
Teaching with angr: A Symbolic Execution Curriculum and CTF∗

Jacob M. Springer Wu-chang Feng
Portland State University

Department of Computer Science

Abstract

Symbolic execution is an essential tool in modern pro-
gram analysis and vulnerability discovery. The technique
is used to both find and fix vulnerabilities as well as to
identify and exploit them. In order to ensure that sym-
bolic execution tools are used more for the former, rather
than the latter, we describe a curriculum and a set of scaf-
folded, polymorphic, “capture-the-flag” (CTF) exercises
that have been developed to help students learn and uti-
lize the technique to help ensure the software they pro-
duce is secure.

1 Introduction

Software flaws and vulnerabilities are inevitable, with
one occurring in approximately every 100 lines of code
written. With the sheer amount of code being produced,
it is becoming exceedingly difficult to secure the soft-
ware we rely upon. The fact that flawed source code is
often shared among many projects exacerbates the im-
pact of any underlying vulnerabilities. Unfortunately, de-
velopers properly trained in security, though increasingly
more important to software development, are scarce. To
address this problem, there has been increasing interest
in automating the process of vulnerability discovery and
patching. Such was the goal of DARPA’s recent Cy-
ber Grand Challenge (CGC), a contest where comput-
ers were tasked with automatically analyzing, exploit-
ing, and ameliorating vulnerabilities in arbitrary binaries.
One of the key techniques used by all of the teams was

∗This material is supported by the National Science Foundation un-
der Grant Nos. 1623400 and 1821841. Any opinions, findings, and
conclusions or recommendations expressed in this material are those
of the author and do not necessarily reflect the views of the National
Science Foundation.

symbolic execution, significantly reducing the time re-
quired to effectively analyze code paths within a target
binary.

Since it is possible now for adversaries to employ sym-
bolic execution to find vulnerabilities, it is critical that
software developers master the technique as well. Un-
fortunately, the concepts and tools surrounding symbolic
execution are rarely taught in computer science curricula,
leaving many students at a disadvantage when attempting
to write vulnerability-resistant software. To address this
problem, this paper describes and evaluates a curriculum
for teaching the concepts of symbolic execution along
with a scaffolded, polymorphic set of Capture-the-Flag
(CTF) challenges. The curriculum and CTF are freely
available in order to enable computer science programs
across the country to teach these techniques to students
within their security and software engineering courses.

2 Background

Symbolic execution has fundamentally changed how
programs are now being tested. Analogous to solving
algebraic expressions, symbolic execution explores pos-
sible code execution paths until it identifies a potential
vulnerability, at which point it attempts to solve for the
particular input that will exploit the vulnerability. More
specifically, a symbolic execution engine replaces input
with “symbolic input”—analogous to an algebraic vari-
able—and walks through code paths, “constraining” the
symbolic input at each branch such that an input to the
program that satisfies all constraints will cause the pro-
gram to reach that particular path. The engine can then
explore many possible execution paths until it identifies a
specific path or program state of interest, at which point
it can determine the input which would trigger it.

1 if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
2 goto fail;
3 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
4 goto fail;
5 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
6 goto fail;
7 goto fail; /* MISTAKE! THIS LINE SHOULD NOT BE HERE */
8 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
9 goto fail;

10

11 err = sslRawVerify(...);

Figure 1: Apple’s goto fail bug

One of the key applications for symbolic execution
is to catch programming errors. For example, Figure 1
shows the bug in Apple’s SSL implementation in which
a duplicate goto fail; statement in line 7 was in-
jected into code, allowing one to bypass certificate vali-
dation with a carefully crafted certificate. In the figure,
the duplicate goto fail; is always executed, and, as
a result, the code between it and the fail: label is un-
reachable. Symbolic execution can be used to catch such
an error by automatically discovering that no input will
allow the program to reach the SSLRawVerify() call
in line 11.

Two key issues with symbolic execution prevent sym-
bolic execution engines from running efficiently. First,
executing programs symbolically can lead to state-space
explosion as the engine can encounter too many pos-
sible execution paths to check in a reasonable amount
of time. Second, the engine may place arbitrary con-
straints on variables and thus satisfying all of them is
an instance of satisfiable modulo theories (SMT), which
is NP-complete. As a result, symbolic execution en-
gines can borrow from fuzzers in selectively choosing
to concretize certain input that is deemed uninteresting
in order to save execution overhead. This technique,
known as concolic execution, can be extremely power-
ful and was used in the fast and automatic discovery
of the crackaddr vulnerability [1]. One of the most
prominent early examples of concolic testing was SAGE
from Microsoft, which is used internally to help secure
the Windows operating system since Windows 7. Open-
source versions such as KLEE [2] and S2E [3] are now
widely used in industry and academia to discover and
patch security vulnerabilities [4, 5].

3 Curriculum and CTF

In order to facilitate the teaching and training of students
in applying symbolic execution on program binaries, we
have developed a curriculum and set of scaffolded CTF
challenges. The curriculum consists of 4 modules of-
fered in 4 classes, each an hour and 50 minutes long.
Students are introduced to specific concepts in a lecture
format and immediately follow it by attempting to solve
levels linked to each concept presented. The symbolic
execution CTF exercises leverage MetaCTF, a prior, CTF
designed for teaching malware reverse-engineering [6].
In MetaCTF, reverse engineering is used to determine a
password that, when entered, causes the level binary to
output the string "Good Job.". Such a construction
is helpful since it allows students to focus on a specific
goal that does not change for each level.

Adapting this level design, an analogous set of CTF
levels that target the teaching of symbolic execution was
designed. The CTF is based upon angr [7], an open-
source symbolic execution engine from University of
California, Santa Barbara. The CTF currently consists
of 18 polymorphically generated levels that require stu-
dents to apply symbolic execution in a variety of ways in
order to solve. Specifically the CTF levels task students
with writing Python programs using angr that load the
binary and symbolically execute it in order to identify
the password required to unlock the level. For each level,
students are given a template Python script with key parts
missing that they must fill in to allow angr to automat-
ically execute and discover the input required to solve
each of the polymorphic binaries. The templates contain
a detailed description of what students need to imple-
ment so that they can focus on the specific concept that
the level is attempting to cover. Each template is asso-
ciated with a specific polymorphic binary. The binaries

1 int check_code(int input){
2 if (input >= USERDEF+88) return 0;
3 if (input > USERDEF+100) return 0;
4 if (input == USERDEF+68) return 0;
5 if (input < USERDEF) return 0;
6 if (input <= USERDEF+78) return 0;
7 if (input & 0x1) return 0;
8 if (input & 0x2) return 0;
9 if (input & 0x4) return 0;

10 return 1;
11 }
12

13 int main (int argc, char** argv) {
14 int input;
15 scanf("%d", &input);
16 if (check_code(input))
17 printf("Good Job.\n");
18 else {
19 printf("Try again.\n");
20 }
21 }

Figure 2: C source code for MetaCTF level used to in-
troduce symbolic execution

themselves are constructed in a way that makes manual
reverse-engineering infeasible while at the same time, in
a way that allows symbolic exeuction to solve in a mod-
est amount of time. This is done by taking user input and
performing a simple hash function on it before passing it
into the level. By completing the CTF, students will have
gained sufficient experience and skills with symbolic ex-
ecution to then apply them to more complex cases. In the
following section, we describe each of the 4 modules.

3.1 Basic symbolic execution

The initial module and CTF levels cover basic sym-
bolic execution techniques including the algorithms be-
ing used to perform the execution and the abstractions
angr uses to access program execution. Within the in-
troductory lecture, a simple example is used to show
how symbolic execution works. The level, whose C
code is shown in Figure 2, is taken directly from a
MetaCTF level that students have solved earlier in the
course whose goal is to teach them how to decode con-
ditional branches. In the original level, students are only
given the compiled binary. Within the binary, each of
the comparisons in the C program is implemented with
a variety of conditional branches. By manually keep-
ing track of the contraints that allow the check code

function to eventually return 1 and cause the program to
print "Good Job.", students then calculate the solu-

1 int main(int argc, char* argv[]) {
2 char buf[9];
3

4 printf("Enter the password: ");
5 scanf("%8s", buf);
6

7 for (int i=0; i<LEN_USERDEF; ++i)
8 buf[i] = complex_function(buf[i], i)

;
9

10 if (strcmp(buf, USERDEF))
11 printf("Try again.\n");
12 else
13 printf("Good Job.\n");
14 }

Figure 3: C code for first CTF level

tion. Using this level, we simulate visually how sym-
bolic execution would keep track of all paths through the
program, executing each and splitting off states at each
conditional branch while updating the constraints in each
branch based on the path through the program. When
symbolic execution reaches the desired outcome state,
the constraints it has accumulated are exactly the same as
the constraints students had kept when manually solving
the level via reverse-engineering. However, instead of
manually solving the constraints, the symbolic execution
engine sends them to a constraint solver to automatically
determine the input that satisfies them (if any).

After the initial introduction, we task students with
solving their own polymorphically-generated levels us-
ing symbolic exeuction. The first level has students use
the find method in angr as well as its support for au-
tomatically making standard input symbolic, in order to
have the engine find an input that reaches a specific line
of code in a program. Figure 3 shows the source code for
the level. Students are then given the compiled binary
and asked to find the input that causes "Good Job." to
be printed. While they could manually reverse-engineer
the binary, as shown in the figure, the input they send
in is sent through a “complex function” to make reverse-
engineering the level more difficult than solving the level
with an angr script. Instead, students bring up the level
in a debugger or disassembler such as radare2, in or-
der to find the line of the binary that they will point angr
to in order to find the input that reaches it. For exam-
ple, Figure 4 shows the virtual address for the level that
contains the code for printing the "Good Job." string
(0x0804867a). Students simply use this address in the
find method and then run the engine in order to reveal

1 0x804867a ;[gi]
2 sub esp, 0xc
3 ; 0x8048760
4 ; "Good Job."
5 push str.Good_Job.
6 call sym.imp.puts;[gk]
7 add esp, 0x10

Figure 4: radare2 disassembly for first CTF level

the solution. Figure 5 shows the angr script which can
solve the level automatically once students fill in the vir-
tual address identified in radare2, thus allowing angr
to do the work for them.

In addition to using angr to find an input that results
in a specific program address to be reached, levels in the
introductory module also have students apply the avoid
condition to automatically terminate execution paths that
do not lead to useful states. This is necessary in some
cases because symbolic execution can otherwise become
prohibitively expensive due to state explosion. Finally,
while finding an input that causes the program to reach
a specific instruction is one way to apply symbolic exe-
cution, one can create arbitrary conditions for angr to
either terminate execution or to return a solution. One
particularly helpful condition that can be used is to find
program input that leads to specific program output. This
is appropriate in our levels since each level either outputs
"Good Job." or "Try again.". In this case, stu-
dents learn how to implement find and avoid states and
apply them to standard output to get the program to print
"Good Job." and avoid "Try again".

3.2 Symbol injection

For some binaries, only a subset of a program can be
symbolically executed. For example, one might wish to
symbolically execute a device driver within the kernel
rather than the entire operating system. To support this,
a common method in symbolic execution is to concretely
execute until a certain point, then insert symbolic values
for any number of desired locations. Note that while pre-
vious levels take advantage of the fact that standard input
is automatically made symbolic, typically symbols must
be injected manually.

In the second module of our CTF, levels that require
students to programmatically inject symbols into pro-
gram simulation are given. To facilitate this, students
are introduced to the concept of program states and how
angr can be used to concretely execute the binary until

a certain point in the program is reached. Students are
then introduced to the data structures used to instantiate
symbols and to inject them into the program’s execution
state. Specifically, the concept of bitvectors as imple-
mented via Claripy is introduced and example scripts are
shown that use the facility. With this, students are given
levels in which they must inject symbols into execution
state to solve. In one level, they replace specific regis-
ters with symbols. In other levels, they replace variables
stored either in statically allocated global memory, in dy-
namically allocated memory in the heap, or in specific
locations in the stack. Finally, they are given a level in
which the contents of a file are treated as symbolic.

Figure 6 shows the disassembly of the level in which
students are asked to start symbolic execution in the mid-
dle of a program after making a set of registers symbolic.
In the level, a call to the function get user input is
made in whicn values are read into three different regis-
ters. Students inject symbols into each register and start
symbolic execution right after the return from the func-
tion (0x80488d1). Figure 7 shows part of the angr
script that implements the solution. As the script indi-
cates, after specifying the start address for symbolic exe-
cution, Claripy bit-vectors are declared and injected into
the execution state. Conditions are then defined for suc-
cess and failure before the execution engine is invoked to
solve the level.

3.3 Constraints and function hooks

The third module introduces constraints and function
hooks for reducing the state-space being searched in ad-
dition to reducing the complexity of well-known func-
tions. Adding contraints on symbols is similar to avoid-
ing certain execution states as described previously.
When one can partially constrain certain symbols dur-
ing exeuction, effectively concretizing certain symbolic
input, it allows the symbolic execution engine to focus in
on inputs that are more interesting. To practice applying
contraints, the third module includes a level in which a
constraint can be applied during a specific part of exe-
cution that, when met, will allow execution to return a
solution without further execution.

Another way of addressing this problem is to replace
complex, but well-known functions, with a simplified
equivalent. For example, rather than symbolically ex-
ecute the complex standard C library routines which is
expensive and potentially unnecessary, angr automat-
ically hooks many of them and instead, replaces them

1 import angr
2 import sys
3

4 def main(argv):
5 path_to_binary = argv[1]
6 project = angr.Project(path_to_binary)
7 initial_state = project.factory.entry_state()
8 simulation = project.factory.simgr(initial_state)
9

10 print_good_address = 0x804867a
11 simulation.explore(find=print_good_address)
12

13 if simulation.found:
14 solution_state = simulation.found[0]
15 print solution_state.posix.dumps(sys.stdin.fileno())
16 else:
17 raise Exception(’Could not find the solution’)

Figure 5: angr solution script for first CTF level

1 0x080488cc call sym.get_user_input
2 0x080488d1 mov dword [local_14h], eax
3 0x080488d4 mov dword [local_10h], ebx
4 0x080488d7 mov dword [local_ch], edx
5 0x080488da sub esp, 0xc
6 0x080488dd push dword [local_14h]

Figure 6: radare2 disassembly for symbolic register
CTF level

with a simplified summary routine that executes con-
cretely. In order to teach students how to leverage hooks,
levels that require them to implement hooks within the
symbolic execution engine in order to replace parts of
the program being analyzed with simpler summaries are
given. Figure 8 shows a snippet from a level in which
students replace complex calls in the Standard C library
with simpler equivalents supplied by angr that are writ-
ten in Python and executed concretely. In doing so, the
level can be solved in significantly less time. Note that
while this level could be solved by brute-force, students
often insisted on solving the level the intended way in or-
der to learn what the level was attempting to teach them.

3.4 Binary exploitation

The last module caps the curriculum and CTF by having
students apply angr to automatically find input that sub-
verts a vulnerable binary and relies upon concepts and
techniques in the previous three modules. The first set of
levels have students identify vulnerable reads and writes

in a program that can be exploited. Memory leaking such
as with the Heartbleed vulnerability and memory corrup-
tion such as with procedure-link table (PLT) hijacking
can occur when adversarial input controls a pointer that
is used to either read from or write to memory. To iden-
tify this vulnerability, the symbolic execution engine can
specifically look for unconstrained or symbolic mem-
ory reads and writes, that is, when a memory addressing
mode uses a register that is symbolic to either read from
or write to memory. In a first step towards leveraging
symbolic execution to automatically exploit vulnerabili-
ties, levels that teach students how to set up the engine to
look for unconstrained memory access and how to then
constrain the access to target specific locations for ex-
ploitation are used to solve levels of the CTF.

The final level serves as the capstone to the CTF. In
the level, students find and exploit an unconstrained ex-
ecution state. Specifically, students use symbolic exe-
cution to automatically identify and exploit a vulnera-
bility that allows the input to control a return address
stored on the stack. By pointing that return address
to a function of their choosing, they can then manipu-
late the binary’s code execution. Consider the source
code for the final level of the CTF shown in Figure 9.
As the figure shows, in normal operation, the program
prints "Try again." and exits. However, a buffer
overflow exists in the function read input that can
be leveraged to perform a return-oriented exploit that
allows the "print good" call to execute. One can
use symbolic execution to discover the buffer overflow
vulnerability exists because when the symbolic input is

1 start_address = 0x80488d1
2 initial_state = project.factory.blank_state(addr=start_address)
3

4 password0 = claripy.BVS(’password0’, 32)
5 password1 = claripy.BVS(’password1’, 32)
6 password2 = claripy.BVS(’password2’, 32)
7

8 initial_state.regs.eax = password0
9 initial_state.regs.ebx = password1

10 initial_state.regs.edx = password2
11

12 simulation = project.factory.simgr(initial_state)
13

14 def is_successful(state):
15 stdout_output = state.posix.dumps(sys.stdout.fileno())
16 return ’Good Job.’ in stdout_output
17

18 def should_abort(state):
19 stdout_output = state.posix.dumps(sys.stdout.fileno())
20 return ’Try again.’ in stdout_output
21

22 simulation.explore(find=is_successful, avoid=should_abort)

Figure 7: angr solution script template for symbolic register CTF level

1 initial_state = project.factory.entry_state()
2

3 project.hook(0x804ed40, angr.SIM_PROCEDURES[’libc’][’printf’]())
4 project.hook(0x804ed80, angr.SIM_PROCEDURES[’libc’][’scanf’]())
5 project.hook(0x804f350, angr.SIM_PROCEDURES[’libc’][’puts’]())
6 project.hook(0x8048d10, angr.SIM_PROCEDURES[’glibc’][’__libc_start_main’]())
7

8 simulation = project.factory.simgr(initial_state)
9

10 simulation.explore(find=is_successful, avoid=should_abort)

Figure 8: angr solution script for SimProcedure CTF level

made much larger than the size of the local buffers in the
read input routine, the address that contains the re-
turn address of the function becomes symbolic. When
the return associated with the function is then executed,
it will then generate an unconstrained state. That is, an
input has been found that has led the engine to a state in
which the instruction pointer itself is symbolic and can
take on any value. Finding this unconstrained state, how-
ever, doesn’t immediately lead to a level solution. In the
case of this particular level, we wish to find an input that
will lead to a return to the function "print good". To
do so, we need to find its address in assembly, then con-
strain the unconstrained instruction pointer to it, before
invoking the solver to generate the actual input that will
lead to the execution of "print good".

To do so, students first must use a debugger or disas-

sembler to find the address of "print good" as shown
in Figure 10. Then, they are tasked with adapting an
angr script that attempts to find an input that will cause
"print good" to be executed. Note that there will be
a very large number of potential solutions since all of the
bytes used to perform the overflow, aside from the ones
written to the return address on the stack can be arbi-
trary. Figure 11 shows part of the angr script students
write to find a solution to the level. As the figure shows,
the symbolic simulation is continuously stepped until an
unconstrained execution state is discovered. When one
is found, the instruction pointer is constrained to be the
address of the "print good" function before given to
the solver to produce the input which exploits the vulner-
ability to solve the level.

1 void print_good() {
2 printf("Good Job.\n");
3 exit(0);
4 }
5

6 void read_input() {
7 char padding0[RND1];
8 char buffer[8];
9 char padding1[RND2];

10 scanf("%s", buffer);
11 }
12

13 int main(int argc, char* argv[]) {
14 uint32_t key = 0;
15

16 printf("Enter the password: ");
17 read_input();
18

19 printf("Try again.\n");
20 return 0;
21 }

Figure 9: C code for unconstrained jump CTF level

1 sym.print_good ();
2 0x4d4c4749 push ebp
3 0x4d4c474a mov ebp, esp
4 0x4d4c474c sub esp, 8
5 0x4d4c474f sub esp, 0xc
6 0x4d4c4752 push str.Good_Job

.
7 0x4d4c4757 call sym.imp.puts

Figure 10: radare2 disassembly for unconstrained
jump CTF level

4 Evaluation

The first offering of our symbolic execution CTF based
on angr occurred in our Winter 2018 offering of Port-
land State University’s CS 492/592 Malware course. The
first 8 weeks of the course features a curriculum fo-
cused on malware analysis and reverse engineering using
a variety of techniques covering both static and dynamic
analysis. Students familiarize themselves with both Win-
dows and Linux tools analyzing binaries such as IDA
Pro and radare2 with a curriculum that aligns with the
first 18 chapters of the course’s textbook [8]. Throughout
this time, homework assignments are given via the scaf-
folded, metamorphic CTF described previously [6]. Note
that, as a direct result of our plan to introduce symbolic
execution with angr in the final two weeks of the class,
all of the CTF levels of the malware reverse-engineering
CTF had to be modified to resist symbolic execution.

Completion percentage No. of students

95-100% 25
85-95% 4
75-85% 6
Below 75% 7

Table 1: Level completion results

Without these mechanisms, a single symbolic execution
script was able to to solve almost half of the binaries in
this CTF.

In the final two weeks, all 4 modules of the symbolic
execution curriculum and CTF were covered. For each,
2 hour class, the first 30-45 minutes were spent introduc-
ing the concepts via lecture while the remaining time was
spent by students attempting to solve their individual lev-
els. At the beginning of each class, a set of hints were
given on earlier levels in order to keep students from
falling behind.

Table 1 lists the number of students who completed
a certain percentage of assigned levels. The majority of
students solved all of the levels indicating the curriculum
and the scaffolding of the CTF work well. To provide a
subjective measure of assessment, upon completion of
the material, an anonymous survey was given. Of the 42
students in the class, 33 responded. Table 2 lists the ques-
tions that were asked in the survey, while Table 3 shows
the results. As the table shows, students felt that the lec-
ture material and CTF exercises were helpful in learning
about symbolic execution and developing skills to apply
it. Compared to other methods used in the homework for
the course, the CTF exercises were also favored.

5 Conclusion

Symbolic execution is an important tool for ensuring that
the software we develop is free of bugs and vulnera-
bilites. This paper describes a curriculum and CTF for
not only teaching symbolic execution to students, but
also developing their skills in applying it to program bi-
naries. Results from an initial offering are promising and
the curriculum [9], along with a hosted site containing
the CTF [10], are both publicly available.

References

[1] DARPAtv, “DARPA’s Cyber Grand Challenge:
Final Event Program,” 2017, https://www.
youtube.com/watch?v=n0kn4mDXY6I.

1 while (has_active() or has_unconstrained_to_check()) and (not has_found_solution()):
2 for unconstrained_state in simulation.unconstrained:
3 simulation.move(’unconstrained’, ’found’)
4 simulation.step()
5

6 if simulation.found:
7 solution_state = simulation.found[0]
8 solution_state.add_constraints(solution_state.regs.eip == 0x4d4c4749)
9

10 solution = solution_state.posix.dumps(sys.stdin.fileno())

Figure 11: angr solution script for unconstrained jump CTF level

Question

Q1: Rate the lecture material for understanding the concepts behind symbolic execution.
Q2: Rate the CTF exercises for understanding the concepts behind symbolic execution.
Q3: Rate the CTF exercises for developing skills in using symbolic execution techniques.
Q4: Helpfulness of the CTF format compared to other homework formats used in our curriculum

Table 2: Survey questions for the angr CTF and curriculum in CS 492/592: Malware (Winter 2018)

Question 1 2 3 4 5 Mean rating

Q1 1 1 2 17 12 4.15
Q2 2 1 3 18 9 3.94
Q3 1 3 3 16 10 3.94
Q4 1 3 12 12 5 3.52

Table 3: Quality and Usefulness of Symbolic Exe-
cution module (1=Very Unhelpful, 2=Somewhat Un-
helpful, 3=Neither Helpful nor Unhelpful, 4=Somewhat
Helpful, 5=Very Helpful)

[2] The KLEE Team, “KLEE LLVM Execution En-
gine,” https://klee.github.io/.

[3] “S2E: A Platform for In-Vivo Analysis of Software
Systems,” https://s2e.systems/.

[4] J. Patrick-Evans, L. Cavallaro, and J. Kinder, “PO-
TUS: Probing Off-The-Shelf USB Drivers with
Symbolic Fault Injection,” in USENIX Workshop
on Offensive Technologies, August 2017.

[5] S. Kim, I. Yun, W. Xu, B. Lee, Y. Yun, and
T. Kim, “CAB-Fuzz: Practical Concolic Test-
ing Techniques for COTS Operating Systems,” in
USENIX Annual Technical Conference, July 2017.

[6] W. Feng, “A Scaffolded, Metamorphic CTF for
Reverse Engineering,” in USENIX 3GSE, August
2015.

[7] “angr, a binary analysis framework,” http://
angr.io/.

[8] M. Sikorski and A. Honig, Practical Malware
Analysis: The Hands-On Guide to Dissecting Ma-
licious Software, No Starch Press, 2012.

[9] W. Feng, “CS 492/592: Malware,”
http://thefengs.com/wuchang/
courses/cs492.

[10] W. Feng, “CS 492/592: Malware CTF site,”
https://malware.oregonctf.org.

