A Scaffolded, Metamorphic CTF for Reverse Engineering

Wu-chang Feng
Portland State University
Department of Computer Science

Abstract

Hands-on Capture-the-Flag (CTF) challenges tap into
and cultivate the intrinsic motivation within people to
solve puzzles, much in the same way Sudoku and cross-
word puzzles do. While the format has been successful in
security competitions, there have been a limited number
of attempts to integrate them into a classroom environ-
ment. This paper describes MetaCTF, a metamorphic set
of CTF challenges for teaching reverse code engineering.
MetaCTF is 1) scaffolded in a way that allows students to
make incremental progress, 2) integrated with the course
material so that students can immediately apply knowl-
edge gained in class, 3) polymorphic and metamorphic
so that individual students within a class and between
multiple offerings of a class are given unique challenges,
and 4) extensible in order to allow students to design their
own CTF challenges that can be later integrated into fu-
ture offerings of the course.

1 Introduction

Because the goal of CTF competitions is to evaluate
competency of practitioners rather than teach them new
skills, such events often use highly challenging problems
that are intended to measure skills practitioners have al-
ready acquired and mastered. As a result, the challenges
used are often open-ended and unguided, which can lead
to frustration for beginners rather than the steady learn-
ing, skill development, and confidence building that one
would like to cultivate in courses [1, 2]. Further, in order
to determine a “winner”, many challenges used in com-
petitive CTF events are only meant to be finished by a
select few and can thus lead to designs that are intention-
ally esoteric with limited pedagogy. Such designs force
individuals on teams to specialize on specific tasks rather

than apply themselves to all tasks.

There have been promising initial efforts for adapt-
ing CTFs in a way that is suitable for teaching curric-
ula [3]. Such efforts focus on skill development rather
than skill evaluation. In addition, several CTFs are now
targeting beginners [4, 5, 6, 7] and many on-line CTF
sites have developed scaffolded challenges that help in-
crementally bring users to a level of competency one step
at a time [8, 9, 10]. Inspired by these efforts, MetaCTF
targets the construction of CTF exercises for use in teach-
ing courses. MetaCTF challenges are tied to specific
course objectives and are scaffolded in a way to allow
all students to quickly progress along a path towards
mastery. This paper describes our initial CTF for teach-
ing reverse-engineering and malware analysis [11]. The
course is based on the book “Practical Malware Analy-
sis” by Sikorski and Honig [12].

2 General Approach

While a more open-ended format is typical in CTF de-
sign, such a format has been shown to lead to poorer
outcomes when applied to teaching new skills to be-
ginners [13]. As a result, MetaCTF adopts a direct in-
struction approach in its challenges [14] with the under-
standing that the skills acquired through these challenges
would then allow students to quickly transition towards
formats more compatible to discovery learning [15]. To-
wards this end, MetaCTF intentionally uses the same
general design across all levels to maximize the student’s
focus on specific technical topics. It also provides in-
structional material to point students in the right direc-
tion, often referring to content that has been supplied
previously in the textbook. While each level increases in
sophistication as students progress, the intent is for each

level to be solvable in under an hour once students have
been given the lecture associated with the level. This re-
sults in level designs that focus narrowly on the chapter
topics.

The CTF levels themselves all mirror Lab 15-1 in
the textbook [12] and also borrow concepts found in
Ptacek et. al’s microCorruption CTF in which a sin-
gle unlock_door function, or code that is its equiva-
lent, is repeatedly targeted for execution [10, 16] Each
level prompts the user for a password that unlocks the
binary and causes it to print the string “Good Job.”. The
CTF begins with levels that can be solved easily via sim-
ple static and dynamic analysis, but quickly progresses
until the final levels in which students must bypass ad-
vanced anti-debugging and packing methods to solve the
challenges. Because the examples, labs, and software
tools that the textbook uses are all Windows-based, the
MetaCTF challenges are all Linux binaries in order to
force students to apply the same concepts and method-
ology using an alternate environment and set of tools.
Finally, because challenges can be solved in many differ-
ent ways, several challenges employ more sophisticated
techniques that have not yet been introduced to students
in order to encourage students to solve them in the in-
tended manner.

3 Level Designs

MetaCTF aims to scaffold challenges in a way that those
who undertake it can quickly progress towards compe-
tency in reverse-engineering. Maximizing the number of
people who can complete all challenges while minimiz-
ing the amount of time they need to get there, requires
carefully designed challenges that are focused in a way
that incrementally builds skill and confidence in those
solving them. Consider the two most difficult reverse-
engineering challenges from the initial version of pic-
oCTF [6]: Mildly Evil and moreevil. Both bi-
naries use advanced techniques in anti-disassembly and
anti-debugging that are not commonly known, resulting
in a tiny fraction of teams attempting them, and out of
those, an even tinier fraction of teams solving them. In
the context of a competition, such binaries are ideal since
they provide clear separation between the top percentile
of teams and the rest of teams. The goal of MetaCTF,
however, is the opposite. Its challenges are intended to
maximize the number of students who can reach the level
required to solve these difficult challenges.

80484bd: movb $0x1,0x804alld

804851e: movb $0x31,0xl4(%esp)
8048523: movb $0xde,0x15(%esp)
8048528: movb $0x54,0xl6(%esp)
804852d: movb $0x49,0x17(%esp)
8048532: movb $0x77,0xl8(%esp)
8048537: movb $0xde,0x19(%esp)
804853c: movb $0x6a,0xla(%esp)
8048541: movb $0x42,0xlb(%esp)

Figure 1: Password embedded in assembly

3.1 Basic static and dynamic analysis

The challenges begin with basic static analysis in which
students apply binary analysis tools to find the appro-
priate section that contains the password. While the
lab assignments in the textbook walk students through
the use of Windows tools such as PEView, the chal-
lenges compel students to apply Linux equivalents such
as readelf and objdump to discover the password
that is embedded in the clear within a binary’s read-only
data section. It is easy to circumvent static analysis tech-
niques by dynamically generating the password. While
in the textbook’s lab assignments, students apply tools
such as Process Explorer, Process Monitor,
and regshot, the challenges instead have students fa-
miliarize themselves with basic dynamic tracing tools on
Linux such as 1trace and strace. Through the use
of simple dynamic tracing, the library calls that the pro-
gram uses are captured. The password is then observed
as it is being checked via a library call to st rcmp.

3.2 Disassembling and debugging

Most reverse-engineering challenges require the use of
a disassembler and a debugger. In the lab assignments,
students use standard tools such as 011yDbg and IDA
Pro to analyze malicious assembly code. To comple-
ment this, the next set of challenges force students to use
ob jdump and gdb to accomplish the same on Linux. In
one challenge, the password is hard-coded within the in-
structions themselves. As Figure 1 shows, solving this
challenge requires students to look for the embedded
ASCII characters within instructions in the binary’s text
section. In another challenge, the password is generated
at run-time before a call to st rcmp. To prevent library
tracing attacks, the challenge is statically compiled. In
order to solve this challenge, students are required to ap-
ply their knowledge of gdb and stack frames. They must
first identify where the call to st rcmp is located, set a
breakpoint where the compare occurs, and then identify

0x8048ee8 <main+l68>
0x8048eec <maint+l72>

lea 0x24(%esp), teax
mov %eax, (%esp)

0x8048eef <maint+l75> call 0xB061£d0 <strncmp>
0x8048efd <maintl180> test %eax, teax
(gdb) break strncmp
Breakpoint 3 at 0x8061£d0
(gdb) e
Continuing.
Breakpoint 3, 0x08061£d0 in strncmp ()
(gdb) x/4xw $esp
Oxffffd37ec: 0x08048ef4 Oxffffd3ad Oxff££fd3b8 0x00000008
(gdb) x/s $0xffffd3b8
O0xffffd3b8: "TNIWNjBi"
Figure 2: Password captured within debugger
| IDA View-A | IDA View-C | E Strings window [E] | IDA View-B | @ Hex View-1 | @ Structures
Address Length Type String

rodata:080489.

‘s] .rodata:080489... 00000005
[57] rodata:080489... 00000009
[57] rodata:080489... 00000004
[5] rodata:080489... 0000000B
EI .eh_frame:080.., 00000005
[] .data:08044060 00000041

%155

g4 MWQIMD
Good Job.
Try Again.
28"

aNaNaNaNalal

Enter the password:

ABCDEFGHUKLMMNOPQRETUVWXYZabcdefghijklmnopgrstuvwegz0123456789+ /

Figure 3: Base64 challenge

the arguments to the call at that time. Figure 2 shows
how a student would use the debugger to stop the pro-
gram within the statically linked strcmp call in order
to reveal the password passed as one of the function pa-
rameters.

3.3 Data encoding

Malware often encodes its payloads in order to thwart
signature-detection schemes.
lenges, students are forced to identify encoding algo-
rithms used in assembly so that they can then reverse
them. Figure 3 shows one of the challenges adapted
from the textbook in which students must identify that
a Base64 encoding format is being used to generate the
password. Programs that use Base64 often store an ar-
ray consisting of all of the characters in the encoding so
that conversion to and from the format can be done via
an indexing operation on the array. When the challenge
is brought up in a disassembler, students can examine
the strings embedded in the binary and find the Base64
character array. They can then reverse the encoding to
recover the actual password. Figure 4 shows a similar
example in which the password is XOR encoded using
a constant byte. In this challenge, students are required
to examine the assembly code of the binary to see in-
dividual characters of the password string being XOR’d
in a tight loop. They are then able to reverse the oper-

In the next set of chal-

mou dword ptr [esp], offset ¢ ; "ZTHOTUHG™
call _strlen
mou [esp+iCh], eax
mov dword ptr [esp+18h], B
jmp short loc_884856D
loc_884854D:
mou eax, [esp+i18h]
add eax,
mouzx eax, byte ptr [eax]
®or eax, 36h
nov edx, [esp+i18h]
add edx,
mnov [edx], al
add dword ptr [esp+18h], 1

Figure 4: XOR challenge

ation manually or set appropriate breakpoints within the
debugger to obtain the password.

3.4 Malware behavior

Once the preliminaries are out of the way, students can
now focus on how malware interacts with the underlying
system it is attempting to compromise. In the lab assign-
ments, students explore how malware hijacks normal ex-
ecution on a Windows machine by tampering with the
registry, binaries, library paths, and running processes.
The challenges attempt to mirror this by forcing students
to hijack execution of the binary in order to solve the
challenges. Figure 5 shows a challenge in which the
password is generated dynamically via an iterative math-
ematical operation that is intended to be somewhat dif-

mask output[cnt] = enc_table[(mod+rand())%64];

Erintft"%d %d %d\n",rand() ,rand() ,rand());
printf("Hint: %$s\n",mask_output);

mashimaro <~> %lexport LD_PRELOAD=rand.so]
mashimaro <~> % ./ChiiMalBeh LdPreload

Enter the password: foo

000

Hint:[i2abIund8 |

Try aéa;n.

mashimaro <~> % export LD PRELOAD=
mashimaro <~> % ./ChllMalEeh_dereload

Enter the password: iZabIund8
1350490027 1025202362 1189641421
Hint: J8DOZtxkl

Good Job.

mashimaro <~> %

Figure 5: Library hijacking challenge

void print goed () {
printf ("Good Job.\n");
exit(0);

}

main() {

*ip = i;

printf ("Address %x will contain %x\n",ip,i);
sleep(l);

printf ("Try again.\n");

(gdb) disassemble 0x80483f0
Dump of assembler code for function sleep@plt:

YT Y YR |
0x080483f0 <+0>: jmp [*Ox4e5430141
0x080483£f6 <+6>: push 50x10
0x080483fb <+11>: jmp 0x80483c0

End of assembler dump.
(gdb) p (void *) &print_good
$1 = (void *) [0x4e54686d <print_ good>

Enter the password: 4e548014 04e54686d
Address 4e548014 will contain 4e54686d
Good Job.

mashimare <~> %

Figure 6: Procedure Link Table hijacking

ficult to reverse. Note that the goal is to make it more
difficult to reverse the computation than to hijack execu-
tion. While the password is being computed, a hint is
generated in which the password is modified using calls
to libc’s rand () function. The goal is to create a rogue
library that hijacks the call to rand () so that it always
returns 0. In this case, the hint ends up being the pass-
word. Another method for hijacking execution shown in
the lab assignments is to attack the import address ta-
ble (IAT) of a Windows binary. This table supports the
level of indirection required to implement dynamically
linked libraries whose load addresses are not known until

run-time. Adapted from the Vortex OverTheWire chal-
lenges [9], Figure 6 shows a challenge in which students
learn how memory corruption errors can be used to hi-
jack execution via the targeted overwriting of the Linux-
equivalent to the IAT: the procedure link table (PLT). In
this challenge, students are given a single memory write
to an arbitrary address that will cause the binary to un-
lock itself. Using objdump and gdb, students must
identify which function call to hijack, where that func-
tion call’s PLT entry is, and the address of the function
they wish to call instead.

3.5 Anti-disassembly

At this point in the course, students are assumed to be
proficient in binary analysis and reversing using basic
static and dynamic analysis. As malware has evolved,
counter-measures against such analysis are often de-
ployed. Subsequent levels of the CTF allow students
to incrementally learn how to bypass each one. One
counter-measure that is employed is to confuse static
analysis of malware’s assembly code via garbage instruc-
tions [17]. Figure 7(a) shows an example of a fake con-
ditional jump that confuses binary disassemblers. In this
case, the program compares a register to itself and “con-
ditionally” branches if they are equal. The branch is fol-
lowed by a random byte which causes sequential disas-
semblers to produce unregonizable output. For this chal-
lenge, we disable the use of debuggers using a ptrace
check on program startup to force students to bypass
the problematic conditional jump in order to solve the
level. This design highlights the scaffolding in the chal-
lenges where a technique from a subsequent chapter (i.e.
anti-debugging) is used to ensure that students solve a
challenge in a particular way (i.e. via the use of a dis-
assembler). In this particular challenge, students must
identify the location of the problematic conditional jump
and force the disassembler to reinterpret the opcodes to
reflect the actual execution path of the program. Fig-
ure 7(b) shows the same code after students bypass the
anti-disassembly technique. Additional anti-disassembly
challenges for this chapter force students to identify and
bypass fake call instructions, inward jumping instruc-
tions, obfuscated jump instructions, and impossible dis-
assembly techniques.

3.6 Anti-debugging

To prevent analysis, modern malware employs a vari-
ety of methods to thwart debuggers. In the lab as-

main:
push ebp

nov ebp, esp

and esp, BFFFFFFFBh

sub esp, 206h

push eax

cmp eax, eax

jz short near ptr loc_884857B+1
loc_804857B: ; CODE XREF: _text:680485790Tj

addps xnmB, xnm?

inc esp

and al, ich

shh eax, BC7BABO88h

add al, 24h

now al, 8éh

add al, 8

(a) Fake conditional guarding password code

main:
push ebp
mov ebp, es
and esp, BFFFFFFFBh
sub esp, 26h
push eax
cmp eax, eax
db 74h ; LU
add [edi], ecx
pop eax
now dword pte [esp+iCh], 881Dh
moy duord ptr [esp], offset aEnterThePasswo ; “"Enter th
call _printf
lea eax, [esp+18h]
mov [esp+4], eax

(b) Fake conditional bypassed

Figure 7: Anti-disassembly CTF challenge

signments, students learn how to bypass such methods
within O11yDbg by identifying where anti-debugging
code is being executed and ensuring that the artifacts be-
ing checked do not expose the presence of the debugger.
In the CTF challenges for anti-debugging, the binaries
either exit in the presence of a debugger or entangle their
password in a way that produces an incorrect result when
run via a debugger. Figure 8 shows two anti-debuggin
methods that students need to identify and bypass in or-
der to obtain the correct password. The first detects that
a debugger has hijacked the SIGTRAP signal by putting
the password code in the SIGTRAP handler. The exer-
cise forces students to understand exception handling in
the debugger. The second technique scans the program’s
code pages looking for places where the debugger has
inserted a software interrupt instruction to handle regu-
lar breakpoints (0xcc) and changes the password if it de-
tects interrupt insertions. To bypass this technique, the
student would either need to use hardware breakpoints
or reverse-engineer the scanning code in order to bypass
it. Additional anti-debugging levels include the use of
ptrace and gdb artifacts within the process, checking
for the presence of a debugger-installed SIGTRAP han-
dler, and checking for timing anomalies indicating de-
bugger operation.

3.7 Packers and unpacking

Modern packers such as Themida [18] compress, en-
crypt, and obfuscate payloads to make analysis ex-
tremely difficult. While sophisticated packers might only
decrypt one instruction at a time, others will unpack the
entire payload into memory before transferring control
over to the unpacked code. In the lab assignments, stu-
dents are introduced to the function of simple packers
and the unpacking operation. By tracing through the ex-
ecution of a binary as it unpacks itself, they learn to iden-

tify where control is transferred from the unpacking code
over to the original code. Similar to some of the labs in
the textbook, in the CTF challenges for packers, students
are tasked with unpacking a polymorphic version of an
earlier binary that that has been packed by UPX [19].
In the first challenge they can simply unpack the binary
using UPX. In a subsequent level, the packed binary is
modified in a way that UPX is unable to unpack it, thus
forcing a manual unpacking. In this challenge, students
must use their knowledge of how unpackers work and
employ dynamic run-time tracing to attach to the running
code after it has been unpacked. They can then identify
where the password is being checked and obtain its value.

4 Level Morphing

The scaffolding of challenges to match course objectives
allows students to incrementally build competence and
confidence as they learn the material. Because it is es-
sential that each student goes through the process of de-
veloping these problem solving skills, CTF challenges
must be designed to mitigate the opportunities for cheat-
ing. Such an issue is largely unaddressed in a competitive
CTF event since there is no incentive for participants to
share answers with each other. Thus, even though the
challenges given to teams are all the same, each team
typically tackles them individually.

While the existing model for CTFs is fine for compe-
titions, it is a poor fit when used in the context of courses
for several reasons. One reason is that unlike competi-
tive CTF events, students do not have a strong incentive
to keep their answers to themselves. Thus, there is no
natural way to force students to work through challenges
on their own. Another reason is that because courses are
offered repeatedly, unless challenges are rewritten every
time a course is offered, a student would only need to
obtain an answer key to a previous offering in order to

[E ma view-a £ | @] Hex View-1 [| [A] Structures | E enums | B mports
T woT O PO [EEATE], o
nov dword ptr [esp], offset format ; “Enter the password: ™
call _printf
lea eax, [esp+28h]
nov [esp+4], eaxr
nov dword ptr [esp], offset al19s ; "%19s"
call isoc99_scanf
call sigtrap
test eax, eax
jnz short loc_SB486E6
il et (=]
mou byte ptr [esp+1Ch], B
loc_804B6EG:
lea eax, [esp+i4h]
mou [esp]. eax F
call _strlen
(a) Test SIGTRAP
FEE |
cnp [ebp+uar_10], 1
jle short loc_884852F loc_8B484EA:
nov edx, [ebp+var_14]
mov eax, [ebp+rvar_C]
add eax, edx
mouzx eax, byte ptr [eax]
cmp al, BCCh
jnz short loc_|BBuS4FD
v ') '
P I |
mou eax, [ebp+uvar_18] add [ebp+var_18], 1|
mov [esp+4], eax
moy dword ptr [esp], offset format ; “Found 6xcc %d tines. You must be debugg”...
call _printf
mov dword ptr [esp], 8 ; status
call _exit
:

(b) Scan for INT 3 (0xcc)

Figure 8: Anti-debugging CTF challenge

submit correct answers to the challenges without having
to do any of the work or learning.

To address these issues, several CTFs [4, 10] employ
polymorphism and metamorphism so that the challenges
users solve are unique. Towards this end, all MetaCTF
challenges are built to be either polymorphic or meta-
morphic in order to ensure that challenges are unique
across students in a course and between students across
multiple offerings of the course. While walkthroughs
of the challenges might give a student an idea of how
to solve them, they must still apply the concepts of
the walkthrough on their specific challenge to solve it.
By doing so, they automatically develop the skills and
knowledge the CTF challenge wants of them.

MetaCTF employs a variety of techniques to generate
polymorphic and metamorphic binaries. The simplest is
to modify the program’s data either as it is stored stati-
cally in the binary or as it is encoded in the instructions
as described in the initial levels. Additional techniques
employed by MetaCTF to ensure the uniqueness of each
challenge include morphing the data structures used and
the addresses where code and data are placed. Figure 9

shows two versions of the PLT hijacking challenge de-
scribed previously. In this case, the addresses of the text
section are randomly generated to force students to in-
dividually determine the values required to unlock the
level. Finally, one of the most powerful ways to apply
metamorphism to CTF challenges is to modify the code
itself. Figure 10 shows an example where metamorphic
code injection is used to create unique CTF challenges.
In this case, the set of anti-disassembly techniques that
are used to hide instructions in the binary are uniquely
generated for each student. To solve this challenge, stu-
dents must individually apply counter-measures to by-
pass their set of anti-disassembly techniques. Since the
instructions themselves differ, even code-walkthroughs
become more difficult to apply and follow.

5 Level Extensions

“See one, Do one, Teach one” is a medical school adage
that is followed to help students obtain mastery. The lec-
ture material and the MetaCTF challenges provide stu-
dents with the first two. As part of our offering of the

4e7a476d |[<print_good>:

| 4e545a6d j<print_good>:

4e545a6d: push

4e545a6e: mow

4e545a70: sub 50x18, tesp

4e545a73: movl $0x4e545c60, (%esp)

080483f0 <sleep@plt>: .
80483f0 jmp *0x4e547014

Figure 9: Metamorphic versions of a PLT corruption challenge

deTadlod: push

4eTadTbe: mov

4e7a4770: sub

4e7a4773: movl

080483f0 <sleep@plt>:

80483£0 [jm‘a *0x4e7a60l4 |
80485c2: call 804852d <print_msg>
80485cT: stc
80485cH: ib 80485ch <main+0xl12>
80485ca: {bad)
80485cc: inc tesp
80485cd: and $0xlc, zal
80485cf: adc 0x4c700cc(%edi) ,2ebx
80485d5: and 50x20, %al
80485d7: xchg teax, (%eax, %ecx,l)
80485da: call 80483b0 <printf@plt>
80485df: lea 0x18 (%esp) , teax
80485e3: mov teax,0x4 (tesp)
80485e7: movl $0x8048735, (¥esp)

80485c2: call 804852d <print msg>
80485c7T: clc

80485c8: jae 80485ch <main+0xl2z>
80485ca: (bad)

80485cc: inc %esp

80485cd: and $0x1c, 3al

80485cf: out Feax, 50x11

80485d1: lods %ds: (%esi), 3al
80485d2: add %al, ¥bh

80485d4: add 50x24, 3al

80485d6: and %al,-0x2el7f7fc (%edi)
80485dc: std

80485dd: (bad)

80485de: decl —-0x76e7dbbc (3ebp)
80485e4: inc %esp

80485e5: and $0x4,%al

80485e7: movl $0x8048735, (%esp)

Figure 10: Metamorphic versions of an anti-disassembly CTF challenge

course, after completing the CTF challenges, students are
tasked with the third. Specifically, they are assigned a
final project in which they must develop their own meta-
morphic challenges that can be used to help someone
learn a topic covered in the course. Students are encour-
aged to work on projects that fix scaffolding problems in
the existing set of challenges.

MetaCTF provides a simple, straight-forward mecha-
nism for students to add their own challenges. To create a
custom challenge, a directory with two files is required.
One file is a build script that takes a list of e-mail ad-
dresses as an argument. The other file is a source-code
template for the challenge. Based on the e-mail address
of a user, the build script generates random data that is
then applied to the source-code template to generate a
program that is polymorphic or metamorphic. In addi-
tion, the build script can optionally use the random data
to modify where the text and data sections are prefer-
entially loaded into memory. To make the task simpler,
students are given sample source code for several of the
challenges. In the latest offering of the course, students
developed over a dozen reverse-engineering challenges.
Several of them have been adapted and integrated into
our current set of challenges.

6 Deployment

It can be cumbersome to run a CTF for a course. In-
structors often don’t have the time required to invest to
adopt such an approach. To ease this burden, MetaCTF
includes a web interface that can be used to manage the
challenges. After the instructor configures a list of stu-
dent e-mail addresses and builds the metamorphic bina-
ries for each student, the web interface then is used to dis-
tribute individual challenges to students. It also is used
to allow students to submit their solutions. Specifically,
after finding solutions to binaries, users submit winning
inputs to the web interface which then runs them in a
sandbox against the binaries stored on the site to val-
idate correctness. By providing an all-in-one solution
for building, distributing, and grading CTF challenges,
we hope to enable more widespread adoption of our ap-
proach.

7 Results

Consisting of an initial set of 17 metamorphic chal-
lenges, our first offering of our malware course in which
the homeworks were given in the CTF format occurred
during Winter quarter of 2015. Over the first 8 weeks of
the course, students covered each chapter of the textbook
using lectures, labs, and the CTF challenges associated

Term offered | Mean rating

Spring 2010 4.06
Winter 2011 4.11
Winter 2012 3.67
Winter 2013 4.25
Winter 2014 4.20
Winter 2015 4.67

Table 1: Quality and Usefulness of Homework Assign-
ments for Malware course (1=Poor to 5=Very Good)

with the chapter. During the last 2 weeks, students then
worked on developing their own challenges.

To evaluate differenct aspects of the course and the in-
structor, students are given surveys to fill out at the end
of each course. Of particular interest in this study is the
question that asks students to rate the quality and useful-
ness of the homework assignments. Table 1 shows the
results pertaining to this question over the last 6 offer-
ings of the malware course. As the table shows, while
students felt that the homework quality and usefulness
was good prior to the deployment of the CTF challenges,
the mean rating of the homeworks significantly increased
when the CTF was used.

8 Acknowledgments

Several students have contributed challenge designs in-
cluding Simon Niklaus, Steven Tran, Tien Le, Yu Yang,
and Stacy Watts. Work on MetaCTF has been sup-
ported by the Oregon Engineering and Technology In-
dustry Council and the National Science Foundation un-
der Grant No. CNS-1017034.

References

[1] K. Chung and J. Cohen, “Learning Obstacles in
the Capture The Flag Model,” in USENIX 3GSE,
August 2014.

[2] G. Vigna, K. Borgolte, J. Corbetta, A. Doupe,
Y. Fratantonio, L. Invernizzi, D. Kirat, and
Y. Shoshitaishvili, “Ten Years of iCTF: The Good,
The Bad, and The Ugly,” in USENIX 3GSE, August
2014.

[3] J. Mirkovic and P. Peterson, “Class Capture-the-
Flag Exercises,” in USENIX 3GSE, August 2014.

[4] “PicoCTF,” https://www.picoctf.com.

[5] “HSCTF,” http://www.hsctf.com.

[6] P. Chapman, J. Burket, and D. Brumley, “PicoCTF:
A Game-Based Computer Security Competition for
High School Students,” in USENIX 3GSE, August
2014.

[7] M. Olano, A. Sherman, L. Oliva, R. Cox, D. Fire-
stone, O. Kubik, M. Patil, J. Seymour, I. Sohn, and
D. Thomas, “SecurityEmpire: Development and
Evaluation of a Digital Game to Promote Cyberse-
curity Education,” in USENIX 3GSE, August 2014.

[8] “The Matasano Crypto Challenges,” http://
cryptopals.com/.

[9] “OverTheWire Wargames,” http://
overthewire.org/.
[10] “Embedded Security CTE,” http:
//microcorruption.com/.
[11] W. Feng, “CS 492/592: Malware,”

http://thefengs.com/wuchang/
courses/cs492.

[12] M. Sikorski and A. Honig, Practical Malware
Analysis: The Hands-On Guide to Dissecting Ma-
licious Software, No Starch Press, 2012.

[13] P. Kirschner, J. Sweller, and R. Clark, “Why Min-
imal Guidance During Instruction Does Not Work:
An Analysis of the Failure of Constructivist, Dis-
covery, Problem-based, Experiential, and Inquiry-
based Teaching,” Educational Psychologist, vol. 2,
no. 41, pp. 75-86, 2006.

[14] S. Englemann,
Programming and Teaching,”
Psychology, , no. 6, 1968.

“Relating Operant Techniques to
Journal of School

[15] J. Tuovinen and J. Sweller, “A Comparison of
Cognitive Load Associated with Discovery Learn-
ing and Worked Examples,” Journal of Educational
Psychology, vol. 91, no. 2, 1999.

[16] T. Ptacek, H. Nielsen, and N. Carlini, “microcor-
ruption: Security games to qualify and hire job can-
didates,” in USENIX 3GSE, August 2014.

[17] N. Harbour,
Polymorphic Kung-Fu,”
2008.

“Advanced Software Armoring and
in DEF CON, August

[18] Oreans Technologies, “Themida,” http: //www.
oreans.com/.

[19] UPX, “UPX: the Ultimate Packer for eXecutables,”
http://upx.sourceforge.net.

