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ABSTRACT

Video-based sensor networks can provide important visual
information in a number of applications including: video

surveillance, environmental monitoring, health care, and emer-

gency response. This paper describes the Panoptes video-
based sensor networking architecture, including its design,
implementation, and performance. We describe a video sen-
sor platform that can deliver high-quality video over 802.11

networks with a power requirement of approximately 5 watts.

In addition, we describe the streaming and prioritization
mechanisms that we have designed to allow it to survive
long-periods of disconnected operation. Finally, we describe
a sample application and bitmapping algorithm that we have
implemented to show the usefulness of our platform. Our
experiments include an in-depth analysis of the bottlenecks
within the system as well as power measurements for the
various components of the system.
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1. INTRODUCTION

There are many sensor networking applications that can sig-
nificantly benefit from the presence of video information.
These applications include video-only sensor networks or
sensor networking applications in which video-based sen-
sors augment their traditional sensor counterparts. Exam-
ples of such applications include environmental monitoring,
health-care monitoring, emergency response, robotics, and
security/surveillance applications. Video sensor networks,
however, provide a formidable challenge to the underlying
infrastructure due to the relatively large computational re-
quirements and the size of the resulting video data. The
amount of video generated can consume the same bandwidth
as potentially thousands of scalar sensors. As a result, video
sensor networks must be carefully designed to be both low

in power consumption as well as flexible enough to support
a broad range of applications and environments.

To understand the flexibility required in video sensor con-
figurations, we briefly outline three applications. In en-
vironmental observation systems, the tetherless nature of
the application requires video sensors that are entirely self-
sufficient. In particular, the sensors must be equipped with
power that is generated dynamically via solar panels or wind-
powered generators and managed appropriately. In addi-
tion, networking connectivity may be at a premium, in-
cluding possibly intermittent or “programmed” network dis-
connection. For this application, keeping the sensor con-
tinuously running indefinitely while collecting, storing, and
transmitting only the most important video is the primary
goal. For video security applications, the video sensors should
filter as much of the data at the sensor as possible in order to
maximize scalability, minimize the amount of network traf-
fic, and minimize the storage space required at the archive
to hold the sensor data. The sensors themselves may have
heterogeneous power and networking requirements. In out-
door security applications, the power may be generated by
a solar panel and may use wireless networking to connect
to the archive. For indoor security applications, the sensors
most likely will have power access and will be connected
via wireless or wireline networks. Finally, for emergency re-
sponse scenarios, the video sensors may be required to cap-
ture and transmit full-motion video for a specified period of
time (i.e. the duration of the emergency) The goal in these
situations might be to meet a target operating time with
minimal power adaptation, in order to provide emergency
response personnel with the critical information throughout
the incident.

In this paper, we describe the development of the Panoptes
video sensor networking project that is underway at the Ore-
gon Graduate Institute. In particular, we will describe the
design, implementation, and performance of the Panoptes
sensor node, a low-power video-based sensor. The Panoptes
sensor consists of an Intel StrongARM-based embedded de-
vice that runs at approximately 5 watts of power. For this
sensor, we have implemented an adaptive video delivery
mechanism that can dynamically manage a buffer of data
so that it supports intermittent and disconnected operation.
Finally, we will describe a video sensor application that we
have developed. In this application, we have designed a



change detection bit-mapping algorithm to allow video data
to be queried efficiently.

In the following section, we provide a description of the em-
bedded sensor platform, including the software system that
was developed for the sensor. Following the description of
the Panoptes video sensor, we describe a scalable video sen-
sor application that has been designed to show some of the
features of the video sensors. The experimentation section
will provide an in-depth analysis of the performance of the
video sensor and its subcomponents. In Section 5, we de-
scribe some of the work related to ours and how it differs.
Finally, we conclude with some of our future work and a
summary.

Contributions of this paper: We describe the design and
implementation of a low-power, yet high-quality video sen-
sor platform that can be used for video-based sensor net-
works. Then, we describe a dynamic video management
and streaming system for the video sensors that allows the
sensor to continue to operate with intermittent and discon-
nected operation. Finally, we propose and demonstrate a
bit-mapping algorithm that allows change detection queries
to be accomplished efficiently.

2. VIDEO SENSOR PLATFORM

In designing a video-sensor node, we had a number of design
requirements that we were trying to accomplish:

e Low power: Whether power is scarce or plentiful, min-
imizing the amount of power required to capture the
video is important. For environments where power is
scarce, minimizing power can significantly increase the
duration of time that sensors can operate. For envi-
ronments where power is plentiful, minimizing power
can significantly increase the number of sensors that
can be economically deployed. For example, in pri-
vate homes, owners may be willing to deploy a large
number of 5-watt video sensors (equivalent to a night
light) while on vacation. However, they may be unwill-
ing to use workstation counterparts that could easily
consume two orders of magnitude more power.

e Flexible adaptive buffering techniques: We expect that
the video sensors will need to support a variety of la-
tency and networking configurations, with a buffer on
the sensor acting as the intermediate store for the data.
Of course, the buffer can hold only a finite amount
of data and will need to have some of it removed to
hold new data. The data that is removed, however,
is application dependent. For some applications, data
older than some time prespecified time may be useless,
while in other applications the goal will be to transmit
as much data as possible over the network no matter
how intermittent it is. Two such applications might in-
clude commuter traffic monitoring for the former case
and coastal monitoring for the latter case. Thus, we
require a flexible mechanism by which applications can
specify both latency and a mapping of priorities for the
data that is being captured.

e Power management: A low-power video platform is
just one component of the video sensor. The video

Figure 1: Panoptes Sensor

sensor also needs to be able to adapt the amount of
video that is being captured to the amount of power
that is available. Just as in the flexible adaptive buffer-
ing techniques, power management also needs to be
flexible. For example, in one scenario, the application
requirement might be to have the sensor turn on and
capture as much video as it can before the battery
dies. In another scenario, it might be necessary for
the sensor to keep itself alive using only self-generated
power (such as from a solar panel or a wind-powered
generator).

In the following section, we will describe the hardware plat-
form that serves as the basis of our video sensor technology.
Following that, we will describe the software that we have
developed to help address some of the design requirements
above.

2.1 Panoptes Sensor Hardware

In designing the video sensor, we had a number of options
available to us. The most obvious platform in the begin-
ning was the StrongARM based Compaq IPAQ PDA. This
platform has been used for a number of research projects,
including some at MIT and IST'. As we will describe in the
experimentation section, we found that the popular Winnov
PC-Card video capture device was slow in capturing video
and also required a large amount of power. The alternative
to this was to find an embedded device, allowing us to move
to a USB-based video camera as well as to remove the LCD
video screen which was unnecessary for the video sensor.
The video sensor that we developed is based on the Intel
StrongARM 206 MHz embedded platform. The device is
approximately 7 inches long (with the 802.11 card inserted)
and approximately 4 inches wide. The sensor has a Logitech
3000 USB-based video camera, 64 Mbytes of memory, the
Linux 2.4.19 operating system kernel, and an 802.11-based
networking card. Note that while 802.11 is currently being
used, it is possible to replace it with a lower-powered RF
radio device. By switching to a USB-based camera plat-
form, we were able to remove the power required to drive
the PC-Card. The video sensor is shown in Figure 1. The
complete device including the compression and transmis-
sion over 802.11 consumes approximately 5.5 Watts of power
while capturing and delivering video of 320x240 resolution
at 18-20 fps.

Yhttp://pads.east.isi.edu/ipaq.htm
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Figure 2: Panoptes Sensor Software Components

As far as we know, this is the first viable Intel StrongARM-
based video sensor that can capture video at a reasonable
frame rate (i.e. greater than 10 frames per second), while
using a small amount of power. The other platforms that we
are aware of will be described in the related work section.

2.2 Panoptes Sensor Software Architecture
There are a number of options available in architecting the
software on the video sensor. The components must perform
video capture, compression, filtering, buffering, adaptation,
and streaming. To connect the components, a number of al-
ternatives were considered including a single-threaded syn-
chronous architecture, a single-threaded asynchronous archi-
tecture, and a multi-threaded architecture with each compo-
nent acting as a thread. We chose to use a single-threaded
architecture with asynchronous movement of data through-
out the system. We felt that this allowed for the most con-
trol over the timing within the system, while allowing the
parts to be specialized for individual applications. The ma-
jor components of the system are shown in Figure 2. In the
rest of this section, we will briefly describe the individual
components.

2.2.1 Video Capture

As previously mentioned we chose a USB-based video cam-
era. We are using the Phillips Web Camera interface with
video for Linux. Decompression of the data from the USB
device occurs in the kernel before passing the data to user
space and allows for memory mapped access to decompressed
frames. Polling indicates when a frame is ready to be read
and further processed through a filtering algorithm, a com-
pressor, or both.

2.2.2 Compression

The compression of video frames, both spatially and tempo-
rally, allows for a reduction in the cost of network transmis-
sion. We have currently set up JPEG and differential JPEG
as the compression format on the Panoptes platform. Al-
though JPEG itself does not allow for temporal compression
of data, it saves on computational cost (relative to MPEG),
and thus power. Compression on the Panoptes sensor is
CPU bound, as a 320X240 4:1:1 YUV frame requires ap-
proximately 33 ms of CPU time (StrongARM 206 MHz).
As will be shown in the experimentation section, we have
taken advantage of some of Intel’s performance primitives
that are available for the StrongARM processor.

‘While we are not researching low-power video coding tech-
niques, we expect that other compression technologies can
be incorporated into the video sensor relatively easily.

2.2.3 Filtering

The main benefit of a general purpose video sensor is that it
allows for application specific video handling to be accom-
plished. For example, in a video security application, having
the video sensor filter uninteresting data without compress-
ing or transmitting it upstream allows the sensor network
to be more scalable than if it just transmitted the data up-
stream. For environmental observation, the filter may create
a time-elapsed image, allowing the data to be compressed
as it is needed by the application as well as minimizing the
amount that needs to be transmitted [12]. Finally, in appli-
cations that require meta information about the video (e.g.
image tracking), the filtering component can be set up to
run the vision algorithms on the data.

The filtering subcomponent in our system allows a user to
specify how and what data should be filtered. Because of
the relatively high cost of DCT-based video compression,
we believe that fairly complex filtering algorithms can be
run if they reduce the number of frames that need to be
compressed. For this paper, we have implemented a brute-
force, pixel-by-pixel algorithm that detects whether or not
the video has changed over time. Frames that are similar
enough (not exceeding a certain threshold) can be dropped
at this stage if desired.

2.2.4  Buffering and adaptation

Buffering and dynamic adaptation are important for a num-
ber of reasons. First, we need to be able to manage trans-
mitting video in the presence of network congestion. Sec-
ond, for long-lived, low-power scenarios, the network may
be turned off in order to save precious battery life. In our
case, using 802.11 networking accounts for approximately
1/3 of the power consumption. Finally, in the event that
the buffer within the video sensor fills up, efficient mech-
anisms need to be in place that allow the user to specify
which data should be discarded first.

For our sensor, we employ a priority-based streaming mech-
anism to support the video sensor. The algorithm presented
here is different from traditional video streaming algorithms
that have appeared in the literature (e.g. [5, 3]). The main
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Figure 3: A Dynamic Priority Example

difference is that in traditional video streaming algorithms,
the video data is known in advance but needs to be delivered
in time for display. For most non-real-time video sensor ap-
plications, the video data is being generated at potentially
varying frame rates to save power and the data being cap-
tured is being generated on the fly.

Priority-Based Adaptation: We have defined a flexible priority-
based streaming mechanism for the buffer management sys-
tem. Incoming video data is mapped to a number of pri-
orities defined by the applications. The priorities can be
used to manage both frame rate and frame quality. The
mapping of the video into priorities is similar to that in [5,
8]. The buffer is managed through two main parameters: a
high-water mark and low-water mark. If the buffered data
goes beyond the high-water mark (i.e. the buffer is getting
full), the algorithm starts discarding data from the lowest
priority layer to the highest priority layer until the amount
of buffered data is less than the low-water mark. Within a
priority level, data is dropped in order from the oldest data
to the newest. This allows the video data to be smoothed as
much as possible. It is important to note that the priority
mapping can be dynamic over time. For example, in the
environmental monitoring application, the scientist may be
interested in higher quality video data during low and high
tides but may still require video at other times. The scientist
can then incrementally increase the quality of the video dur-
ing the important periods by increasing the priority levels.
Figure 3 shows one such dynamic mapping,.

Data is sent across the network in priority order (highest
priority, oldest frame first). This allows the sensor to trans-
fer its highest priority information first. We believe that
this is particularly important for low-power scenarios where
the sensor will disconnect from the network to save power
and scenarios where the network is intermittent. As shown
in the example, frames from the regions labeled (a) and (c)
are delivered first. Once the highest priority data are trans-
mitted, the streaming algorithm then transmits the frames
from regions (a), (c), and (d). Note, that the buffering and
streaming algorithm can accept any number of priority lay-
ers and arbitrary application-specific mappings from video
data to priority levels.

3. THE LITTLE SISTER SENSOR
NETWORKING APPLICATION

Video sensor networking technologies must be able to pro-
vide useful information to the applications. Otherwise, they
are just capturing data in futility. In order to demonstrate
the usefulness of video-based sensor networking applications,
we have implemented a scalable video surveillance system
using the Panoptes video sensor. The system allows video
sensors to connect to it automatically and allows the sensors
to be controlled through the user interface. We will provide
a demonstration of our system at the ACM Multimedia con-
ference. The video surveillance system consists of a number
of components, including the video sensor, a video aggre-
gating node, and a client interface. The components of the
system are shown in Figure 4 and are described in the rest
of this subsection.

3.1 The User Interface

The user interface for the Little Sister Sensor Networking
application that we have deployed in our lab is shown in
Figure 5. In the bottom center of the application window
is a list of the video sensors that are available for the user
to see. The list on the right is a list of events that the
video sensor has captured. The cameras are controlled by
a number of parameters which are described in the next
section. The video window on the left allows events to be
played back. In addition, it allows basic queries to be run
on the video database. We will describe the queries that our
system can run in the Query Manager section.

3.2 Video sensor software

In this application, the video sensors are fully powered and
employed 802.11 wireless networking to network the sensor
to the aggregating node. To maximize the scalability of the
system, we have implemented a simple change detection fil-
tering algorithm. The basic goal of the motion filtering is
to identify events of interest and have it capture video for
the event. This algorithm does a pixel by pixel compar-
ison in the luminance channel. If sufficient pixels within
a macroblock are greater than some threshold away from
their reference frame, then the image is marked as differ-
ent and recording of the video data begins. The video is
then recorded until motion stops for a user-defined time,
event_end_time. The event_end_time allows us to continue
recording in the event that the object being recorded stops
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Figure 5: The Little Sister Sensor Networking Application

for a while and then continues movement. For example, a
person walking into the room, sitting down to read a few web
pages, and then leaving may have 5 second periods where no
motion is perceived (i.e. the person is just reading without
moving).

In addition to event recognition component, we propose a
simple bitmapping algorithm for the efficient querying and
access to the stored video data. To accomplish this, we
create a map of the video data as an event that it is record-
ing unfolds. For each image, a binary bitmap is created
where each bit represents whether or not the macroblock?
has changed. This allows us to create an image bitmap of
where the interesting areas of the video are. Furthermore, as
will be described in the next section, the video aggregation
node can use this to expedite queries for the users.

Upon activation, the sensors read their configuration file to
set up the basic parameters by which they should operate,
including frame rate, video quality, video size, IP address
of the video aggregator, etc. While we statically define the
parameters by which they operate, one can easily imagine
incorporating other techniques for managing the sensors au-
tomatically.

3.3 Video Aggregation Software

The video aggregation node is responsible for the storage
and retrieval of the video data for the video sensors and the
clients. It can be at any IP connected facility. There are a

216x16 pixel block. Refer to [10] for details.

number of components within the video aggregation node.
The three principle parts are the camera manager, the query
manager, and the stream manager.

The camera manager is responsible for dealing with the
video sensors. Upon activation, the video sensors register
themselves with the camera manager. This includes infor-
mation such as the name of the video sensor. The camera
manager also handles all the incoming video from the video
sensors. In order to maximize the scalability of the sen-
sor system, multiple camera managers can be used. One
important part of the camera manager is that it creates
an event_overview_map using the bit-mapped information
that is passed from the video sensor. The purpose of the
event_overview_map is to create an overview of the entire
event to aid in the efficient querying of the video data. The
event_overview_map can be constructed in a number of ways.
In this paper, we describe two such techniques. Before de-
scribing the techniques, it is important to remember that
our goal is to make the system more scalable. The bit-maps
allow for events of interest to be retrieved. Technologies
such as object tracking and object recognition can be used
in conjuction with this system.

Union maps take all the image bitmaps for a single event and
combine them together into the event_overview_map using a
bitwise OR. This allows the system to quickly find events of
interest (e.g. Who took the computer?). An example of the
union map for someone walking through our lab (Figure 6(a)
is shown in Figure 6(b). Trail maps extend the notion of
union maps by incrementing a counter for every n images.
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Figure 6:

This allows an event characterization to be accomplished.
For example, the trail bitmap can be used to distinguish
people entering the lab or exiting. In Figure 6(c), we have
shown a sample trail map for someone entering the lab and
walking through it, while not touching any computers in the
right side of the lab. We have currently incorporated union
maps into our sample application.

The query manager is responsible for handling requests from
the clients. Queries are entered into the video window. The
user can right click to highlight 16x16 pixel regions within
the video screen. The user can select any arbitrary shape
of regions of interest. Upon receiving the query, the query
manager finds all events within the system that have one of
the regions in its event_overview_map. The list of matching
events is then returned to the user. As an example, we have
shown a sample query, in which the user highlighted part
of the computer at the bottom of the image. The query
manager responded with only three events. Compared with
the large list of events from the same camera in Figure 5,
the simple bitmapping algorithm has reduced the number of
events considerably. Note that the last event on the list is a
video clip capturing a student moving the computer to his
cube.

The stream manager is responsible for streaming events of
interest to the clients. We have implemented the camera,
query, and stream managers as separate components in order
to maximize the scalability of the system. While we have
all three components running on a single host, it is possible
to have them on separate hosts.

4. EXPERIMENTATION

In the first part of this section, we will describe the exper-
imental results that we obtained from the various compo-
nents of the video sensor including metrics such as power
consumption, frame rate, and adaptability to networking
resources.

4.1 USB Performance

One of the interesting limitations of using USB to receive the
video data from the camera is that its internal bandwidth
is limited to 12 megabits per second. This 12 megabits in-
cludes USB packet header overhead so that the actual us-
able bandwidth is less. For a typical web camera capturing
in 4:2:0 YUV at 320x240 pixel resolution, the theoretical
maximum frame rate sustainable is only 13 frames per sec-

(b)

Union Map and Trail Map Examples

[ Image Size | Compression [ fps [ % System CPU ]

160x120 0 29.63734 4.475

1 29.76638 22.289

3 29.88162 15.708
320x240 0 4.87626 2.849

1 28.71610 67.166

3 29.68214 44.495
640x480 0 - -

1 14.13746 82.656

3 14.73258 77.651

Table 1: Effect of USB Compression on Framerate
and System Usage

ond. Fortunately, or unfortunately, most USB cameras pro-
vide primitive forms of compression over the USB bus using
mostly proprietary algorithms. The alternatives to this are
firewire and USB 2.0. Most of the low-power embedded pro-
cessors do not support either technology because the manu-
facturers feel that the processors are unable to fully utilize
the bandwidth.

When testing the video capture capabilities of the sensor, we
set it up to grab video frames from the camera as quickly as
possible, and then simply discard the data. For each reso-
lution and USB compression setting, we recorded the frame
rate as well as the amount of load that doing so puts on the
sensor. We measured two metrics for a variety of parame-
ters over 3,000 captured frames: (i) the average frame rate
captured and (ii) the amount of load placed on the system.
To measure frame rate, we took the total frames captured
and divided it by the time required to capture all of the
frames. The latter measurement shows us the load that the
driver places on the system. To measure this, we ran the ex-
periment to capture 3000 frames and then used the rusage
system call to find out the user, system, and total time of
the experiment. We then calculated system load by sum-
ming the user and system times and dividing this by the
total time.

Table 1 lists the performance of the video sensor using the
various compression settings and frame sizes. The Philip’s
based video camera can only be set to three different reso-
lutions: 160x120, 320x240, and 640x480. As shown in the
table, the sensor is easily able to capture 160x120 video.
This is not unexpected as the total bandwidth required to
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transmit 160x120 video at 30 frames per second is only
6.9 megabits, well beneath the USB bus bandwidth limit.
For the various compression levels (1 being a higher quality
stream with less compression and 3 being the lowest quality
stream with high compression), we found that the system
load introduced can be quite significant for the lightweight
sensor. At the lowest compression setting, 22% of the CPU
capacity is needed to decompress the video data from the
USB camera. We believe that much of this time is spent
touching memory and moving it around, rather than run-
ning a complex algorithm such as an IDCT. Using higher
compression for the video data from the USB camera re-
duces the amount of system load introduced. We suspect
that this is due to the smaller memory footprint of the com-
pressed frame.

At 320x240, we encounter the Achilles’ Heel of the USB-
based approach. Using uncompressed data from the camera,
we are only able to achieve a frame rate of 5 frames per sec-
ond (similar to the PC-card based approaches). With higher
overhead (i.e. more time for decompression), we can achieve
full frame rate video capture. In addition, we see that the
amount of system load introduced is less than that required
for the 160x120 stream. We suspect that this is again due to
I/0 being relatively slow on the video sensor. At 640x480,
the video camera driver will not let the uncompressed mode
be selected at all. Theoretically, one could achieve about 3
frames per second across the USB bus, but we suspect that
if this mode were available, only 1 frame per second would
be achievable. Using compression, we are able to achieve
14 frames per second, but we pay a significant penalty in
having the video decompressed in the driver.

As an aside, we are currently working on obtaining an NDA
with Philips so that the decompression within the driver can
be optimized as well as possibly allowing us to stay in the
compressed domain.

4.2 Compression Performance

We now focus on the ability of the video sensor to com-
press data for transmission across the network. Recall, we
are interested in using general purpose software, so that al-
gorithms such as filtering or region-of-interest coding can

IPP | ChenDCT

Image size | (ms) | (ms)
320x240 26.98 | 73.34
640x480 104.14 | 278.24

Table 2: Standalone Optimized vs. Unoptimized
Compression Routines

be accomplished on an application-specific basis. Software
compression also allow us to have control over the algorithms
that are used for compression (e.g. nv, JPEG, H.261, or
MPEG).

To measure the performance of compression on the 206 MHz
Intel StrongARM processor, we measure the performance of
an off-the-shelf JPEG compression algorithm (ChenDCT)
and a JPEG compression algorithm that we implemented to
take advantage of some of Intel’s StrongARM Performance
Primitives. In particular, there are some hand-coded as-
sembly routines that use the architecture to speed up multi-
media algorithms. Among these are algorithms to perform
the DCT algorithm, quantization and Huffman encoding.
For test data, we use a sample image in 4:2:0 YUV planar
form taken from our lab and use it to test just the compres-
sion component. For each test, we compressed the image
300 times in a loop and averaged the measured compression
times.

As shown in Table 2, we are able to achieve real-time com-
pression of 320x240 pixel video using the Intel Performance
Primitives. More importantly, it takes approximately one
third the time using the primitives compared with using a
less optimized software only algorithm. Asshown in the sec-
ond row of the table, compressing a larger image scales lin-
early in the number of pixels and that we are able to achieve
approximately 10 frames per second using a high-quality im-
age. It should be noted that the compression times using
the IPP are dependent on the actual video content. For our
experimentation, we chose a reasonable image of our lab
(similar to those shown in Figure 5).



IPP ChenDCT
Image size | (ms) (ms)
320x240 30.307 102.334
640x480 120.006 304.630

Table 3: Optimized vs. Unoptimized Compression
Routines

| [ 320x640 | 640x430 |

PWC Decode 16.96 55.99

Jpeg Encode 29.24 113.20
Bitmap Compare 6.00 23.40
Image Copy 2.19 9.38
Msg Create 0.54 1.24
Other 1.347 4.75

Table 4: Average Time Per Component in ms

4.3 Component Interaction

Having described the performance of individual video sensor
components, we now focus on how the various components
come together.

Because the capture and compression routines make up a
large portion of the overall computing requirement for the
video sensor, we are interested in understanding the inter-
action between them. Table 3 shows the performance of
the sensor in capturing and compressing video data. Inter-
estingly, the capture and compression with the Intel Per-
formance Primitives results in approximately 4 milliseconds
of overhead per frame captured. This scales linearly as we
move to 640x480, requiring an additional 16 milliseconds per
frame. For the ChenDCT algorithm, using either 320x240
or 640x480 video, the overhead of capturing data introduces
a 24 millisecond overhead per frame. This seems to indicate
that because the ChenDCT algorithm is unable to keep up
the ability to capture video data that the I/O is being amor-
tized during compression.

To fully understand what is going on, we have instrumented
a version of the code to measure the major components
of the sytem. To do this, we inserted gettimeofday() calls
within the source code and recorded the amount of time
spent within each major code segment over 500 frames. The
time spent in each of these components is shown in Table 4.
For the 320x240 pixel images, nearly all the time is spent in
the USB decompression module and compressing the video
data. Our expectation is that with an appropriately opti-
mized USB decompression module we will be able to achieve
near real-time performance.

For applications where video quality and not video rate is
important, we see that at 640x480 pixel video, we are able
to achieve on the order of 5 frames a second. We note that
this frame rate is better than previously published results
for 320x240 video data. In addition, we see that the time to
compress the 640x480 video stream scales quite well, which
is not entirely unexpected.

4.4 Power Measurements
To determine how much power is being drawn from the video
sensor, we instrumented the sensor with an HP-3458A digi-

System State Power (watts)
Idle 1.473
CPU Loop 2.287
w/Camera 3.049
w/Camera in sleep 1.617
w/Network 2.557
w/Camera & Network 4.280
Capture Running 5.268
Sleep 0.058

Table 5: Average Power Per Component in Watts

tal multimeter connected to a PC. This setup allows us to log
the amount of current (and thus power) being consumed by
the video sensor. To measure the amount of power required
for the various components, we have run the various com-
ponents in isolation or layered on top of another subsystem
that we have already measured. The results of these mea-
surements can be applied to power management algorithms

(e-g. [9])

The results of the experiments are shown in Figure 8. From
the beginning of the trace until about 6 seconds into the
trace, the video sensor is turning on and configuring itself.
During this time, the power being drawn by the sensor is
highly variable as it configures and tests the various hard-
ware components on the board. Seconds 6 to 10 show the
power being drawn by the system when it is completely idle
(approximately 1.5 watts). Seconds 10-13 show the video
camera turned on without capturing. As shown by the dif-
ferential from the previous step, the camera requires ap-
proximately 1.5 watts of power to operate. Seconds 13-16
show the camera sleeping. Thus, over a watt of power can
be saved if the sensor is incorporated with other low-power
video sensor technologies that notify it when to turn on. In
seconds 19-22, we show the power required to have just the
network card on in the system but not transmitting any data
(approximately 2.6 watts). In seconds 22-27, we added the
camera back into the system. Here we see that the power
for the various components is pretty much additive, making
it easier to manage power. That is, the jump in power re-
quired to add the camera with and without the network card
in is approximately the same. In seconds 27-38, we show the
entire system running. As one would expect with a wireless
network, the amount of power being drawn is fairly variable
over time. Between seconds 38-40, we removed the cam-
era and the network card, returning the system to idle. We
then ran the CPU in a tight computational loop to show
the power requirements while being fully burdened. Here,
we see that the system by itself draws no more than 2.5
watts of power. Finally, we put the sensor in sleep mode
(seconds 50-55). In the sleep state, the sensor requires very
little power (approximately 0.05 watts of power).

We have summarized the results in Table 5. The most im-
portant thing to draw from the experiments is that the
power consumed by the sensor is relatively constant over
time. The only variability comes from the network transmis-
sion. As a result, we expect that the algorithms for power
management that are being worked on by others might fit
into this frame work without much modification.
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Figure 8: Power Consumption Profile

4.5 Buffering and adaptation

To test the ability of the sensor to deal with disconnected
operation, we have run experiments to show how the video
rate is adapted over time. In these experiments, we have
used a sensor buffer of 4 megabytes with a high and low
water mark of 3.8 and 4 megabytes, respectively.

For these experiments, we first turned on the sensor and
had it capture, compress, and stream data. The experiment
then turned the network card on and off for the times shown
in Figure 9(a). The “on” times are shown as a value of 1
in the graph, while the “off” state is shown as a value of
0. As shown by Figures 9(b) and (c), the video sensor is
able to cope with large amounts of disconnected time, while
managing the video buffer properly. During down times,
we see that the buffer reaches its high water mark and then
runs the algorithm to remove data, resulting in the sawtooth
graph shown in Figure 9(c). Once reconnected, we see that
the buffer begins to drain with the networking bandwidth
becoming more plentiful relative to the rate at which the
video is being captured. Had the network been constrained,
instead of off, the algorithm would converge to the appro-
priate level of video.

S. RELATED WORK

There are a number of related technologies to the proposed
system detailed in this paper.

5.1 Sensor Networking Research
There are a tremendous number of sensor networking tech-

nologies being developed for sensor networking applications [4].

From the hardware perspective, there are two important sen-
sors: the Berkeley Mote [7] and the PC-104-based sensor
developed at UCLA [1]. The Berkeley Mote is perhaps the
smallest sensor within the sensor networking world at the
moment. These sensors are extremely low powered and have
a very small networking range. As a results these sensors are
really useful for collecting very small amounts of informa-
tion. The PC-104-based sensor from UCLA is the next log-
ical progression in sensor technologies that provides slightly
more compute power. We believe the Panoptes platform is
the next logical platform within the hierarchy of sensor net-

work platforms. We expect that hybrid technologies, where
Motes and the PC-104-based sensors can be used to trigger
higher-powered sensors such as ours. This would allow the
sensor network’s power consumption to be minimized.

In addition to hardware sensors, there are a large number of
sensor networking technologies that sit on top of the sensors
themselves. These include technologies for ad hoc routing,
location discovery, resource discovery, and naming. Clearly,
advances in these areas can be incorporated into our video
sensor technology.

5.2 Mobile Power Management

Mobile power management is another key problem for long-
lived video sensors. There have been many techniques fo-
cused on overall system power management. Examples in-
clude the work being done by Kravets at UIUC, Noble at
Michigan, and Satyanarayanan at CMU [9, 6, 2]. We have
not yet implemented power management routines within the
video platform. We expect that the work presented in the
literature can be used to control the frame rate of the video
being captured as well as when the networking should be
turned on and off to save power.

5.3 Video Streaming Technologies

There have been a large number of efforts focused on video
streaming across both reservation-based and best-effort net-
works, including our own. As previously mentioned, the
work proposed and developed here is different in that the
that for streaming mainly due to the continuity requirements
of streaming technologies.

For video streaming across wireless networks, there have
been a number of efforts focused on maximizing the quality
of the video data in the event of network loss. These schemes
are either retransmission-based approaches (e.g. [11]) or for-
ward error correction based (e.g. [13]).

6. CONCLUSION AND FUTURE WORK

In this paper, we have described our initial design and im-
plementation of the Panoptes video sensor networking plat-
form. There are a number of significant contributions that
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this paper describes. First, we have developed a low-power,
high-quality video capturing platform that can serve as the
basis of video-based sensor networks as well as other appli-
cation areas such as virtual reality or robotics. Second, we
have designed a prioritizing buffer management algorithm
that can effectively deal with intermittent network connec-
tivity or disconnected operation to save power. Third, we
have designed a bit-mapping algorithm for the efficient query-
ing and retrieval of video data.

Our experiments show that we are able to capture fairly
high quality video running on low amounts of power, ap-
proximately the same amount of power required to run a
standard night light. In addition, we have showed how the
buffering and adaptation algorithms manage to deal with
being disconnected from the network.

While we have made significant strides in creating a viable
video sensor network platform, we are far from done. We
are currently in the process of assembling a sensor with a
wind-powered generator for deployment along the coast of
Oregon. Our objective is to use a directed 802.11 network
to have a remote video sensor capture video data for the
oceanographers at Oregon State. We have an operational
goal of having the sensor stay alive for a year without power
or wireline services. We are also working on creating an open
source platform that can be used by researchers to include
the fruits of their research. The goal is to have the sensors
in use for research areas such as robotics, computer vision.
Finally, we are working on similarity searching algorithms
for the trail maps being generated.
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