
Reconstructing System State for Intrusion Analysis

Ashvin Goel, Kamran Farhadi, Kenneth Po
University of Toronto

Wu-chang Feng
Portland State University

Abstract
The analysis of a compromised system is a time-consuming

and error-prone task because commodity operating systems
provide limited auditing facilities. We have been developing
an operating-system level auditing system called Forensix that
captures a high-resolution image of all system activities so that
detailed analysis can be performed after an attack is detected.
The challenge with this approach is that the large amount of
audit data generated can overwhelm analysis tools. In this pa-
per, we describe a technique that helps generate a time-line of
the state of the system. This technique, based on preprocess-
ing the audit log, simplifies the implementation of the analysis
queries and enables running the analysis tools interactively on
large data sets.

1 Introduction
When computer systems are compromised, system adminis-

trators face the task of determining answers to questions such
as “where did the attack come from”, “what vulnerability was
exploited”, and “which files did the attacker modify”. This
forensic analysis requires information about activities that oc-
curred in the past on the system. Currently, this information
is collected in a “lossy” manner. For example, system and ap-
plication log files only track events based on what the system
administrators or application developers think are necessary to
log, and these files can be tampered with or deleted by the at-
tacker. Vital information such as where an attacker connected
from, and what happened afterward is not necessarily collected
in these log files.

In recent years, several research efforts, such as ReVirt [2],
FDR [17] and Forensix [6], have focused on capturing a high-
resolution, tamper-resistant image of all system activities. Re-
Virt places a host system within a virtual machine and logs all
non-deterministic events that can affect the system, allowing
deterministic replay of the entire system at instruction granu-
larity. FDR captures all interactions with the file system and
Windows registry and uses this information for analyzing the
behavior of systems, including software misconfiguration and
security vulnerabilities, in production environments. Forensix
intercepts all system calls and provides SQL tools that help
with analysis of past system behavior. While these systems
capture different types of events, they log these events at all
times and they log all events of the given type. This complete
log allows analysis of known intrusions as well as intrusions
that become known in the future, since the log captures all
system activities rather than just those that are considered im-

portant today.
The complete logging approach introduces performance and

storage overheads, but these overheads have become manage-
able as computing, storage and networking costs have steadily
decreased over time. For example, FDR requires 20 MB of
storage per day with a storage-optimized log file format, while
ReVirt and Forensix may need roughly 1 GB storage per day.
Even with these higher requirements, a month of data (30 GB
per machine) can easily be stored on today’s disks. Further-
more, all these approaches have less than 1-10% performance
overhead for typical server or desktop workloads.

While complete logging has become economically feasible,
the amount of audit data generated can overwhelm simple data
analysis techniques. For example, suppose an administrator
suspects that an intrusion may have occurred and wishes to
find all root-owned setuid files that existed on the system yes-
terday. Instead of trusting the host system, the administrator
issues this analysis query on the audit log. This query requires
scanning the audit log to determine when files were created,
destroyed or their permissions or ownership was last changed.
ReVirt would require replaying the system starting from a pre-
viously stored snapshot to recreate these events, while FDR
and Forensix store these events. Even so, a root-owned se-
tuid file that was created a long time back and whose attributes
were never changed would also match the query and hence the
entire audit log must be processed. This example shows that
analysis can require scanning and processing of large amounts
of audit data even for seemingly simple queries.

The problem with the raw audit log is that it consists of
events, representing changes in system state, while analysis
may require determining the state of the system at a given time
or a time interval. For example, a system-call based logging
system captures state-change events such as when a process
is created or when a file or its attributes are modified, but the
query described earlier requires determining the state of the
system (in terms of root-owned setuid files) since yesterday. A
simple method of reconstructing this state consists of sequen-
tially processing all the state-change events, but the amount of
data processing involved can slow the queries and limit their
usefulness, especially since intrusion analysis is an inherently
interactive process.

In this paper, we present a method for efficiently recon-
structing the past states of a system. Our technique, imple-
mented in the Forensix intrusion analysis system [7, 6], is
based on storing the lifetimes of objects and attributes that are
used in an analysis query. For example, we use a file_owner
lifetime table to store information about the different owners

1



of a file over time. This lifetime table contains time inter-
vals (start and end time) for each different owner of every file.
With this table, it is straightforward to query for all root-owned
files since yesterday since any such file is owned by root and
has an end time greater than yesterday. Similarly, we use a
file_permission lifetime table to store information about the
different permissions of each file over time. With this table, it
is simple to find out about setuid files that existed since yes-
terday. The results of our administrator’s query would then
consist of the common results obtained from the file_owner
and the file_permission tables.

We have designed and implemented several lifetime interval
tables in Forensix. These tables simplify the implementation
of Forensix queries and greatly improve their performance. We
use interval tables extensively in Forensix to implement tools
that allow analysis of file accesses, tracking of persistent data,
replaying process IO activities and tracking of dependencies
among system objects such as sockets, files and processes [8].
We have applied these tools to analyze real attacks and our
results show that our interval-table based analysis tools can be
used interactively even when operating on large amounts of
audit data.

The rest of the paper describes our approach in detail. Sec-
tion 2 motivates the need for reconstruction of past system
states and the complexity of designing the required analysis
tools. Section 3 explains our state reconstruction technique,
and Section 4 describes the analysis tools that we have imple-
mented using our technique. Section 5 presents an evaluation
of our approach, Section 6 describes the related work in the
area, and Section 7 provides our conclusions.

2 Motivation
Over the last four years, we have been developing Foren-

six, an auditing and intrusion analysis system that monitors all
process management, file system and networking-related sys-
tem calls on a target host and logs these events into a MySQL
database located on a secured “backend" system. Forensix
provides analysis tools that are run entirely on the backend
so that evidence is left intact on the target.

When implementing analysis queries on the logged events,
we realized that there was a mismatch between the events and
the queries. The events consist of changes in system state,
while our analysis queries may require determining the state
of the system at a given time or a time interval. For exam-
ple, the Forensix database contains the fork and wait events
that indicate the creation of a process and exit of a child pro-
cess. Suppose we want to run a query that returns the names
of processes that existed in the last hour. This query requires
processing all the fork and wait events to determine the life-
times of processes. Below, we describe several other scenarios
that motivate the problem of analyzing system state from the
raw audit events. Later, we will show how our approach solves
the problems described below.

Scenario 1: Find files with owner=O and permission=P
at time=T. An administrator suspects that someone has ex-
ploited a vulnerability to create an unauthorized setuid root

binary and wishes to compare the setuid root binaries that
currently exist on the system with those that existed a few
days earlier. A general query of this type requires processing
four different sets of events (file creation, change ownership,
change permission and file deletion) that occur before time T.

Let S1 be the set of files owned by owner O at time T. This
set is generated by using the file creation and change owner-
ship events. These events help determine the last event associ-
ated with each file that occurred before time T and that set the
owner to O. We also need to remove files from S1 that have
been deleted before time T. Similarly, let S2 be the set of files
that had permission P at time T. This set is generated by using
the file creation, change permission and file deletion sets. The
final result is obtained by intersecting sets S1 and S2. This rel-
atively simple query is difficult to write using the raw events,
and it is inconvenient because the user has to query various
different types of events. Furthermore, the query is inefficient
because all events of the four types must be examined even
though only the last event before time T is relevant for any
given file.

Scenario 2: Find the contents of directory=D at time=T.
An administrator knows that the tarballs of a popular rootkit
and a local-root exploit unpack into directories named rkid
and xpl. He wishes to find all directories that may have had
these names and retrieve the contents of these directories. This
query requires processing all events that occur before time T
and that create, rename or remove a directory entry from direc-
tory D. This query is inefficient because it requires processing
or replaying all events related to directory D until time T to
determine the contents of the directory.

Scenario 3: Find the path name of a file whose inode=I at
time=T. An administrator suspects that someone has modified
/etc/passwd and wishes to determine all accesses to the file and
all names (hard links) and symbolic links associated with this
file. The latter query needs to perform reverse name resolu-
tion from file identifiers (inode numbers) to path names. To do
so, the file name of inode number I at time T must be deter-
mined by looking for the last event before time T that either
created or updated a name for that inode. In addition, the in-
ode number of the parent directory during that event must be
known. This process of looking for the last event must then be
performed recursively for the parent directory’s inode number
until the whole path is resolved. This query has to examine
many different events and determine the relevant last events.

Scenario 4: Find processes whose effective user id=E be-
tween Ts and Te. An administrator is informed of a new ex-
ploit that allows the Apache user to run a setuid root binary
and wishes to find all programs that ran with elevated priv-
ileges over the last two weeks. For this query, we need to
consider the fork, execve, setuid and wait process man-
agement events. The first type of event can be used to find
the set of processes that were created with euid set to E. The
second type of event helps determine the set of processes that
executed a setuid file whose owner was E, while the third type
of event shows the set of processes that successfully changed
their effective user id to E. The last type of event is used to

2



filter processes that exit before time Ts. This query is compli-
cated because different processing is required for each set of
events. Note that all the relevant events until time Te must be
processed. For example, a process that is created much before
time Ts with euid E and exits after Ts would match the query.

Scenarios 5: Find all processes whose lifetimes overlapped
with the process whose name=N. During the analysis of an
attack, an administrator finds that the wget program was run to
download a “rk.jpg” binary. He wishes to find all server pro-
cesses that were running at that time to confirm his hypothesis
that the ftp daemon was attacked. This query requires deter-
mining the lifetimes of all processes, which requires process-
ing all fork and wait events. In addition, we need to find the
lifetimes of processes whose name is N, which also requires
processing all execve events.

Scenario 6: Find root-owned setuid files that were executed
by non-root processes. The administrator wishes to create a
daily privilege escalation report. This query is, roughly speak-
ing, a combination of the first and fourth queries and not de-
scribed in more detail here. It has constraints on both file and
process attributes, which makes it more complex to write than
any of the previous queries.

3 System State Reconstruction
In the previous section we showed that state-based analysis

queries can be hard to implement and may require processing
of the entire audit log. This problem occurs because the au-
dit log does not provide information directly about the value
(or state) of an object or an object’s attribute at a particular
time or time interval. We preprocess the audit log to gener-
ate this information, thereby speeding up analysis queries and
simplifying their implementation. In particular, we generate
the lifetimes of objects and attributes that are used in queries.
For example, the lifetime of a process is the time interval be-
tween when the process is created and destroyed. With this
information, Query 5 shown in the previous section can eas-
ily determine processes that overlapped in time. Below, we
describe our method in more detail.

3.1 Interval Tables
We derive the lifetimes of kernel objects and their attributes

immediately after the Forensix audit log is loaded into the
Forensix database. These lifetimes are stored in interval ta-
bles, and we refer to the process of creating these tables as re-
constructing system state. We have identified several interval
tables based on the requirements of our analysis tools. These
tables are shown in Table 1. Each row of an interval table maps
a system object such as a file, connection or process and op-
tionally an attribute of this object to a lifetime, consisting of a
start time Ts and an end time Te.

The inode interval table correlates a file identifier (inode
number) to the lifetime of its names. In each row of this table,
the start time is the time when the file name was initially cre-
ated and the end time is when the file name was removed. For
example, a new row is created in this table when a new file or

a file name (a hard link) is created. The end time is updated
when the file name is removed. A file rename is considered
equivalent to a file name removal and a file name creation. In
addition to the file name, this table contains the type of the in-
ode (e.g., file, directory, symbolic link, device node, etc.) and
the inode number of the parent directory. The connection

interval table maps a connection to the lifetime of a connec-
tion. The file_owner and file_permission interval tables
correlate a file with its owner and permissions so that each row
represents a unique owner and permission for the file.

The process interval table correlates a process identifier
with the lifetime of the process name. A process identifier with
multiple names (execve) creates multiple entries in this table.
The process_owner interval table maps a process identifier
to the lifetime of the process owner (user and group id).

The main requirement for constructing these interval tables
is that each system object should have a unique identifier over
time. We used timestamps to create unique process identifiers
(pid), file identifiers (inode number) and connection identifiers
(connection_tuple). For processes, we used the process cre-
ation time. Files are uniquely identified with a device number,
inode number and a generation number that is stored on disk
by most commonly available Unix file systems today. The
generation number is incremented when an inode number is
reused. The connection tuple consists of source and destina-
tion addresses and ports. This tuple together with an inode as-
sociated with the connection uniquely identifies a connection
over time. To speed up queries, we create database indexes
on the unique identifiers in each interval table. Appendix A
provides an example of how the interval tables are constructed
from the raw events.

3.2 Queries with Interval Tables
The interval tables described above help simplify Forensix

queries. Section 4 describes various intrusion analysis tools
that we have developed using the interval tables. Here, we
show how the queries described in Section 2 can be easily im-
plemented with interval tables using SQL code. Readers un-
familiar with SQL can scan the rest of this section but should
notice the simplicity of the code implementing these queries.

Query 1: Find files with owner=O and permission=P at
time=T. The following simple SQL query provides file iden-
tifiers matching the query. The names of files can be derived
from the file identifiers with Query 3 shown below. Note the
use of time interval (ts, te) here and in all the queries below
to determine system state.

SELECT f.inode

FROM file_owner f, file_permissions p

WHERE f.owner = O AND p.permission = P

AND T BETWEEN (f.ts, f.te)

AND T BETWEEN (p.ts, p.te)

Query 2: Find the contents of directory=D at time=T. This
query, which lists the contents of a directory at a given time,
takes advantage of the parent_inode information available
in the inode interval table. It lists all file names that have the
parent directory D at time T. If the directory is specified by

3



Interval table Table columns Events that update the table

inode table inode+, file_name, parent_inode+, Ts, Te create*, mkdir, link, symlink, mknod, re-
name, unlink, rmdir

connection table inode+, connection_tuple+, Ts, Te socketcall* (accept, connect, etc.)

file_owner table inode+, owner, group, Ts, Te create*, mkdir, symlink, mknod, chown*,
unlink, rmdir

file_permission table inode+, permission, Ts, Te create*, mkdir, symlink, mknod, chmod*,
unlink, rmdir

process table pid+, inode+, file_name, parent_inode+, Ts, Te fork*, execve, wait*
process_owner table pid+, uid, euid, gid, egid, Ts, Te fork*, execve, wait*, setuid*

For each interval table, the second column shows the columns of the interval table. The last column shows the events that
update the interval table. The plus sign after inode, connection_tuple and pid shows that these system objects must be uniquely
identified. The asterisk sign after certain events indicates that there are several variants of these events.

Table 1: Interval tables.

name, then the inode interval table can be used to first find
the directory’s inode number D.

SELECT i.file_name

FROM inode i

WHERE i.parent_inode = D

AND T BETWEEN (i.ts, i.te)

Query 3: Find the path name of a file whose inode=I at
time=T. This query requires a loop to find the path name one
component at a time. The pseudo code is shown below.

var INODE = I

do:

SELECT i.file_name, i.parent_inode

FROM inode i

WHERE i.inode = INODE

AND T BETWEEN (i.ts, i.te)

INODE = i.parent_inode

while INODE is not '/' # root inode

Query 4: Find processes whose effective user id=E be-
tween T1 and T2. The following query operates on the
process_owner interval table. The last two conditions search
for overlapping time intervals.

SELECT p.pid

FROM process_owner o

WHERE o.euid = E

AND T1 < o.te

AND T2 > o.ts

Query 5: Find all processes whose lifetimes overlapped
with the process whose name=N. This query is a little more
involved and requires a temporal join of the process interval
table with itself to find the overlapping intervals.

SELECT DISTINCT p2.pid

FROM process p1, process p2

WHERE p1.name = N

AND p1.pid != p2.pid # ignore self

# overlapping interval

AND p2.ts <= p1.te

AND p2.te >= p1.ts

Query 6: Find root-owned setuid files that were executed
by non-root processes. This query is more complex than
the previous queries because it has constraints on both file
and process attributes. In addition, it requires data from
the execve event. The execve event is stored in Foren-
six as a separate exec table. This table stores the event
time stamp, the process id and the inode number of the file
that was executed. The query below joins the file_owner

and file_permissions interval tables (for root-owned se-
tuid files), the process_owner interval table (for non-root
processes) and the exec table to derive the query results.

SELECT e.inode

FROM file_owner f, file_permissions p

process_owner_table o, exec e

WHERE f.owner = 'root'

AND p.permissions has 'setuid'

# non-root process

AND o.euid != 'root'

AND e.pid = o.pid

# file that was executed

AND e.inode = f.inode

AND e.inode = p.inode

AND e.time BETWEEN (f.ts, f.te)

AND e.time BETWEEN (p.ts, p.te)

AND e.time BETWEEN (o.ts, o.te)

4 Analysis Tools
The previous section shows that lifetime interval tables sim-

plify the implementation of state-based queries. With the in-
terval tables shown in Figure 1, we have built several powerful
intrusion analysis tools including the file-access tracker, the IO
tracker, the directory tracker and the dependency tracker, each
of which presents a unique view of system state and changes
to the state over time. We briefly describe these tools below.
More details about the tools are available in our previous pub-
lications [6, 8].

The file-access tracker shows files that have been accessed
or modified in a given time interval. This data can be volumi-
nous so the tracker provides various filters (based on the type
of events, file names and attributes, and process names and

4



attributes) that help limit the results. For example, Query 6
in Section 3.2, which determines root-owned setuid files that
were executed by non-root processes, is a specialized case of
the file-access tracker.

The IO tracker replays the IO performed by processes (pro-
cess IO tracker) and reconstructs the contents of files (file IO
tracker). The process IO tracker replays the writes of a process
or process hierarchy. It can be used, for example, to replay
the entire shell activity seen by a remote intruder. The file IO
tracker allows recreating the contents of files at a given time.
We use this tool for post-intrusion file-system recovery [8].

The directory tracker reconstructs the contents of directo-
ries at a given time. For example, the file-access tracker might
show a directory that was created by an attacker. The direc-
tory tracker could show the contents of the directory after the
attack even though the directory may have been removed by
the attacker. The basic directory tracker is shown in Query 2
in Section 3.2.

The dependency tracker displays data dependencies be-
tween processes, files and sockets. For example, a depen-
dency occurs when a process reads or writes from a file. A
graph of such dependencies show the chains of events that led
to an intrusion or are caused as a result of the intrusion [12].
We use this tool to generate such a dependency graph. The
implementation uses the rows of the process, inode and
connection interval tables as nodes in the dependency graph.
The tracker implements several filters that help prune unde-
sired edges from the graph for easy visibility. These filters use
the attributes of the interval tables.

We plan to simplify an administrator’s job by providing a
library of prepackaged analysis queries that are run as part of
a daily activity report or can be run using a web interface.

5 Evaluation
The previous sections have shown that the Forensix analy-

sis queries are simpler to implement with interval tables. In
this section, we show that our analysis tools run significantly
faster with interval tables. Our experimental setup consists of
a target machine and a backend machine both running AMD
Athlon MP 2600+ CPU with 512 MB RAM. The target runs
stock RedHat 7.2 that has well-known vulnerable services in-
cluding Apache httpd with SSL, Wu-ftpd, Sendmail, SAMBA
and the ptrace exploit. We used the Snort network intrusion
detection tool to detect potential intrusions. The backend ma-
chine uses the MySQL version 5 database. The target was run
with the vulnerable services for approximately a week. Dur-
ing this time, the target was attacked once externally with the
Wu-ftpd remote root exploit. Below, we present our analysis
of the attack and the time it took to run the Forensix tools to
analyze the attack.

5.1 Analysis of Ftpd Attack
Snort reported an anonymous FTP login on May 12 around

17:10 followed by command overflow attempts that contained
shellcode. While Snort helps detect attacks, it provides lit-
tle information about what actually happened on the system.

/bin 74 /bin/kill 05-12 17:11:58

/bin/ps 05-12 17:11:46

/dev 3

/etc 84 /etc/passwd 05-12 17:11:20

/home 11

/lib 588

/root 3 /root/.bash_history 05-12 18:40:32

/sbin 175 /sbin/ldconfig 05-12 17:12:09

/tmp 26

/usr 26 /usr/bin/killall 05-12 17:11:46

/var 452

Figure 1: File-access tracker output for ftpd attack.

To look for any recent changes in the file system, we ran the
file-access tracker to list all the files or directories modified
between 17:00 and 19:00 of that day. A partial report, shown
in Figure 1, lists the modified files grouped by root directories
and their last modification times. The numbers in the second
column show the number of modified files. Based on this re-
port, we suspected that a rootkit had been installed.

Next we ran the dependency tracker using the modified
/usr/bin/killall (shown in Figure 1 by the file-access tracker) as
one of the detection points. A partial resulting graph is shown
in Figure 2. It shows the bash process that was spawned by the
ftp daemon, the use of the passwd command and downloading
of the rk.jpg file.

We then queried the inode interval table for any instance
of a file creation within the /dev/pts directory between 17:00
and 19:00. This query returned one row that showed that an
interactive shell was used from 17:12 until 18:40. A query to
the process_owner interval table showed that the attacker’s
shell was run as root. Next we used our IO tracker tool to
replay the shell. Key output from the shell session is shown in
Figure 3.

Using our IO tracker, we recreated the removed psyBNC.tgz
file that acts as both an IRC bot and an IRC bouncer or
anonymizer. Its executable files are disguised as crond. The
attacker runs the SucKIT rootkit that is loaded via /dev/kmem
and does not need a kernel with support for loadable kernel
modules [14]. With the rootkit, the attacker tried to hide the
fake crond process, but since we use LIDS [18] on the target
system to disable writes to /dev/kmem, the attacker was not
successful.

Based on the dependency tracker graph, we recreated the
removed rk.jpg file that installs a backdoor and then clears its
traces from log files. To find out more about the backdoor, we
issued a query on the connection and the process interval ta-
bles to find out about open ports between 17:00 and 18:00 and
found a process called sendmail that was listening on port 212
from 17:12 and was used to run the interactive shell. Based on
the analysis of this attack, it seems to be similar to the report
available from the Honeynet Project [16].

5.2 Analysis Results
The time taken to run each of the queries described above is

shown in Table 2. These queries use the interval tables shown
in Figure 1, and the table shows that these queries can be used
interactively.

5



xinetd

xinetd

in.ftpd

bashftp.pids-all

bash

useradd

group+
group

passwd+
passwd

shadow+
shadow

bash

passwd

npasswd
passwd

bash

wget

rk.jpg

bash

tar

tar killall

gzip

pipe

69.167.XXX.XXX

65.113.XXX.XXX

Figure 2: Tracking the FTP intrusion.

Without the interval tables, analysis queries on the Foren-
six audit log are not only much harder to implement, but they
essentially have to generate partial interval tables on the fly.
We implemented the first two queries in Table 2 without us-
ing the interval tables (the other queries are much harder to
implement without the interval tables). Their running times
were 79 s and 33 s, which is a factor of 4-5 times slower. Our
approach generates the interval tables once and hence queries
can reuse the reconstructed state for faster analysis. When the
target system is heavily loaded, the bottleneck in Forensix is
the MySQL database loading time [6]. Interval table creation
generally takes less than 10% of the loading time.

6 Related Work
Our intrusion analysis method is based on complete and

tamper-proof logging. A similar approach is used in ReVirt [2]
that places a system within a virtual machine and logs the VM-
to-host interactions, allowing accurate system replay without
requiring kernel integrity. ReVirt replays activity in linear time
order. However, this approach is complementary to Forensix
since it can be used to extract system call events during the

[root@rex www]# ftp -v 65.113.XXX.XXX

Name: XXXXXXX

Password:

get psyBNC.tgz

[root@rex www]# tar xzvf psyBNC.tgz

[root@rex www]# rm -rf psyBNC.tgz

[root@rex m4a1]# crond

Listening on: 0.0.0.0 port 6001

Thu May 12 17:18:11 :psyBNC2.3.1-cBtITLdDMSNp started (PID

:3975)

[root@rex .sk12]# ./sk i 3975 [= SucKIT version 1.3a, Jan

27 =]

Can't open /dev/kmem for read/write (1)

[root@rex www]# w

6:40pm up 4:20, 0 users, ...

[root@rex log]# pico /var/log/messages

[root@rex www]# logout

Figure 3: IO tracker output for the ftpd attack.

Ftpd attack analysis Time taken
List all the modified files and directories 20 s
Find root-owned setuid files that were ex-
ecuted by non-root processes 7 s

Dependency graph generation 25 s
Finding the interactive shells < 1 s
Finding uid of the shell process < 1 s
Replaying attacker’s shell 1 s
Recreation of the removed attack files 3 s
Finding execves issued by the children of
the compromised in.ftpd process 1 s

Finding the listening port set by the at-
tack code < 1 s

Table 2: Time taken for each query.

first replay and then our backend system can be used for anal-
ysis. Garfinkel uses a similar VMM-based kernel introspection
mechanism [5].

Similar to Forensix, FDR [17] logs interactions with persis-
tent state and uses this information to analyze software mis-
configuration. FDR focuses on using a customized storage
format to minimize the amount of logging, which in turn also
improves query performance. In contrast, Forensix uses the
standard MySQL database but implements the interval tables
to simplify the implementation of queries and improve their
performance. We believe that it should be possible to combine
these two approaches to derive the benefits of both.

System call traces have been used in the past to identify
normal system behavior and then to automatically detect sus-
picious behavior or intrusions [9, 15, 3]. However, these ap-
proaches examine system-call patterns over a short window of
5-100 calls and are not designed to capture, store and analyze
all system activity that has occurred in the past.

Tripwire [11] monitors the cryptographic hash and size
of key system files and reports file accesses and modifica-
tions. Venema and Farmer developed the Coroner’s Toolkit
(TCT) [4] that uses file-system specific information for post-
mortem analysis of a UNIX system. The Sleuth Kit [1] is a
derivative of Coroner’s Toolkit and provides file system in-

6



formation, file names and contents from file inode informa-
tion and lists recently deleted files in a directory. Our analysis
queries use the interval tables to provide this information with-
out needing any knowledge of file system structure.

Our dependency tracker is directly motivated by the work
on backtracking intrusions [12]. Complementary to our host-
based intrusion analysis tools are network-based analysis tools
such as SNORT [13] that capture and log network packets and
help detect intrusions based on predefined rules that match
packet headers or data. These analysis rules are filters that
help reduce the amount of data that needs to be logged, but
they only allow detecting known vulnerabilities.

7 Conclusions
Our intrusion analysis approach consists of capturing a com-

plete system-level audit trail. The challenge is to provide tools
that allow analyzing the large amount of audit data that can be
generated. This data consists of changes in system state while
analysis queries may require determining the state of a sys-
tem at some time, such as just before or after an intrusion. We
have shown that interval tables, containing the lifetimes of sys-
tem objects or their attributes, ease the process of determining
system state and allow implementing analysis tools that can
be used interactively. With these interval tables, we have im-
plemented several powerful intrusion analysis tools and used
them to analyze real attacks. We have also been using the
Forensix infrastructure to characterize system behavior with
a view towards improving end-host security [10].

References
[1] Brian Carrier. The Sleuth kit & Autopsy. http://www.

sleuthkit.org/.

[2] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza Bas-
rai, and Peter M. Chen. ReVirt: Enabling intrusion analysis
through virtual-machine logging and replay. In Proceedings of
the Operating Systems Design and Implementation (OSDI), De-
cember 2002.

[3] S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATL: An at-
tack language for state-based intrusion detection. Journal of
Computer Security, 10(1/2):71–104, 2002.

[4] Dan Farmer and Wietse Venema. The Coroner’s toolkit. http:
//www.porcupine.org/forensics/tct.html.

[5] Tal Garfinkel and Mendel Rosenblum. A virtual machine in-
trospection based architecture for intrusion detection. In Pro-
ceedings of the Network and Distributed System Security Sym-
posium, February 2003.

[6] Ashvin Goel, Wu chang Feng, Wu chi Feng, David Maier, and
Jim Snow. Automatic high-performance reconstruction and re-
covery. Journal of Computer Networks, 51(5):1361–1377, April
2007. From Intrusion Detection to Self-Protection.

[7] Ashvin Goel, Wu-chang Feng, David Maier, Wu-chi Feng, and
Jonathan Walpole. Forensix: A robust, high-performance re-
construction system. In Proceedings of the International Work-
shop on Security in Distributed Computing Systems (SDCS),
June 2005. In conjunction with the International Conference
on Distributed Computing Systems (ICDCS).

[8] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal
de Lara. The Taser intrusion recovery system. In Proceedings of
the Symposium on Operating Systems Principles (SOSP), Octo-
ber 2005.

[9] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. In-
trusion detection using sequences of system calls. Journal of
Computer Security, 6(3):151–180, 1998.

[10] Shvetank Jain, Fareha Shafique, Vladan Djeric, and Ashvin
Goel. Application-level isolation and recovery with Solitude.
In Proceedings of the EuroSys conference, April 2008. accepted
for publication.

[11] Gene H. Kim and Eugene H. Spafford. The design and im-
plementation of Tripwire: A file system integrity checker. In
Proceedings of the ACM Conference on Computer and Commu-
nications Security, pages 18–29, 1994.

[12] Samuel T. King and Peter M. Chen. Backtracking intrusions. In
Proceedings of the Symposium on Operating Systems Principles
(SOSP), pages 223–236, October 2003.

[13] Martin Roesch. Snort - Lightweight intrusion detection for
networks. In Proceedings of the USENIX Large Installation
Systems Administration Conference, pages 229–238, November
1999.

[14] sd and devik. Linux on-the-fly kernel patching without LKM.
Phrack issue 58, December 2001.

[15] R. Sekar and P. Uppuluri. Synthesizing fast intrusion preven-
tion/detection systems from high-level specifications. In Pro-
ceedings of the USENIX Security Symposium, pages 63–78, Au-
gust 1999.

[16] The Honeynet Project & Research Alliance. Know your enemy:
Phishing. http://honeynet.org/papers/phishing, May
2005.

[17] Chad Verbowski, Emre Kiciman, Arunvijay Kumar, Brad
Daniels, Shan Lu, Juhan Lee, Yi-Min Wang, and Roussi Rous-
sev. Flight data recorder: monitoring persistent-state interac-
tions to improve systems management. In Proceedings of the
Operating Systems Design and Implementation (OSDI), pages
117–130, 2006.

[18] Huagang Xie and et al. Linux intrusion detection system (LIDS)
project. http://www.lids.org/.

A Implementing Interval Tables
We construct interval tables using a small number of SQL

queries. For each table, at least two queries are needed, one
for the start time and another for the end time for each row.
The tables are updated whenever the audit log is loaded in the
background into the Forensix database.

As an example, the SQL code shown below populates the
inode interval table. The first query inserts new rows into
the table and sets the start time for these entries. It searches
the Forensix name_create_event table that stores all the events
that create a new file name such as creat, open, mkdir, link,
rename, symlink and mknod. The second and third queries
update the end times of current rows in the inode interval table
based on unlink, rename and rmdir calls available in the
Forensix name_remove_event table.

7



# Insert rows for newly created files

INSERT IGNORE INTO inode

( inode, filename, parent_inode,

begin_time )

SELECT e.inode, e.filename,

e.parent_inode, e.time

FROM name_create_event e

WHERE e.returncode >= 0

# update end times for existing rows

CREATE TEMPORARY TABLE temp_inode

FROM inode_table i, name_remove_event e

WHERE e.returncode >= 0

AND i.parent_inode = e.parent_inode

AND i.filename = e.filename

AND i.end_time is not set

AND e.time > i.start_time

GROUP BY i.id;

UPDATE inode i, temp_inode t

SET i.end_time = t.end_time

WHERE i.id = t.id;

8


