L levels with N bins in each
level, to create LN virtual bins (possible permutations). To
interact with the Bloom filter, we maintain independent hash
functions, each associated with one bin level. Each hash
function maps an element into one of the N bins in that level.
For each element of the set, { },,, 21 keeeS K= , we compute
the L hash functions, and set all of the corresponding bins to
1. To test membership of any element in our Bloom filter, we
compute the L hash functions, and test if all of the

corresponding buckets are set to 1. See Figure 1 for an
example.

This approach may generate false positives – a Bloom
filter may incorrectly report that an element is a member of
the set S – but a Bloom filter will never generate false
negatives.

For optimal performance, each of the L hash functions,
LHHH ,,, 21 K , should be a member of the class of universal

hash functions [5]. That is, each hash function should
distribute elements evenly over the hash’s address space, and
for each hash function]1[: NeH K→ε , the probability of 2
distinct elements colliding is N1 . That is to say, () NbabHaHP 1),()(=≠= εε .

In practice, we apply only one hash function,
]1[: LNeH K→ , for each insertion or query operation, and

simply use different portions of the resulting hash to
implement the L hash functions.

Our definition of a Bloom filter differs slightly from the
original definition [1], where each of the L hash functions
can address all of the M bit buckets. This definition of the
Bloom filter is often used in current designs due to potential
parallelization gains to be had by artificially partitioning
memory [13]. It should be noted that this approach yields a
slightly worse probability of false positives under the same
conditions, but an equal asymptotic false-positive rate [3].
B. Properties of the Bloom Filter

In order to better design our cache and understand its
limitations, it is important to understand the behavioural
properties of a Bloom filter. In particular, we are interested in
how the misclassification probability, and the size of the
Bloom filter, will affect the number of elements that it can
store.

Let us take the example of a firewall to motivate our
analysis. The rationale of a firewall is to restrict and censor
traffic between the internal and external networks. A firewall
acts as both an entry point into and exit point from the
network. As such, it must be able to process all traffic
travelling to and from a network at line speed. This makes it a
simple example in which to apply our approximate cache.
Allowed flows are inserted into the cache, while new and
censored flows are not.

A Bloom filter with N buckets in each of its L levels,
storing k elements has a probability of yielding a false
positive of

 Level 1 Level 2 Level 3

()eH1 ()eH2 ()eH3

Figure 1: An example: A Bloom filter with 5=N bins
and 3=L hash levels. Suppose we wish to insert an
element, e .

0
1
0
1
0

1
0
1
0
0

0
0
0
1
1

Lk

Np 



 


 −−= 111

For our purposes, we need to know how many elements
(flows), k , we can store in our bloom filter, without
exceeding some misclassification probability, p . Solving for
k , we get

)11ln(
)1ln(1

N
pk

L

−
−=

To simplify this equation, we apply the approximation
NeN 111 −≈− . So, we construct k≈κ ,

From this equation, it is clear that the number of elements,
κ , a Bloom filter can support scales linearly with the amount
of memory M . The relative error of this approximation, kκ ,
grows linearly with the number of hash functions L , and
decreases with increasing M . For the purposes of our
application of this approximation, the relative error is
negligible1.

Note that solving for p in this equation yields the more
popular expression [3][11][29], ()LMLep κ−−= 1

1 For 1024≥M bytes, and 50≤L , the relative error is
less than 0.35%.

C. Dimensioning a Bloom Filter
Bloom-filter design was originally motivated by the need

to store dictionaries in memory. The underlying design
assumption is that the data is static. However, this assumption
no longer holds when dealing with network traffic. Previous
work has often attempted to dimension a Bloom filter such
that the misclassification rate is minimized for a fixed number
of elements [3].

To apply Bloom filters to the problem of storing a cache,
we prefer to maximize the number of elements, k , that a
Bloom filter can store, without exceeding a fixed maximum
tolerable misclassification rate, p .

To maximize κ as a function of L , we take the derivative,
dLdκ , set it to 0, and solve for L to find the local

maximum.

)1(
ln)1ln(0

)1(
ln)1ln(0

)1(
ln)1ln(

)1ln(

1

1
1

1

1
1

2

1

1
1

2

1

L

L
L

L

L
L

L

L
L

L

pL
ppp

pL
pppL

M
pL

pppL
M

dL
d

pL
M

dL
d

dL
d

−−−=







−−−=







−−−−=




 −−=
κ

κ

So, now suppose a Lpu 1= , so upL ln/ln= . Then,

uu uu
uuuu

u
uuu

uup
puu

−−=
−−=

−−−=
−−−=

1)1(
)1ln()1(ln

)1(
ln)1ln(0

)1)(ln/(ln
ln)1ln(0

0 20 40 60 80 1000

20

40

60

80

100

120

140

Ma
xim

um
Nu

mb
er

of
Flo

ws
,k

(in
tho

us
an

ds
)

Number of Hash Levels, L

Bloom Filter, p=1e-9
Bloom Filter, p=1e-8
Bloom Filter, p=1e-7
Exact Cache, IPv4
Exact Cache IPv6

Figure 2: The maximum number of flows that can be stored by a
512KB cache

10-10 10-9 10-8 10-7 10-6 10-50

20

40

60

80

100

120

140

160

180

Misclassification Probability, p

Ma
xim

um
Nu

mb
er

of
Ele

me
nts

,k
(in

tho
us

an
ds

) 512 KB Cache
256 KB Cache
128 KB Cache
16 KB Cache

Figure 3: The trade-off between the misclassification
probability, p, and the maximum number of elements

(flows), k , using optimum values of L .

)1ln(
)1ln(

)ln(
)1ln(

1

1

1

1

L

L

N

L

pL
M

pN
e

p

−−=
−−=

−= −κ

Since []1,0∈p , then []1,0∈u , so u only has one solution,
=u ½, which means κ is maximized for

ppL 2log2ln/ln −=−=
This is an interesting result, because it implies that L is

invariant with respect to the size of the Bloom filter, M .
Another interesting implication of this equation is that the

Bloom filter is “optimally full” when half of all the buckets
are set (Lp 2

1=).
It should be noted that the accuracy of this approximation

(k≈κ) increases with M . In our testing, for cache sizes
greater than 1KB, this approximation yields no error. In all the
simulations presented in this paper, this approximation and the
optimal value of L are equal. Even if we choose a slightly
sub-optimal value of L , the difference in the maximum
number of flows the Bloom filter can store is negligible
(Figure 2). For comparison, we will reintroduce the concept of
an exact cache – the traditional cache that does not yield false
positives or negatives.

A less obvious implication of this approximation is the
relationship between the amount of memory, M, the number of
elements (flows), k, and the probability of a false positive, p .

Figure 3 graphs the relationship between p and k. We can
see that the relationship is roughly logarithmic. This
approximation serves as a good guide for ranges of two orders
of magnitude or less.

Since the optimal choice of L is asymptotically invariant
with respect to M , and κ is proportional to M , we can assert
that k is linearly related to M . A visual representation of this
relationship is depicted in Figure 4. Note that a Bloom filter
cache with a misclassification rate of one in a billion can store
more than twice as many flows as an exact IPv4 cache, and
almost 8 times as much as an exact IPv6 cache. (Each entry in
an exact IPv6 (37 bytes) cache consumes almost 3 times as
much memory as an IPv4 entry (13 bytes) [18].)

It is also important to note that, with our scheme, it is
possible to store mixed IPv4/IPv6 traffic without making any
major changes to our design.

To summarize:
• The optimal value of L , the number of levels, is invariant

with respect to the size of the Bloom filter, M .
• The number of elements, k , and the misclassification

probability, p , are roughly logarithmically related.
• k is linearly related to M .
• An optimally full Bloom filter has ½ of its bits set.

IV. MULTIPLE PREDICATES
Our first extension to the Bloom filter is to extend its

storage capability to support multiple binary predicates (as
opposed to the single binary predicate yes/no data storage of a
traditional Bloom filter). This extension is needed for more
sophisticated applications, such as routers, which need to
record forwarding interfaces.

We propose a modification to our existing algorithm that
allows us to store multiple binary predicates, while preserving
the desired original operating characteristics of the Bloom
filter cache.

Consider a router with I interfaces. The cache would be
required to store a routing interface number. To support this, a
data structure that can record I binary predicates is required.
To store this information, we will construct a cache composed
of I Bloom filters.

Suppose we are caching a flow, e , that should be routed to
the thi interface. We would simply insert e into the thi
Bloom filter in our cache. This encoding scheme is similar to
“1-hot” encoding.

To query the cache for the forwarding interface number of
flow e , we will simply need to query all I Bloom filters. If
e is a member of the thi Bloom filter, this implies that flow e
should be forwarded through the thi interface.

If e is not a member of any Bloom filter, e has not been
cached. In the unlikely event that more than one Bloom filter
claims e as a member, we have a confounding result. One
solution to this problem is to treat the cache lookup as a miss
by reclassifying e . This approach preserves correctness while
adding only minimal operating overhead.

The probability of misclassification, p , with this
algorithm is

()[]()ILkNp ′′′−−−−= 11111
Solving for k ′ , the maximum number of flows this

approach can store, we find
()[]()

()N
pk

LI

′−
−−−=′

′

11ln
111ln 1/1

0 2 4 6 8 10 12 14 160

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Amount of memory, M (in MegaBytes)

Ma
xim

um
Nu

mb
er

of
Ele

me
nts

,k
,(i

nt
ho

us
an

ds
) Bloom filter, p=1e-9

Bloom filter, p=1e-8
Bloom filter, p=1e-7
Bloom filter, p=1e-6
Exact Cache, IPv4
Exact Cache, IPv6

Figure 4: The relationship between the amount of memory,
M , and the maximum number of elements, k (Bloom

M Filters use an optimum value of L)

Using the same technique discussed earlier in Section 4.2,
we find that k ′ is maximized when

()()
)2ln(

11ln /1 IpL −−−=′
The proposed extension to the Bloom filter cache requires

increasing the number of memory accesses by a factor of I .
Additional memory accesses can incur a serious performance
penalty. Taking advantage of the memory bus width can easily
mitigate this disadvantage by the following technique:

Consider a Bloom filter in which each bucket can store a
pattern of I bits, where bit i represents interface i . When
adding a packet to the bloom filter, we would only update bit
i of each bucket.

When querying the modified Bloom filter for a flow, e ,
we will take the results from each level of the bloom filter,
and AND the results. An example is depicted in Figure 5.

Thus, a router, with I Bloom filters, each Bloom filter
having L hash levels, need only make L memory accesses to
insert or query the cache.

A. Non-Uniform Distributions
The equations presented earlier in Section 5 assume that

elements are evenly distributed over the multiple binary
predicates. If the elements are not evenly distributed, our

modified Bloom filter can become polluted in a short amount
of time.

For example, consider a router with 16 interfaces (binary
predicates), using 1KB of memory and a misclassification
probability, p , of 1e-9. If flows are distributed evenly over
the interfaces, this configuration can support 167 elements.
Conversely, if 90% of flows set the first predicate, it would
require only 13 elements to “fill” this Bloom filter.

To compensate for this deficiency, consider a new hashing
function,]10[: −→′ IeH K , and let IeHij mod))((′+= .
Instead of setting bit i in a Bloom filter, we will set bit j .
(See example in Figure 7.)

This approach ensures that set bits are uniformly
distributed throughout the cache, even when the elements are
not evenly distributed.
B. Multi-Predicate Comparison

It is important to examine how the multiple binary-
predicates Bloom cache compares to the single-predicate case
to understand how our extension affects the behaviour of our
Bloom filter cache.

As discussed previously, the single-bit Bloom filter cache
can store a maximum of)1ln(1 LpLM −−=κ . For an
optimized choice of 2ln/ln pL −= , κ becomes

)1ln()ln(
)2ln(ln/2ln

max
ppp

M −−=κ
The maximum number of flows the modified multi-bit

Bloom filter can store is
()[]

()ML
p

k
LI

′−



 −−−
=′

′

1ln
111ln 1/1

Applying the approximation NeN 111 −≈− we find
()[]()LIpL

M ′−−−′−=′ 1/1111lnκ
When L′ is optimized, κ ′ becomes

()() ()[]()vI
I pp

M /1
/1max 111ln11ln

)2ln(−−−−−=′κ
where

()()Ipv /111ln
)2ln(

−−
−=

Immediately, we can see that the two approaches are still
linearly related in M . (Note that I and p are constants.)

()eH1 ()eH2

Figure 5: An example: A modified Bloom filter with 5
buckets and 2 hash levels, supporting a router with 8
interfaces. Suppose we wish to cache a flow e that gets
routed to interface number 2.

00000010
00000000
00100000
00000000
01000000

00100000
00000000
01000000
00000000
00000010

0 2 4 6 8 10 12 14 160

500

1000

1500

2000

2500

3000

3500

Amount of Memory, M (in MegaBytes)

Ma
xim

um
Nu

mb
er

of
Flo

ws
,k

(in
tho

us
an

ds
) Bloom Filter Cache, 1 Interface

Bloom Filter Cache, 4 Interfaces
Bloom Filter Cache, 16 Interfaces
Bloom Filter Cache, 64 Interfaces
Exact Cache, IPv4
Exact Cache, IPv6

Figure 6: Effect of storing routing information on effective
cache size, 91 −= ep , using optimal Bloom filter dimensions

()eH1 ()eH2

Figure 7: As before, suppose flow e is to be forwarded
to interface 2. Now, let us suppose that 3)(=′ eH . So,

58mod)32(mod))((=+=′+= IeHij .

00000010
00000000
00000100
00000000
01000000

00000100
00000000
01000000
00000000
00000010

This is an important property, because it means that our
proposed algorithm preserves the behaviour of the single
binary predicate cache.

Figure 6 compares the difference in the maximum number
of flows that can be stored by a multi-bit Bloom filter cache.

To better determine the relative performance of the
multiple binary predicate and the single-binary-predicate
cache approaches, we take the difference in the maximum
number of flows that each design will accommodate.

The difference of the two approaches is,
() ()() ()



 −−−=′− ppM I ln

1
11ln
12ln /1

2
maxmax κκ

For p << 1, () Ipp I −≅− 11 /1 , giving

 If I is not very big, as is the case when considering the
number of interfaces of a router (for reference, a Juniper T640
routing node has 160 interfaces) then pln− >> Iln , we can
approximate by

2

22
maxmax)(ln

ln)2(ln
0ln

ln
ln

)2(ln
p

IM
p

I
p

M =



−≅′−κκ

This is an overestimate of the difference. So, we can say
that, at worst, this approach scales logarithmically with I (for
M and p constant).

It is surprising how effective this approach is (Figure 6).
The algorithm does not pollute the Bloom Filter (setting more
bits) than the single binary-predicate approach. However, it is
slightly more susceptible to pollution (each membership query
examines IL × bits, as opposed to the L bits of the single
binary predicate Bloom filter).

 ∏
=

=
L

i
iicationmisclassifP

1
ω

It should be noted that the multi-predicate solution is a
superset of the single-predicate solution – setting I to 1 yields
the equations presented in Section 4.1.

V. BLOOM FILTER AGING
Our second extension to the Bloom filter is adding the

ability to evict stale entries from the cache. Bloom filters were
originally designed to store set membership information of
unchanging, or expanding sets. We must adapt this algorithm
to allow graceful eviction of elements to use this data structure
effectively in a dynamic environment such as the Internet.

The first step towards developing an algorithm to age a
Bloom filter is to decide how much information has already
been stored in the cache. A simple method of deciding when
the cache is full is to choose a maximum tolerable
misclassification probability, p . Whenever the instantaneous
misclassification probability exceeds this constant,

)(pp ousinstantane > , we consider the Bloom filter to be “full.”
We can calculate ousinstantanep by using different means. Let

Lωωω ,,, 21 K be the fractions of buckets in each level of the
Bloom filter that are set. The probability of misclassification is
simply the product of iω ’s.

This method will accurately estimate the misclassification
probability. The drawback to this approach is that it will
require counting the exact number of bits we set, complicating
later parallel access implementations of this algorithm, as well
as adding several per-packet floating-point operations.

We can devise a simpler estimate of icationmisclassifP that does
not involve precise bit counting nor global synchronization, by
applying knowledge of the properties of the Bloom filter
discussed earlier. We need simply to count the number of
flows 'k that we insert into our Bloom filter. So our estimate
of the misclassification probability becomes

[]LK
icationmisclassif NP ′−−=)/11(1

Reversing this equation, and solving for maxk we get
() () NPk L

maxmax /11log/1log 1 −−=
This estimate also provides the benefit of simplicity of

calculation – floating-point arithmetic is no longer required
during runtime, only an integer comparison)(maxkk >′ .
Additionally, it becomes easier to gauge the behaviour of the
cache - 'k increases proportionally with the number of new
flows we observe.

Now, let us turn to the problem of applying this
information to age the Bloom filter cache.
A. Cold Cache

This naïve approach to the problem of Bloom filter aging
involves simply emptying the cache whenever the Bloom
filter becomes “full.”

The main advantage to this solution is that it makes full
use of all of the memory devoted to the cache, as well as

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500

Nu
mb

er
of

Flo
ws

Time (seconds)

OGI Trace
Bell Trace

Figure 8: Number of concurrent flows in test data sets





−≅′− Ip
I

p
M

lnln
ln

ln
)2(ln 2

maxmax κκ

offering a simple implementation while maintaining a fixed
worst-case misclassification probability.

The disadvantages, however, are quite drastic when
considering the context of a high-performance cache:

• While the cache is being emptied, it cannot be used.
• Immediately after the cache is emptied, all previously

cached flows must be re-classified, causing a load spike
in the classification engine.

• Zeroing out the cache may cause a high amount of
memory access.

This approach mainly serves as a reference point to
benchmark further algorithm refinement.

B. Double-Buffering
If we partition the memory devoted to the cache into two

Bloom filters, an active cache and a warm-up cache, we can
more gracefully age our cache. This approach is similar to the
one applied in Stochastic Fair Blue [13]. The basic algorithm
is as follows:

when a new packet arrives
if the flow id is in the active cache

if the active cache is more than ½ full
insert the flow id into the warm-up cache

allow packet to proceed
otherwise

perform a full classification
if the classifier allows the packet

insert the flow id into the active cache
if the active cache is more than ½ full

insert the flow id into the warm-up cache
allow packet to proceed

if the active cache is full
switch the active cache and warm-up cache

zero out the old active cache
The goal of this approach is to avoid the high number of

cache misses immediately following cache cleaning. By
switching to a background cache, we can start from a
“warmed-up” state. This approach can be thought of as an
extremely rough approximation of LRU.

However, this approach also has its drawbacks:
• Double the memory requirement to store the same

number of concurrent flows, as compared to the cold-
cache case.

• Zeroing out the expired cache still causes a load spike in
the use of the memory bus (although it is a smaller spike).
This can be partially mitigated by slowly zeroing out
memory.

• In the simplest implementation, this algorithm can
potentially double the number of memory accesses
required to store a new flow. This performance loss can
be recovered by memory aligning the two bloom filters,
so that fetching a word of memory will return the bit
states of both Bloom filters.

Now, let us turn to the problem of applying this
information to age the Bloom filter cache.

C. Evaluation
For evaluation purposes, we used two datasets, each of one

hour in length. The first of the datasets was collected by Bell
Labs research, Murray Hill, NJ, at the end of May 2002. This
dataset was made available through a joint project between
NLANR PMA and Internet Traffic Research Group [27]. The
trace was of a 9 Mb/s Internet link, serving a staff of 400
people.

The second trace was a non-anonymized trace collected at

20

40

60

80

100

120

140

1000 10000 100000

Hi
tra

te
(%

)

Amount of cache memory (in bytes)

Bell Trace, Perfect Cache
Bell Trace, Double-Buffered

Bell Trace, Cold Cache
Bell Trace, Pure LRU (IPv4)
Bell Trace, Pure LRU (IPv6)

20

40

60

80

100

120

140

1000 10000 100000

Hi
tra

te
(%

)

Amount of cache memory (in bytes)

OGI Trace, Perfect Cache
OGI Trace, Double-Buffered

OGI Trace, Cold Cache
OGI Trace, Pure LRU (IPv4)
OGI Trace, Pure LRU (IPv6)

Figure 9: Cache hit rates as a function of memory, M

our local university OC-3c link. Our link connects with
Internet2 in partnership with the Portland Research and
Education Network (PREN). This trace was collected on the
afternoon of July 26th, 2002.

Table 1 presents a summary of the statistics of these two
datasets. A graph of the number of concurrent flows is shown
in Figure 8.

For the purposes of our analysis, a bi-directional flow is
considered as 2 independent flows. A flow begins when the
first packet bearing a unique 5-tuple (source IP address,
destination IP address, protocol, source port, destination port)
arrives at our node. A flow ends when the last packet is
observed, or after a 60 second timeout. The timeout is chosen
in accordance with other measurement studies [15], and
observations in the field [21][23].

As a reference, we introduce the idea of a perfect cache – a

fully associative cache, with an infinite amount of memory.
This cache only takes compulsory cache misses (the
theoretical minimum). The fundamental performance statistics
are reported in Table 2.

For a comparison with exact caching schemes, we simulate
a fully associative cache using an LRU replacement policy.
The performance of this scheme is presented in Figure 9. LRU
was chosen because of its near-optimal caching performance
in networking contexts [21][34].

This simulation is intended to represent best-case exact
caching performance, even though it is infeasible to
implement a fully associative cache on this scale.

For our simulation, we use the SHA1 hash function [14]. It
should be noted that the cryptographic strength of the SHA1
hash does not increase the effectiveness of our
implementation. It is important to recognize that other, faster
hashing algorithms exist. Using a hardware-based hashing
implementation is also possible. In the IXP1200 [20], the
hardware hash unit can complete a hashing operation every
nine clock cycles.

For the purposes of this study, we use a misclassification
probability of one in a billion. Typically, TCP checksums will
fail for approximately 1 in 1100 to 1 in 32000 packets, even
when link-level CRCs should only admit error rates of 1 in 4
billion errors. On average, between 1 in 16 million to 1 in 10
billion TCP packets will contain an undetectable error [31].
We contend that an imprecision of this magnitude will not
meaningfully degrade network reliability.

To support an exact IPv4 cache, a 4-way set associative
IPv4 cache requires a 52-byte memory read on each cache
lookup. A 4-way associative IPv6 cache would require a 148-

Bell Trace OGI Trace
Trace Length (seconds) 3600 3600
Number of Packets 974613 15607297
UDP Packets 671471 10572965
TCP Packets 303142 5034332
Number of Flows 32507 160087
Number of TCP Flows 30337 82673
Number of UDP Flows 2170 77414
Avg. Flow Length (seconds) 3.2654 10.2072
Avg. TCP Flow Length
(seconds) 13.8395 11.2555
Avg. UDP Flow Length
(seconds) 155.0410 9.0877
Longest Flow (seconds) 3599.95 3600
Avg. Packets/Flow 29.9816 97.4926
Avg. Packets/TCP Flow 9.9925 60.8945
Avg. Packets/UDP Flow 309.434 136.577
Max # of Concurrent Flows 268 567

Table 1: Sample Trace Statistics

0

10

20

30

40

50

60

70

80

750 800 850 900 950 1000

Ca
ch

eM
iss

es

Time (seconds)

Cold cache Bloom filter aging intervals
Cold cache Bloom filter cache misses

0

10

20

30

40

50

60

70

80

750 800 850 900 950 1000

Ca
ch

eM
iss

es

Time (seconds)

Double-buffered Bloom filter aging intervals
Double-buffered Bloom filter cache misses

0

10

20

30

40

50

60

70

80

750 800 850 900 950 1000

Ca
ch

eM
iss

es

Time (seconds)

Perfect Cache

Figure 10: Comparing cold cache and double-buffered bloom caches using 4 KB of memory (Bell dataset)
(“Aging intervals” represents transition points in time only, and does not represent any “vertical magnitude”)

Table 2: The results of a perfect cache Sample trace statistics

 Bell Trace OGI Trace
Hit Rate 0.9714 0.9877
Maximum misses (over 100ms intervals) 6 189
Variance of misses (over 100 ms
intervals) 1.35403 17.4375
Average misses (over 100 ms intervals) 0.7749 5.8434

byte memory access. To support an approximate cache with an
error rate of 1 in a billion would require 30 1-bit memory
fetches.

D. Cold Cache Performance
With the Bell dataset, the cold cache performs reasonably,

using 4 KB of cache memory, and a misclassification
probability of 1e-9. The optimal dimensions for this Bloom
filter this size should have 30 hash functions, storing a
maximum of 611 flows.

Throughout the 1-hour trace, there were no
misclassifications and an overall cache hit-rate of 95.15%.
Aggregated over 100ms intervals, there were a maximum of 8
cache misses/100ms, with an average of 1.32 and a variance of
10.33.

Figure 10 illustrates the cache misses during a portion of
the trace. We can see that emptying the cache corresponds to
a spike in the amount of cache misses that is not present when
using a perfect cache. This spike is proportional to the number

of concurrent flows. This type of behaviour will apply undue
pressure to the classification engine, resulting in overall
performance degradation.

E. Double-Buffering Performance
Using a double-buffered approach can smooth the spikes

in cache misses associated with suddenly emptying the cache.
 Double-buffering effectively halves the amount of

immediately addressable memory, in exchange for a smoother
aging function. As a result, this bloom filter was only able to
store 305 flows for a 4096 byte cache, in comparison with the
611 flows of the cold-cache implementation.

This implementation had a slightly lower hit rate of
95.04% with the Bell dataset. However, we succeeded in
reducing the variance to 5.43 while maintaining an average
cache miss rate of 1.34/100ms. Viewing Figure 10, we can see
that the correspondence between cache aging states and miss
rates does not correspond to performance spikes as prevalently
as in the cold cache implementation.

0.1

1

10

100

1000

1000 10000 100000 1e+06

Av
era

ge
mi

ss
rat

e(
ag

gre
ga

te
ov

er
10

0m
si

nte
rva

ls)

Amount of cache memory (in bytes)

Bell Trace, Cold Cache
Bell Trace, Double-Buffered

Bell Trace, Perfect Cache

0.1

1

10

100

1000

1000 10000 100000 1e+06

Av
era

ge
mi

ss
rat

e(
ag

gre
ga

te
ov

er
10

0m
si

nte
rva

ls)

Amount of cache memory (in bytes)

OGI Trace, Cold Cache
OGI Trace, Double-Buffered

OGI Trace, Perfect Cache

Figure 11: Average cache misses as a function of memory, M (aggregate over 100ms timescales)

1

10

100

1000

10000

1000 10000 100000 1e+06

Va
ria

nc
eo

fm
iss

rat
e(

ag
gre

ga
te

ov
er

10
0m

si
nte

rva
ls)

Amount of cache memory (in bytes)

Bell Trace, Cold Cache
Bell Trace, Double-Buffered

Bell Trace, Perfect Cache

1

10

100

1000

10000

1000 10000 100000 1e+06

Va
ria

nc
eo

fm
iss

rat
e(

ag
gre

ga
te

ov
er

10
0m

si
nte

rva
ls)

Amount of cache memory (in bytes)

OGI Trace, Cold Cache
OGI Trace, Double-Buffered

OGI Trace, Perfect Cache

Figure 12: Variance of cache misses as a function of memory, M (aggregate over 100ms timescales)

This implies that the double-buffered approach is an
effective approach to smoothing out the performance spikes
present in the cold cache algorithm. To better quantify the
“smoothness” of the cache miss rate, we graph the variance,
and average miss rates (Figure 11 and Figure 12).

From Figure 9 and Figure 11, we observe that for a
memory-starved system, the cold-cache approach is more
effective with respect to cache hit-rates. It is surprising how
effective this naïve caching strategy is, with respect to overall
cache performance. Moreover, we note that it performs better
than both an IPv6, and IPv4 exact cache, with both datasets
for a memory poor cache, and keeps pace as memory
improves. As the amount of memory increases, we can see
that the double-buffered approach is slightly more effective in
reducing the number of cache misses.

Looking to Figure 12, we observe that the variance in miss
rates decreases much faster in the double-buffered case than in
the cold-cache approach. It is interesting to note that in the
OGI trace, the variance actually increases, before it decreases.
Interpreting Figure 11 and Figure 12, we can see that for a
very memory-starved system, the variance is low because the
cache miss rate is uniformly terrible.

Comparing the double-buffered approximate cache
implementation to exact caching gives comparable
performance when considering an IPv4 exact cache, even
though the approximate approach can cache many more flows.
This is due to the imprecision of the aging algorithm – an
LRU replacement policy can evict individual flows for
replacement, whereas a double-buffered approach must evict
½ of cached flows at a time. However, when considering IPv6
data structures, this disadvantage is overshadowed by the pure
amount of storage capacity a Bloom filter can draw upon.

It is important to note that in all of these graphs, the
behaviour of each of the systems approaches optimum as
memory increases. This implies that our algorithm is correct
and does not suffer fundamental design issues.

VI. HARDWARE OVERHEAD
A preliminary implementation on Intel’s IXP1200

Network Processor [20] was constructed, to estimate the
amount of processing overhead a Bloom filter would add.

The hardware tested was an IXP1200 board, with a 200
MHz StrongARM, 6 packet-processing microengines and 16
ethernet ports.

A simple micro-engine level layer-3 forwarder was
implemented as a baseline measurement. A Bloom filter cache
implementation was then grafted onto the layer-3 forwarder
code base. A null-classifier was used, so that we could isolate
the overhead associated with the Bloom filter lookup function.
No cache aging strategy was used. The cache was placed into
SRAM, because scratchpad memory does not have a pipelined
memory access queue, and the SDRAM interface does not
support atomic bit-set operations.

A. IXP Overhead
The performance of our implementation was evaluated on

a simulated IXP1200 system, with 16 virtual ports. The

implementation’s input buffers were kept constantly filled,
and we monitored the average throughput of the system.

The Bloom filter cache implementation was constructed in
a way to ensure that no flow identifier was successfully
matched, and each packet required an insertion of its flow ID
into the Bloom filter. This was done so that the worst possible
performance of a Bloom filter cache could be ascertained. The
code was structured in a way to disallow any shortcutting or
early negative membership confirmation. The performance
results of the IXP implementation are presented in Table 3.

The IXP is far from an ideal architecture to implement a
Bloom filter, in large part due to its lack of small, high-speed
bit-addressable on-chip memory. Since there is no memory
cache, data must be retained in on-chip registers during
processing. The small number of available registers limits the
performance of more complex tasks, which can be seen by the
sharp drop-off in performance of a 5-level Bloom filter.
Ideally, a Bloom filter would be implemented in hardware that
supports parallel access on bit-addressable memory [28]. A
simple cheap custom ASIC can be constructed to implement a
Bloom filter, effectively.

This implementation uses the hardware hash unit. In this
case, one hash is as difficult to calculate as four, because we
simply use different portions of the generated hash to
implement multiple hash functions.

Next generation IXP2000 hardware will feature 2560 bytes
of on-chip memory per micro-engine, with up to 16 micro-
engines per board. The memory access time will be 3 cycles, a
vast improvement over the 16-20 cycles latencies of IXP1200
SRAM. A 2560 byte Bloom filter can store 467 elements. The
next-generation micro-engines have a concept of
“neighbouring” so that micro-engines can easily and quickly
pass packet-processing execution to the next micro-engine “in
line”. This could allow for a high-speed implementation of a
Bloom filter where each micro-engine performs one or two
memory look-ups so that the costs of a Bloom filter could be
distributed across all the micro-engines.

VII. DEALING WITH MISCLASSIFICATION
The immediate question that arises when we introduce the

possibility of a misclassification is to account for the result of
the misclassifications. Let us first consider the case for a
firewall.

Table 3: Performance of Bloom Filter cache in worst
case possible configuration

Number of
Hash Levels

All-Miss Cache
Throughput

0 990 Mb/s
1 868 Mb/s
2 729 Mb/s
3 679 Mb/s
4 652 Mb/s
5 498 Mb/s

If qFFF ,,, 21 K unique flows)(Lq ≤ were to set bits in
the Bloom filter that matched the signature to a new flow, F ′ ,
we will accept F ′ as a previously validated flow.

In the case that F ′ is a valid flow, no harm is done, even
though F ′ would never have been analyzed by the packet
classifier. If F ′ is a flow that would have been rejected by the
classification engine then there may be more serious
repercussions - the cache would have instructed the firewall to
admit a bad flow into the network.

This case can be rectified for TCP based flows by forcing
all TCP SYN packets through the classification engine.

Another solution would be to periodically reclassify
packets that have previously been marked as cached. If a
misclassification is detected, all bits corresponding to the
signature of the flow id could be zeroed. This approach has the
drawback of initially admitting bad packets into the network,
as well as causing flows which share similar flow signatures to
be reclassified.

If an attacker wanted to craft an attack on the firewall to
allow a malicious flow, F ′′ , into the network, they could
theoretically construct flows, LFFF ,,, 21 K , that would match
the flow signature of F ′′ . If the firewall’s internal hash
functions were well known, this could effectively open a hole
in the firewall.

To prevent this possibility, constants internal hash
functions should not only be openly advertised, just as it is
inadvisable to publish private keys. An additional measure
would be to randomly choose the hash functions that the
firewall uses. New hash functions can easily be changed as the
Bloom filter ages.

In the case of a router, a misclassified flow could mean
that a flow is potentially misrouted, resulting in an artificially
terminated connection. In a practical sense, the problem can
be corrected by an application or user controlled retry. In the
case of UDP and TCP, a new ephemeral port would be
chosen, and network connectivity can continue.

If we randomly force cached flows to be re-classified, we
can reduce this “fatal” error to a transient one. TCP retransmit,
and application-level UDP error handlers may make this
failure transparent to the user.

The severity of these errors must be taken in into the
context of the current Internet and TCP. To prevent IP
spoofing attacks, TCP uses a 16-bit randomized initial
sequence number. An attacker can already guess an initial
sequence number of a TCP stream with a success rate of 1 in
216.

UDP packets are not even required to maintain a data
checksum. In the Linux implementation of the network stack,
even corrupt UDP packets are passed to the application.

VIII. FUTURE WORK
The aging functions discussed in this paper are inefficient,

in the sense that it under-utilizes the Bloom filter’s memory
address. In the case of the cold cache algorithm, the Bloom
filter is emptied. The Bloom filter is in a constant state of
being under-utilized. Using the double-buffered algorithm

introduces redundancy through the duplication of data. As in
the cold cache algorithm, the Bloom filters are also under-
utilized. It is possible that an algorithm based on randomly
zeroing bits may prove to be an effective aging function – in
this manner, we may be able to take advantage of the
knowledge that a Bloom filter at optimum performance has ½
of its bits set.

Many of the implementation details of our architecture
share common characteristics with IP traceback. Designing a
system to support traceback in addition to caching could prove
successful.

Using an approximate caching system presents us with a
unique opportunity to dynamically balance the trade-off
between accuracy and performance.

In more traditional caches, during times of high load,
cache performance decreases due to increasing cache misses.
Intuitively, this behaviour may be sub-optimal. Ideally,
performance should increase with workload. Our usage of a
Bloom filter presents us with the opportunity to increase the
effective size of the cache without consuming more memory
by simply increasing the misclassification probability. This
allows us the opportunity to increase cache performance in
response to high amounts of traffic. Although more packets
are misclassified, even more packets would be correctly
forwarded. This may be better than the alternative – dropping
more packets in response to increasing work.

The goal of the feedback system should be to balance the
misclassification probability, p , with an acceptable cache
performance/hit rate, h . To quantify this balance, we
construct a “desirability” function,]1,0[),(: →hpf , where

1)0,1(=f and 1)1,0(=f . The shape of function f must be
chosen by the network administrator, to reflect the operator’s
preference in balancing hit rate and misclassification rate. The
function f should be a monotonically increasing function for a
constant p , and monotonically decreasing for a constant h .

Thus, we can view the choice of p as the result of a
feedback system. A feedback controller would monitor the
performance of the cache, and tune p , with the explicit goal
of maximizing f .

IX. CONCLUSION
Typical packet classification caches trade-off size and

performance. In this paper, we have explored the benefits that
introducing inaccuracy has on packet classification caches.
Using a modified Bloom filter, we have shown that allowing a
small amount of misclassification can decrease the size of
packet classification cache by almost an order of magnitude
over exact caches without reducing hit rates. With the
deployment of IPv6 and the storage required to support
caching of its headers, such a trade-off will become
increasingly important.

ACKNOWLEDGMENTS
We would like to thank Brian Huffman and Ashvin Goel

for helping us out with the analysis, and Damien Berger for
helpful suggestions in programming the IXP. We would also
like to thank Buck Krasic for his guidance, Jim Snow for his

insight and Mike Shea, Jie Huang, Brian Code, Andrew Black,
Dave Meier, Sun Murthy, and William Howe for their
comments.

REFERENCES
[1] Bloom, B. H. Space/time tradeoffs in hash coding with allowable errors.

Communications of ACM 13, 7 (July 1970), 422-426
[2] Baboescu, F. and Varghese, G., Scalable Packet Classification. In

Proceedings of ACM SIGCOMM 2001, pages 199-210, August 2001.
[3] Broder, A., and Mitzenmacher, M. Network applications of Bloom

filters: a survey. 40th Annual Allerton Conference on Communication,
Control, and Computing, Allerton, IL, October, 2002

[4] Byers, J., Considine, J., Mitzenmacher, M., and Rost, S. Informed
Content Delivery Across Adaptive Overly Networks. In Proceedings of
ACM SIGCOMM 2002, pages 47-60, August 2002.

[5] Carter, L., and Wegman, M. Universal classes of hash functions. Journal
of Computer and System Sciences (1979), 143-154.

[6] Chiueh, T. and Pradhan, P. High Performance IP Routing Table Lookup
using CPU Caching In Proc. of IEEE INFOCOMM'99, New York, NY,
March 1999

[7] Chiueh, T. and Pradhan, P. Cache Memory Design for Network
Processors, Sixth International Symposium on High-Performance
Computer Architecture (HPCA 2000)

[8] claffy, k. Internet Traffic Characterization, Ph.D. thesis, University of
California, San Diego, 1994

[9] Czerwinski, S., Zhao, B. Y., Hodes, T., Joseph, A. D., and Katz, R. An
architecture for a secure service discovery service. In Proceedings of
MobiCom-99, pages 24-35, N.Y., August 1999

[10] Estan, C. and Varghese, G. New directions in traffic measurement and
accounting. In Proceedings of the ACM SIGCOMM 2002, pages 323-
336, October 2002.

[11] Fan, L., Cao, P., Almeida, J., and Broder, A. Z. Summary cache: a
scalable wide-area web cache sharing protocol. ACM Trans. on
Networking 8, 3 (2000), 281-293.

[12] Feldmann, A., and S. Muthukrishnan, Tradeoffs for Packet
Classification, IEEE INFOCOM, 2000

[13] Feng, W., Kandlur, D., Saha D., Shin, K., Blue: A new class of active
queue management algorithms, U. Michigan CSE-TR-387-99, April
1999

[14] FIPS 180-1. Secure Hash Standard. U.S. Department of
Commerce/N.I.S.T., National Technical Information Service,
Springfield, VA, April 1995

[15] Fraleigh, C., Moon, S., Diot, C., Lyles, B., and Tobagi, F. Packet-Level
Traffic Measurements from a Tier-1 IP Backbone. Sprint ATL
Technical Report TR01-ATL-110101, November 2001, Burlingame, CA

[16] Gopalan, K. and Chiueh, T. Improving Route Lookup Performance
Using Network Processor Cache. In Proceedings of the IEEE/ACM
SC2002 Conference

[17] Gupta, P., and McKeown, N. Algorithms for packet classification, IEEE
Network Special Issue, March/April 2001, vol. 15, no. 2, pp 24-32

[18] Huitima, C. IPv6: The New Internet Protocol (2nd Edition). Prentice
Hall, 1998.

[19] Iannaccone, G., Diot, C., Graham, I., and N. McKeown. Monitoring
Very High Speed Links. In Proceedings of ACM SIGCOMM Internet
Measurement Workshop, San Francisco, CA, November 2001

[20] Intel IXP1200 Network Processor,
http://www.intel.com/design/network/products/npfamily/ixp1200.htm

[21] Jain, R., Characteristics of destination address locality in computer
networks: a comparison of caching schemes, Computer Networks and
ISDN Systems, 18(4), pp. 243-254, May 1990

[22] Lakshman, T. V., and Stiliadis, D., High-speed policy-based packet
forwarding using efficient multi-dimensional range matching, In
Proceedings of the ACM SIGCOMM 1998, pages 203-214, August,
1998

[23] McCreary, S., and claffy, k. Trends in wide area IP traffic patterns a
view from Ames Internet exchange. In ITC Specialist Seminar,
Monterey, California, May 2000

[24] Mitzenmacher, M. Compressed bloom filters. In Proceedings of the 20th
Annual ACM Symposium on Principles of Distributed Computing
(2001), pp. 144-150.

[25] Partridge, C., Carvey, P., et al. A 50 GB/s IP Router. IEEE/ACM
Transactions on Networking

[26] Partridge, C. Locality and route caches. NSF Workshop on Internet
Statistics Measurement and Analysis
(http://www.caida.org/outreach/isma/9602/positions/partridge.html),
1996.

[27] Passive Measurement and Analysis Project, National Laboratory for
Applied Network Research (NLANR), available at
http://pma.nlanr.net/Traces/Traces/

[28] Sanchez, L., W. Milliken, A., Snoeren, F. Tchakountio, C. Jones, S.
Kent, C. Partridge, and W. Strayer. Hardware support for a hash-based
IP traceback. In Proceedings of the 2nd DARPA Information
Survivability Conference and Exposition, June 2001.

[29] Snoeren, A. C., Partridge, C., Sanchez, L. A., Jones, C. E., Tchakountio
F., Kent, S.T., and W. T. Strayer. Hash-based IP traceback. In
Proceedings of the ACM SIGCOMM 2001 Conference, volume 31:4 of
Computer Communication review, pages 3-14, August 2001

[30] Srinivasan, V., Varghese, G., Suri, S. and Waldvogel, M. “Fast and
Scalable Layer Four Switching” Proceedings of ACM SIGCOMM 1998,
pages 191-202, September, 1998

[31] Stone, J., Partridge, C. When the CRC and TCP checksum disagree, In
Proceedings of the ACM SIGCOMM 2000 Conference (SIGCOMM-
00), pages 309-319, August 2000

[32] Squid Web Proxy Cache, http://www.squid-cache.org
[33] Qiu, L., Varghese, G., Suri, S. Fast firewall implementations for

software and hardware-based routers. In Proceedings of ACM
SIGMETRICS 2001, Cambridge, Mass, USA, June 2001.

[34] Xu, J., Singhal, M., and Degroat, J. A novel cache architecture to
support layer-four packet classification at memory access speeds, In
Proceeding of INFOCOM 2000, pp. 1445-1454, March 2000.

	I. Introduction
	II. Related Work
	III. Theory
	A. The Bloom Filter
	B. Properties of the Bloom Filter
	C. Dimensioning a Bloom Filter

	IV. Multiple Predicates
	A. Non-Uniform Distributions
	B. Multi-Predicate Comparison

	V. BLOOM FILTER AGING
	A. Cold Cache
	B. Double-Buffering
	C. Evaluation
	D. Cold Cache Performance
	E. Double-Buffering Performance

	VI. Hardware Overhead
	A. IXP Overhead

	VII. Dealing with Misclassification
	VIII. Future Work
	IX. Conclusion
	Acknowledgments
	References

