
Concolic Execution of NMap Scripts for Honeyfarm Generation
Zhe Li

Department of Computer Science
Portland State University
Portland, Oregon, USA

zl3@pdx.edu

Bo Chen
Department of Computer Science

Portland State University
Portland, Oregon, USA

chenbo@pdx.edu

Wu-chang Feng
Department of Computer Science

Portland State University
Portland, Oregon, USA

wuchang@pdx.edu

Fei Xie
Department of Computer Science

Portland State University
Portland, Oregon, USA

xie@pdx.edu

ABSTRACT
Attackers rely upon a vast array of tools for automating attacks
against vulnerable servers and services. It is often the case that
when vulnerabilities are disclosed, scripts for detecting and exploit-
ing them in tools such as Nmap and Metasploit are released soon
after, leading to the immediate identification and compromise of
vulnerable systems. Honeypots, honeynets, tarpits, and other decep-
tive techniques can be used to slow attackers down, however, such
approaches have difficulty keeping up with the sheer number of
vulnerabilities being discovered and attacking scripts that are being
released. To address this issue, this paper describes an approach for
applying concolic execution on attacking scripts in Nmap in order
to automatically generate lightweight fake versions of the vulnera-
ble services that can fool the scripts. By doing so in an automated
and scalable manner, the approach can enable rapid deployment of
custom honeyfarms that leverage the results of concolic execution
to trick an attacker’s script into returning a result chosen by the
honeyfarm, making the script unreliable for the use by the attacker.

ACM Reference Format:
Zhe Li, Bo Chen, Wu-chang Feng, and Fei Xie. 2021. Concolic Execution of
NMap Scripts for Honeyfarm Generation. In Proceedings of the 8th ACM
Workshop on Moving Target Defense (MTD ’21), November 15, 2021, Virtual
Event, Republic of Korea. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3474370.3485660

1 INTRODUCTION
When it comes to identifying and compromising targets, automation
is essential in making an adversary’s workflow more efficient and
productive. Network tools such as Nmap [22] allow attackers to ef-
ficiently perform reconnaissance while tools such as Metasploit
and sqlmap allow attackers to streamline exploitation of vulnerable
systems that have been identified. Many offensive tools are built

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MTD ’21, November 15, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8658-6/21/11. . . $15.00
https://doi.org/10.1145/3474370.3485660

using modular frameworks that support extensibility via scripts, al-
lowing developers to continuously update the capabilities of the tool.
Such updates are often published immediately after new vulnerabil-
ities are disclosed, allowing anyone (both good and bad) to locate
and exploit vulnerable systems. For example, within a month of the
Eternal Blue release [2], updates to attack tools allowed adversaries
to leverage the flaw with devastating effects before systems could be
patched. In an even more severe case, on the day the Apache Struts
vulnerability involved in the Equifax breach was disclosed, identi-
fication and attacking scripts were published for it, thus allowing
adversaries to instantly scan for vulnerable systems and exploit them
soon after [6].

One way to slow down automated tooling is to use fake networks
and servers to either trick automated tools into believing they are
interacting with a real vulnerable system (such as with honeypots
and honeynets) or to selectively terminate the operation of the script
by denying access (such as with web application firewalls). Unfortu-
nately, due to the massive code bases being used and the volume of
vulnerabilities that are being discovered, it is difficult to keep such
approaches up to date and to scale them to the number of vulnerabil-
ities that are being disclosed. Thus, it is important that automated
defenses keep up with this arms race and attempt to make some
of the most common tasks an adversary relies upon more difficult
and time-consuming. In particular, as reconnaissance and targeting
are critical in an attack, slowing down or degrading this capability
can provide defenders valuable breathing room in protecting their
networks.

Towards this end, this paper describes an approach for applying
concolic execution on scripts in Nmap that are used for performing
reconnaissance and scanning. The goal is to generate responses that
can allow automated defenses to trick the script into an arbitrary
state within itself. The approach is driven by the observation that
most Nmap scripts for scanning and identifying vulnerable hosts are
well structured and clean. By using concolic execution to generate
responses that can fool such scripts into its various execution states,
one can slow down an adversary enough to allow for vulnerabilities
to be remediated. For example, returning a response that causes a
script to identify a service as vulnerable could be used to set up
potemkin honeyfarms [40], while returning an input that causes a
script to identify a service as not vulnerable could be used at the
network edge as an application firewall to stop reconnaissance.

https://doi.org/10.1145/3474370.3485660
https://doi.org/10.1145/3474370.3485660
https://doi.org/10.1145/3474370.3485660

Section 2 provides a survey on embedded scripts, and symbolic
and concolic execution, particularly CRETE [10], the concolic testing
tool which we utilize. Our approach specifically targets Lua, the
scripting language used in Nmap, a commonly used reconnaissance
tool. Section 3 describes our approach for applying concolic exe-
cution to efficiently execute Nmap scripts in order to generate sets
of responses that can reach each execution state of a script. Sec-
tion 5 discusses a preliminary evaluation of our approach. Section 6
provides an overview of related work while Section 7 concludes.

2 BACKGROUND
2.1 Embedded Scripting and Nmap
Scripts are commonly used in attack tools because they allow for
easy and rapid programming at a higher level of abstraction and
can be easily embedded within the tool to extend its functionality
without recompilation [5]. Typically, such scripts are executed by
an interpreter program that is supported by a host program through
system language API calls, often called the glue layer. Most existing
interpreters are designed to be embedded into a glue layer written
in C [17]. Examples include CPython (Python and C) [4], Ricsin
(Ruby and C) [32], and Luabind (Lua and C++) [30].

Lua, in particular, is intended to be embedded into C applications
and provides developers a mature C API to integrate with. As a result,
it has been extensively used with C in many practical applications
such as Apache2 (web server), OpenResty3 (application server), and
Awesome4 (window manager for X). It is also used within Nmap, an
open-source utility for network discovery and security auditing that
is prevalently used by security practitioners and adversaries alike.
Nmap comes with a scripting engine (Nmap scripting engine or NSE)
that is based on Lua, as well as a set of commonly used NSE scripts
for supporting common reconnaissance tasks. The scripts are contin-
ually updated so that scanning can include the latest vulnerabilities
being discovered. Figure 2 shows an overall architecture of Nmap.

2.2 Symbolic Execution
The goal of our work is to symbolically execute NSE scripts in order
to determine sets of responses that can trick each script into entering
a particular state in its execution. Such a task is traditionally sup-
ported via symbolic execution tools [1, 36, 39] which can be applied
on target programs to automatically find bugs and vulnerabilities
along with the inputs that will trigger them [12]. Instead of running
programs with concrete inputs, symbolic execution runs them with
symbolic ones that can be “anything” initially [18]. When the inputs
of a program are symbolic values, the program can hit any feasible
branch during execution and explore all possible execution paths.
Symbolic execution explores feasible paths, guiding the program
to paths that have not been covered yet. Each path of an execution
maintains a set of constraints, called the path condition. When a path
terminates or hits a desired state, symbolic execution can generate a
test case by solving the current path condition for concrete values
using a constraint solver. Figure 1 shows the symbolic execution tree
and the path conditions of a program. The constraint in the black
box on the right is a path condition and symbolic execution will
eventually cover all 3 branches in the tree.

The main scalability challenge for symbolic execution is path
explosion. Since each conditional branch can potentially fork the

I = <input>;
int x = I - 2;
int y = I - 4;
if(x > 0){
 if(y < 8)
 ...
}else{
 if(y > 0)
 ...
 else
 ...
}

x > 0

true false

y < 8 y > 0

falsetrue

x>0&&y>0 x>0&&y<0

path conditions

Figure 1: Symbolic Execution Tree

execution, the number of states (and thus paths) grows roughly expo-
nentially in the size of the program [3]. Often, even small programs
generate tens or even hundreds of thousands of path conditions dur-
ing the first few minutes of execution. Path-condition explosion
can cause a symbolic executor to fail or miss execution paths it is
supposed to cover.

Figure 2 shows the overall architecture of Nmap, its NSE and the
library of NSE scripts that are used for network scanning. While NSE
scripts themselves are simple, they are written in Lua and interpreted
dynamically at run-time. With the complexity of interpreters, it is
currently impractical to symbolically execute the Nmap program, the
NSE, and even the simplest of NSE scripts as a whole without path
explosion.

2.3 Concolic Execution
Several approaches exist to ease the problems caused by path ex-
plosion, such as using heuristic path-finding to increase code cov-
erage [23], reducing execution time by parallelizing independent
paths [38], or by simply merging similar paths [19]. However in gen-
eral, one cannot completely avoid the problem, making exhaustive
exploration unrealistic for most systems code.

One fundamental idea to cope with these issues and to make sym-
bolic execution feasible in practice is to mix concrete execution and
symbolic execution together, also referred to as concolic execution,
where the term concolic is a combination of the words “concrete”
and “symbolic”. For example, as Figure 3 shows, classic symbolic
execution will explore all 5 paths in the figure. Any feasible path
relevant to the input value x is explored, once x is made symbolic
with make_symbolic, which will lead to path explosion when test-
ing complex programs. Path 4 is a concrete execution path of a target
application driven down by a concrete initial value x. By forcing ex-
ecution to take br1 concretely before running the target application
symbolically, a concolic approach would only execute br3 and br4
symbolically while avoiding br2, br5, and br6. Thus, concolic exe-
cution can reduce the possibility of path explosion, making it more
suitable than symbolic execution for testing complex applications
with an embedded interpreter.

2.4 Concolic Execution with CRETE
To enable concolic execution of NSE scripts, we leverage CRETE a
binary-level concolic testing framework. CRETE features an open and

Figure 2: Nmap Architecture

make_symbolic(x)

start

if x <3

tc1/path1 tc2/path2 tc3/path3 tc4/path4 tc5/path5

if x>5
br3 br4

br2

br5 br6

br1

Figure 3: Symbolic execution covers all paths; Concrete execu-
tion covers path4; Concolic execution covers path4 and path5

CRETE Manager

CRETE Runner

configuration + target
binary

CRETE Tracer

qemu guest OS

CRETE Replayer

Symbolic Execution
Engine

capture traces

new test case

selected traces new test case

Figure 4: CRETE Architecture

highly extensible architecture allowing easy integration of concrete
execution front-ends and symbolic execution engine back-ends [10].

As shown in Figure 4, CRETE uses a configuration file to mark
symbolic and concrete inputs in what is referred to as the CRETE
runner. As the target program is concretely executed in a modi-
fied QEMU virtual machine, the CRETE tracer, a QEMU extension,
captures concrete execution traces. These traces are in the form of
LLVM bytecode augmented to indicate the execution paths induced
by the concrete inputs [21]. If one path contains a symbolic variable
marked by the configuration file, CRETE feeds the captured trace of
the path to its symbolic execution engine (in this case KLEE [8]), to
run it symbolically via CRETE replayer. CRETE extends KLEE to gen-
erate test cases only for feasible branches confined by concrete traces
so that KLEE will not fork unnecessary states. This results in fewer
path conditions. In addition, CRETE uses a selective binary-level trace
file other than a full trace file to further reduce path explosion. A full
trace contains basic blocks at the assembly level which represents a
concrete execution of a target application. It is often unnecessary to
trace the complete execution. Because the trace file might be too big
for the symbolic engine to consume and there will always be paths
that are irrelevant to the symbolic values, which will lead to massive
path explosions. Thus, CRETE uses a Dynamic Taint Analysis (DTA)
algorithm to implement selective tracing. It only captures the execu-
tion traces relevant to the symbolic values marked by DTA. CRETE
uses tainted memories to represent the relevant memories that are
initially assigned to the symbolic values. For example, if variable
“a” is marked as symbolic, when there is an assignment operation
involving “a”, such as “b=a”, the memory slot that b possesses is
also marked as symbolic. So CRETE will capture any execution trace
involving memories slots of “a” and “b” [34]. CRETE provides a
helper interface function “crete_make_concolic” to allow users
to mark any symbolic variable. We will leverage this interface to
implement our approach.

3 OUR APPROACH
3.1 Overview

1. Concolic Execution Stage

Nmap Host
request

response

NSE script:
…
makeconcolic(response.body)
if not(response.body) or response.status==500 then
 return true
end
if response.body:find("SERVER ERROR") then
 return true
end
...

Symbolic input:
response.body/size

Test case set

Test cases that cause
false positive

Figure 5: Concolic Execution Stage

2. Defending Stage

Honey Farm

Test cases that cause
false positive

Nmap::script.nse

 Hostrequest

response

IDS

Figure 6: Defending Stage

Our goal is to run NSE scripts using concolic execution to generate
test cases to form decoys against the attackers. Because the nature of
concolic execution is to explore every possible execution state along
a concrete execution trace, this will allow us to focus our symbolic
execution on discovering sets of network responses that force an
NSE script into transitioning into each of its execution states. This
generation is key for honeyfarms as it provides them with responses
that can be used to control the NSE scripts’ execution behavior. For
example, returning an input that leads the script into believing the
host is vulnerable would allow the interaction to continue in order to
further consume an attacker’s time and energy. Selecting a response
that leads the script into believing the host is not vulnerable or has
no resource of interest would send the attacker away. Randomly se-
lecting from calculated inputs per connection would allow defenders
to actively confuse the attacker. Finally, returning inputs that may

leverage bugs and errors would allow defenders to potentially crash
the attacking scripts and terminate the scan altogether. All of these
synthesized responses would potentially allow defenders to slow
down an attacker’s workflow.

In order to complete this process, the approach we take is broken
into two stages:

• Concolic Execution Stage: As shown in Figure 5, in
this stage, we perform concolic execution on NSE scripts
to generate test cases for honeyfarm synthesis. For the case
shown, we can set response.body and response.size to
symbolic values for the engine to explore.

• Defending Stage: As shown in Figure 6, in this stage, we
use the various test cases generated from concolic execution
to synthesize honeyfarm responses with which we can then
have an Intrusion Detection System (IDS) to respond upon
detecting the corresponding Nmap scan.

3.2 Concolic Execution Stage
There are several challenges when considering the use of symbolic
and concolic execution on an Nmap script. Most existing symbolic
and concolic execution engines target low-level code compiled stat-
ically. NSE scripts use Lua as the base language and are not stat-
ically compiled, but rather interpreted by Nmap’s built-in Lua in-
terpreter. The Lua interpreter itself is extended by Nmap with a
library for communication, which is responsible for providing ad-
ditional information that NSE scripts need to execute. For example,
nmap.new_socket() function supplied by the library returns a new
socket wrapper object NSE scripts can use. The Nmap library also
takes care of initializing the Lua context, scheduling parallel scripts
and collecting the output produced by completed scripts.

Because NSE scripts can utilize both the extended libraries in
Nmap and the default libraries of the Lua language, they are more
complex than stand-alone Lua scripts. Compounding this complexity
is that statements of interpreted languages can encapsulate complex
operations that are implemented in underlying compiled libraries
written in lower-level languages. For example, the Lua language sup-
ports 7 string operations that are implemented in a string library of
the Lua interpreter, which contains thousands of lines of C code in-
terpretation [20]. Symbolically executing such code can easily cause
path explosion. Consequently, symbolic execution of such scripts
may require manual intervention to avoid this problem. Recent work
has sought to automate this task, which involves changing the inter-
preter and building a new symbolic execution engine. Unfortunately,
the implementation of a dedicated symbolic execution engine adds
a significant amount of work for each language, requiring constant
maintenance if the language is updated.

Therefore, we need to apply symbolic execution to analyze arbi-
trary NSE scripts in a way that avoids the path explosion problem as
well as continually updating our execution engine when there are
update to the Lua language. To meet this goal, we adapt CRETE, our
concolic execution engine, using API calls in the glue layer of the
built-in interpreter. Specifically, we use the interface provided by
CRETE and modify glue layer in Nmap to allow users to conveniently
inject symbolic values from the scripts. Additionally, we modify the
engine to provide interfaces that allow users to defer concolic execu-
tion of a program as needed in order to further limit the execution

static int portrule (lua_State *L) {
...
 4b7aa3: 53 push %rbx
 Target *target;
 Port *p;
 Port port; /* dummy Port */
 4b7aab: 48 89 e7 mov %rsp,%rdi
}
...

const char *init; /* to search for a '*s2' inside 's1' */
 while (l1 > 0 && (init = (const char *)memchr(s1, *s2, l1)) !=
NULL) {
 init++; /* 1st char is already checked */
 537fe0: 4c 8d 7b 01 lea 0x1(%rbx),%r15
 if (memcmp(init, s2+1, l2) == 0)
 537fe4: 48 8b 54 24 10 mov 0x10(%rsp),%rdx
 ...
 537ff1: e8 4a 4b ef ff callq 42cb40 <memcmp@plt>
 537ff6: 85 c0 test %eax,%eax
 537ff8: 0f 84 49 01 00 00 je 538147

 else if (l2 > l1) return NULL; /* avoids a negative 'l1' */
...

<str_find_aux+0x317>
 return init-1;
 else { /* correct 'l1' and 's1' to try again */
 l1 -= init-s1;
 537ffe: 4d 29 fe sub %r15,%r14

NSE Scripts involved Code Segment Corresponding Trace within Nmap

Pre-rule scripts portrule = function(host, port)
 local auth_port = { number=113, protocol="tcp" }
 local identd = nmap.get_port_state(host, auth_port)
 return identd ~= nil and identd.state == "open"
End
...

Customized scripts action = function(host, port)

 local request = port.number .. ", " .. localport ..
"\r\n"
 try(client_ident:send(request))
 owner = try(client_ident:receive_lines(1))
 if string.find(owner, "ERROR") then
 owner = nil
 else
 owner = string.match(owner,
"%d+%s*,%s*%d+%s*:%s*USERID%s*:%s*.+%s*:%s*(.+)\r?\n")
 end
End
...

Post-rule scripts postrule()
...

static int postrule (lua_State *L) {
 535616: 48 89 fd mov %rdi,%rbp
 535619: 53 push %rbx
 53561a: 48 81 ec 48 20 00 00 sub $0x2048,%rsp
}
...

Figure 7: Explanation of Our Approach

paths of the script to the minimum. The reason why we need to defer
concolic execution is that we need to keep execution complete for
the whole scanning process to guarantee completeness of the trace
whiling ensuring that we only symbolically execute the portion of
the trace that is of interest. We will show the significant reduction in
execution time by deferring concolic execution in Section 5.

Figure 7 shows an example of NSE scripts involved in a Nmap
network scan, which has pre-rule scripts, customized scripts and
post-rule scripts running in three scan phases respectively (script
pre-scan, script scan and script post-scan). In each scan phase, more
than one NSE script will be executed. In the script pre-scan phase,
pre-rule scripts are executed to collect information for customized
scripts which will be executed in the script scan phase. In most
cases, users are interested in testing customized scripts because
they can be modified, allowing the library to be extended. Testing
them with concolic execution requires capturing the execution traces
for all the NSE scripts that have been executed. The last column in
Figure 7 gives an example of one such trace that shows the obstacles
facing concolic execution, which is one to many code mapping from
scripting language to low level code. The figure shows assembly code
snippets for each phase of the scan. As concolic execution works
with low-level code representation, path explosion can happen in
the script pre-scan phase before the concolic engine can even reach
the script scan phase for customized scripts. This situation worsens
when the interpreted pre-scan script involves loops or nested pattern
matching operations, which is quite common in NSE scripts for string
manipulation. Therefore, being able to test the scripts users are
actually interested in requires methods to defer symbolic execution
to specific segments in order to prevent path explosion. As a result,

our approach leverages the adapted interface of CRETE to allow user
to customize concolic execution as needed.

In doing so, we make the observation that on such application, an
embedded script conceptually executes both on the high level (e.g. at
the script language) and the low level (e.g. at the host language). In
most cases, applications use C and its interfaces for the host language.
Figure 8 illustrates a typical structure for embedding scripts as of
NmapṪhe base layer includes the host program of the application in
C. The top layer consists of embedded scripts prepared by the user.
By providing various scripts, the user can customize the application
as wishes without recompiling the entire program. The glue layer,
which is also written in C, contains the built-in interpreter and glues
the gap between C and the scripting language.

We make use of the glue layer to achieve our goal of concoli-
cally executing NSE scripts. To gain control of concolic execution,
we introduce three important interfaces for symbolic execution:
start_analysis(), mark_symbolic(), and end_analysis().
These interfaces will allow us to customize concolic execution in
scripts. Modifying the glue layer to include these interfaces allows
users to start symbolic execution with a function call. At the same
time, starting symbolic execution from the script layer generates
a massive execution trace which leads to path explosion. Hence,
we have start_analysis() and end_analysis() to allow us to
delay the symbolic execution till later in the execution where we
want it and stop it as wish. Therefore, when the target scripts invoke
additional scripts of no interest to the analysis, we can easily avoid
running unwanted scripts symbolically and only execute the target
scripts symbolically by properly calling the above functions. This
method has a potential to be applied on other application with the

C code (Host Program: Nmap)

C code with C API

Built-in Interpreter
(Lua)

Embedded
Script (.nse)

Embedded
Script (.nse)

Embedded
Script (.nse)

Script Layer

Glue Layer

Base Layer

Symoblic Execution
 start_sym_exe()
make_symbolic()
end_sym_exe()

Figure 8: Structure for Applications with Embedded Scripts and Symbolic Execution Interface

similar structure. In our case (Nmap), embedded scripts and built-in
interpreter refer to NSE scripts and Lua interpreter respectively. With
these interfaces we can go through the entire execution for pre-rule
scripts, customized scripts, and post-rule scripts but only symboli-
cally execute the traces of customized scripts, thus reducing possible
symbolic paths significantly.

3.3 Defending Stage
With the method explained above, we can apply concolic execution
to any NSE script to get responses that can be leveraged by honeyfarm
to control the execution state of the attacking scripts. To achieve our
objectives, a range of selection rules targeting different application
scenarios can be implemented. Two rules, in particular, include:

• Early Termination Rule. With this rule, responses selected
will be the ones which will cause the attacking script to stop
as soon as possible. We use script coverage as an indicator.
We will consider test cases that achieve lower coverage on a
script with higher priorities for the synthesis of a honeyfarm.

• False Positive Rule. The test cases selected for honeyfarm
generation will be the ones which will cause the attacking
script to believe that it has find a host with certain vulnerabil-
ities. We will consider test cases that reach certain end-points
in a script. These end-points can be annotated manually or
identified through templates.

Upon selecting a response, the next step of the defending stage
is handling the attacking connection and delivering the response
back to the script. Intrusion detection systems (IDS) combined with
templating systems provide a natural mechanism for doing so. For
example, consider an NSE script seeking to find a vulnerable HTML
form submission. An IDS running on a honeyfarm system can pro-
vide us hooks into the request being made by the script, while an
HTML-templating engine such as Mustache [41], can allow us to use
templates that we fill in with the test cases from concolic execution
in order to complete the defending stage response.

4 IMPLEMENTATION
4.1 Concolic Script Execution
To support concolic execution of NSE scripts our implementation
focuses on the glue layer of Nmap. We use CRETE as the concolic
execution back-end engine and modify the glue layer of Nmap to
allow users to customize concolic execution for the target application.

This includes allowing users to start concolic execution, to introduce
symbolic values and to stop concolic execution as needed.

By default, CRETE performs concolic execution on the entire exe-
cution trace of a program captured by the CRETE front-end in QEMU.
Because we wish to finely control the parts that are symbolically
executed, we modify CRETE to decouple concolic execution with a
set of interface functions, namely sendpid(), mconcolic() and
exit(). These functions pass control of concolic execution from
CRETE to NSE scripts. For clarity, the naming convention we used
in our implementation of the glue layer for NSE scripts is to keep
consistent with the CRETE back-end engine: sendpid() is the in-
terface function to start concolic execution if a symbolic variable is
present (in corresponding to start_analysis()). mconcolic()
is the interface function to mark symbolic variable (in correspond-
ing to mark_symbolic()). exit() is to stop concolic execution
(in corresponding to end_analysis()). As a result, we can defer
the concolic execution in Nmap until after the script pre-scan phase
and end it before the post-scan phase. We use this control library
to minimize symbolic execution on execution traces to address the
path explosion problem when concolically executing an interpreted
script as shown in Figure 9. The control library allows us to decide
which segment of the intermediate code we want CRETE to execute
symbolically.

4.2 Lua Interpreter Instrumentation
The embedded Lua Interpreter in Nmap interprets NSE scripts utiliz-
ing the string interning optimization. We disabled string interning
so that CRETE can use taint analysis to make sure all the relative
traces to the symbolic values are captured. Disabling string interning
is relatively simple and can be done through a Lua configuration
macro [20]. We also handled the Lua’s two internal representations
for numbers: float and integer. Specifically, we ignored numbers
whose internal representation are float, as the underlying symbolic
execution engine CRETEuses, namely KLEE, does not support float-
ing point numbers. In addition, we modified Lua math library for
all functions to support making internal integer representations sym-
bolic. As an example, Listing 1 shows how we call the interface
functions from a NSE script that allows for us to customize concolic
execution. The script performs a form submission on a potential
vulnerable site and obtains a response. It returns true if a null re-
sponse body is received or if an error is returned. In this example,
we choose to inject symbolic values and start symbolic analysis right

Figure 9: Control Library for Concolic Execution

1 local function check_response(response)
2 --crete start
3 crete.sendpid()
4 crete.mconcolic(response.body,12)
5
6 if not(response.body) or response.status==500 then
7 return true
8 end
9 if response.body:find("SERVER ERROR") then

10 return true
11 end
12
13 --exit program
14 crete.mexit(0)
15
16 return false
17 end

Listing 1: http-form-fuzzer.nse instrumented with CRETE.

when the relevant parts of the script are being executed to minimize
path explosion.

4.3 Snort response
Once we have performed concolic execution on the script, we then
use Snort [31], a network-based IDS to deliver the response. Snort
can be configured to detect malicious behaviors over the network
with a set of rules in snort.conf. We leverage one such set of
rules that is maintained, validated, and updated by Proofpoint [29]
to allow Snort to detect Nmap scans. Listing 2 shows the rule used
to detect Nmap web application attacks in the evaluation. As part
of the Snort rule, we configure the rule’s react option to deliver
specific responses that are synthesized using the generated test cases
from our concolic execution when the Nmap scan is detected. For the
Web Application Scan from Listing 1, an example of the synthesized
response is shown in Listing 3. The string "SERVER ERROR" in
line 3 has been generated by CRETE. Note that for this case, while the
string appears in the page’s title, one can place the string anywhere
in the response.body to trick this particular script. The generation
of the response HTML can be done using any automated templating
system such as Mustache [41] that allows us to replace parts of the
content with the test case generated from concolic execution.

Listing 2: Snort detecting rule for Nmap web application scan

alert tcp any any -> any any (msg:"ET SCAN Nmap Scripting
Engine User-Agent Detected (Nmap Scripting Engine)";
flow:to_server,established;
content:"User-Agent|3a| Mozilla/5.0 (compatible|3b| Nmap
Scripting Engine";
react; fast_pattern:38,20; http_header;
nocase; reference:url,doc.emergingthreats.net/2009358;
classtype:web-application-attack; sid:2009358; rev:5;)

1 <!doctype html>
2 <html lang="en">
3 <head><title>SERVER ERROR</title></head>
4 <body>
5 <div style="color:red">
6 </div>
7 <form name="LoginForm" method="post"
8 action="/loginclass/Login.do;jsessionid=

D34B538055462B75E1CD6DFD18B9650E">
9 User Name : <input type="text" name="userName" value

="">
10

11 Password : <input type="password" name="password"

value="">

12 <input type="submit" value="Login">
13 </form>
14 </body>
15 </html>

Listing 3: An Example of Synthesized Response in Snort

5 PRELIMINARY EVALUATION
In this section, we first introduce the NSE scripts we target and the
experimental setup for our approach including the CRETE settings
which are used in the concolic execution stage. Then, we will sum-
marize our preliminary results, which shows the type of test cases
from running NSE scripts with our approach with a set of examples.
Finally, we analyze why we are able to achieve these results.

5.1 Experimental Setup for NSE Scripts
Because a large majority of network protocols such as HTTP are
string-based, string manipulation operations are some of the most
frequently used in NSE scripts. As a result, our experiments mainly
focus on string variables when injecting symbolic values into NSE
scripts. We follow the simple heuristics below to select which vari-
ables are made symbolic:

• For host scan scripts, variables that are involved in if-else
branches in scripts are set as symbolic values. Among string
operations, substring finds and string pattern matching com-
monly appear in branch statements since such functions return
values that are of boolean type.

• For web scripts, response.body and response.size are
set as symbolic since they are commonly involved in branches
as information they return is often of interest to NSE scripts.

To showcase our approach, we use http-form-fuzzer.nse as
an example, which involves the string.find function. With the
above heuristics, we set response.body and response.size as
symbolic variables for the case where response is an HTML page.

5.2 Control Interface Evaluation
5.2.1 Naïve Case. Our early attempt of applying concolic execu-
tion on NSE scripts is to run the NSE script concolically using CRETE
without deferring concolic execution until when it is needed. The
experiment setup for this case is that we simply use the interface of
crete.mconcolic() to mark symbolic variables then run the NSE
script directly. As expected, doing so causes the pre-scan stage to
be involved in the concolic execution process, leading to excessive
execution time. Across four executions of the script done in this
manner, execution time averages 4519 seconds to explore each new
feasible path in the script.

5.2.2 Customized Concolic Execution Case. The advantage of
our approach is the support for a control interface that allows the
NSE script to defer concolic execution. For example, the segment
of code in Listing 1 is from http-form-fuzzer.nse. It is fre-
quently used to fuzz the fields of web page that contain <form>
tags to try to find a certain request that will cause an ERROR in
the web page [26]. Listing 1 shows an example of how we use
the control interface to efficiently enable concolic execution when
needed. In the listing, we wish to test line 6 to line 11, which con-
tains two “if” statements and the symbolic value we wish to eval-
uate, response.body, whose type is a string. We then call func-
tion crete.sendpid to start symbolic analysis before we mark
symbolic value with crete.mconcolic function. In this way, we
have CRETE defer symbolic execution of the code until after we
inject the symbolic value, thus avoiding the symbolic execution
of pre-run scripts. Finally, we terminate symbolic execution using
crete.mexit so that the symbolic execution only targets line 6 to
11 and avoids running post-run scripts symbolically.

When testing http-form-fuzzer.nse, with otherwise the same
experimental setup as the naïve case, execution time is reduced from
4519 seconds on average to around 179 seconds per new feasible
path in the script. This indicates the effectiveness of customized
concolic execution. For the rest of our experiments, we apply this
method for deferring concolic execution when testing NSE scripts.

5.3 NSE Script Evaluation
5.3.1 Test case generation for honeyfarms. Our goal is to con-
colically execute a variety of NSE scripts in order to produce in-
puts that can be used to drive them to particular states. To demon-
strate this, we initially select a collection of NSE scripts for HTTP
shown in Table 1. For the script we have been using as an example,
http-form-fuzzer.nse, concolic execution yields the test case

Listing 4: A code segment of http-title.nse
1 if display_title and display_title ~= "" then
2 display_title
3 = string.gsub(display_title , "[\n\r\t]", "")
4 if #display_title > 65 then
5 display_title
6 = string.sub(display_title, 1, 62) .. "..."
7 end
8 else
9 ...

with the content of “SERVER ERROR” that leads execution to go
into the if branch in Listing 1, demonstrating that our approach
can produce results at the script level despite the massive amount
of interpreted code being executed. We use this test case in a Snort
react defense rule and succeed in fooling Nmap into thinking it
identified a vulnerability, accomplishing the False Positive goal for
the honeyfarm.

A more interesting case is the http-form-brute.nse script, in
which a string.match call tries to validate whether a certain value
exists in a user information form returned by a scan. Furthermore, the
script checks that the value v parsed from the form via string.ma
-tch(form[k], v) has a pattern ’%d%d’. To match this, concolic
execution generates the test case with two digits in random com-
binations. Our concolic execution approach also uncovers invalid
patterns that lead execution into an error state. For example, the
value of ’username/(’ crashes the script since magic characters
such as ’(’ need to be escaped in Lua in order to be taken literally or
they must appear in pairs such as ’()’. Such a crashing pattern can
be used to trigger the Early Termination rule for the honeyfarm.

For http-auth.nse, we have test cases that have ’\0’ in the
middle of the name variable, e.g., ’name = do\0in’. This causes
an error since ’\0’ is not considered as a terminator for a string in
NSE with the Lua interpreter instead treating the character as an
embedded zero instead. Therefore, in NSE the length of variable
name is 6 but in C it is 2. This leads to an inconsistency in length
which forces execution into the Lua error state, triggering another
Early Termination situation.

Finally, our concolic approach exposes another similar bug in
http-grep.nse by generating input that triggers a type inconsis-
tency bug in the script shown in Listing 6. Detailed explanation is
given later in the Anlysis section. Our patch for this crashing bug
has been accepted by the Nmap team 1.

We use the generated test cases discussed above to form honey-
farm responses that fool the scripts. These test cases are expected
to trick the scripts or stop them from running. We synthesized these
test cases with templates and deliver them back to Nmap using Snort
configured with appropriate react rules. The test cases success-
fully cause Nmap to reach the desired states, accomplishing the goals
from Section 3: namely Early Termination and False Positive as
summarized in Table 1.

5.3.2 Analysis. We use a few scripts as an example to show how
we generate such test cases. When testing http-form-fuzzer.nse,
we have the desired test case with the content of “SERVER ERROR”
that leads the execution to go into the if branch. We get to this
particular test case at the 80th iteration, and we obtain the test cases

1https://github.com/nmap/nmap/issues/1931

NSE scripts Test Cases/Bugs Defending Rules
http-form-fuzzer SERVER ERROR False positive
http-form-brute Invalid patterns Early termination
http-auth Embedded zero Early termination
http-grep Type inconsistency Early termination

Table 1: Examples of interesting test cases and bugs discovered

that cover both if and else branches. We disassemble the relevant
part of the Nmap binary and show it in Listing 5. For this case, our ap-
proach only captures the basic block that has the branch (“537ff6”)
in shown in line 12, which matches the branch of string.find in
the NSE script in Listing 1. Only this part of the execution trace is
executed symbolically instead of the entire trace, thus allowing us to
generate the desired test cases efficiently.

For testing of the http-grep.nse script shown in Listing 6, our
approach enabled us to discover a bug in a local function within the
script that implements Luhn, an algorithm that is used to validate
a variety of identification numbers, such as credit card numbers.
To understand how the bug works, we first describe the Luhn algo-
rithm [15] in the following 4 steps:

(1) Starting from the rightmost digit, double the value of every
second digit.

(2) If doubling of a number results in a two digit number, then
add the digits of the product to get a single digit number.

(3) Take the sum of all the digits.
(4) If the total modulo 10 is equal to 0 (if the total ends in zero)

then the number is valid according to the Luhn formula; oth-
erwise it is not valid.

The two loops (in lines 5-7 and in lines 9-15) show the implemen-
tation of steps 2 and 3 in the NSE script and contain a bug. The
bug is triggered by a test case which causes the value of variable
double inside of string.gsub to be 14. When this happens, the
returning value of the string.gsub call in line 12 becomes 5.0.0,
which cannot be coerced to a string by the code in line 13. Thus, our
concolic approach allows us to easily reveal crashing bugs in NSE
scripts that could be used to trigger the termination of the scan. In
this case, however, the bug was reported and the Nmap developers
changed its implementation to fix the issue.

Listing 7 shows the captured execution trace that corresponds to
the loop of the reverse function in C code that triggers the issue. This
trace guides concolic execution to mutate input string backwards
(from the last position instead from the first position). In addition,
it has the information about the two for loops, which increment
i by 2 every iteration. This means only mutating the bytes in odd
positions of the input string after being reversed can trigger the bug
in line 12 due to the step of 2 in each iteration. With this knowledge,
our approach can make changes on the proper position of the string,
which is every other character in the string after being reversed. And
the effective change is to flip the bits of the character to an ASCII
code that can be converted to a number so it can pass line 11 to get
to line 12 where the bug resides. The bug is triggered if the number
(doubled) in an odd position is greater than 9. Our approach was
able to make the right mutation after a few iterations to trigger the
bug in line 12.

1 const char *init; /* to search for a '*s2' inside 's1' */
2 l2--; /* 1st char will be checked by 'memchr' */
3 l1 = l1-l2; /* 's2' cannot be found after that */
4 while (l1 > 0 (init = (const char *)memchr(s1, *s2, l1)

) != NULL) {
5 init++; /* 1st char is already checked */
6 537fe0: 4c 8d 7b 01 lea 0x1(%rbx),%

r15
7 if (memcmp(init, s2+1, l2) == 0)
8 537fe4: 48 8b 54 24 10 mov 0x10(%rsp),%

rdx
9 537fe9: 48 8b 74 24 18 mov 0x18(%rsp),%

rsi
10 537fee: 4c 89 ff mov %r15,%rdi
11 537ff1: e8 4a 4b ef ff callq 42cb40 <

memcmp@plt>
12 537ff6: 85 c0 test %eax,%eax
13 537ff8: 0f 84 49 01 00 00 je 538147 <

str_find_aux+0x317>
14 return init-1;
15 else { /* correct 'l1' and 's1' to try again */
16 l1 -= init-s1;
17 537ffe: 4d 29 fe sub %r15,%r14
18 else if (l2 > l1) return NULL; /* avoids a negative 'l1'

*/

Listing 5: Captured trace from http-form-fuzzer.nse script

1 function luhn (matched_ccno)
2 crete.mconcolic(matched_ccno, matched_ccno.len)
3 local n = string.reverse(matched_ccno)
4 local s1 = 0
5 for i=1, n:len(), 2 do
6 s1 = s1 + tonumber(n:sub(i,i))
7 end
8 local s2 = 0
9 for i=2, n:len(), 2 do

10 --conversion from string to double
11 local doubled = n:sub(i,i)*2
12 doubled = string.gsub(doubled,'(%d)(%d)',
13 function(a,b)return a+b end)
14 s2 = s2+doubled
15 end
16 end

Listing 6: A code segment of http-grep.nse script with
string.reverse function: a type inconsistency bug is triggered
in line 13 when trying to sum doubled with s2. This function
(luhn) is used to validate credit card numbers

1 static int str_reverse (lua_State *L) {
2 535616: 48 89 fd mov %rdi,%rbp
3 535619: 53 push %rbx
4 53561a: 48 81 ec 48 20 00 00 sub $0x2048,%rsp
5 size_t l, i;
6 luaL_Buffer b;
7 const char *s = luaL_checklstring(L, 1, 1);
8 535621: 48 8d 54 24 08 lea %rsp,%rdx
9 else lua_pushliteral(L, "");

10 return 1;
11 }

Listing 7: Captured trace when testing http-grep.nse script: this
trace segment contributes to finding the type inconsistency bug

6 RELATED WORK
Most existing symbolic and concolic execution engines target low-
level code representations. For example, symbolic execution engines
such as KLEE [8], BitBlaze [37] and S2E [11] as well as concolic
execution engines such as DART [13], CUTE [35] and SAGE [14]
work with either machine code or LLVM intermediate representation
code [21] that has been statically compiled. The NSEscripts that we
are dealing with, are however, interpreted, not statically compiled.

There has also been efforts in building symbolic engines targeting
script languages. However, such implementation requires significant
amount of work for every single language and constant maintenance
if the target language is updated. NICE [9] for Python and Kudzu
[33] for Javascript are early efforts to directly implement symbolic
execution engines for dynamically interpreted scripts in high-level
languages. Existing symbolic execution engines that can support
Lua only target standalone interpreters such as CHEF [7] while NSE
scripts are interpreted by an interpreter embedded in Nmap.

There are two ways for deploying honeyfarms: low-interaction
honeyfarm and high-interaction honeyfarm. Low-interaction honey-
farm can monitor activities over millions of IP addresses at a time,
such as KFSensor Honeypot [25] and Conpot [24]. This kind of
scalability is achieved by emulating the network interface exposed
by common services and requires low maintenance. However, such
systems do not execute any code from applications; therefore, they
may not be able to block attacks that have multiple phases of com-
munication [40]. On the other hand, high-interaction honeyfarms run
native application code, and therefore, is able to catch code behavior
in its full complexity [28]. As a consequence, the implementation
cost is quite high. Systems of high interaction honeyfarms include
Honeynets [28], Sebek [16], Argos [27], etc. Our method is a light
way of achieving the purpose of high-interaction honeyfarms.

7 CONCLUSIONS
This paper presented an approach to test NSE scripts via concolic
execution and to use the result to generate honeyfarms that can slow
down attackers. Preliminary results have shown its efficiency in gen-
erating test cases that can stop Nmap scans or return false positive
responses. Our approach is effective with complicated programs such
as Nmap which runs embedded scripts where traditional concolic
execution does not work at all. Our approach does so by avoiding
path explosion by supporting customized concolic execution at spe-
cific locations in order to generate useful test cases efficiently. The
implementation for our approach makes use of the glue layer that
most embedded scripting languages provide to integrate the concolic
execution engine and the interface functions for customizing con-
colic execution. In this way, the approach does not need to modify
the built-in interpreter each time the language is updated. In the
future, we aim to test more libraries in NSE since the effective con-
colic execution of more NSE scripts is the key to building diverse
honeyfarms.

8 ACKNOWLEDGEMENT
This research received financial support in part from National Sci-
ence Foundation (Grant : 1908571).

REFERENCES
[1] Angr Developers. 2016. Angr, a Binary Analysis Framework. http://angr.io/.
[2] Ars Technica. 2017. NSA-leaking Shadow Brokers Just Dumped Its Most Damag-

ing Release Yet. https://arstechnica.com/information-technology/2017/04/nsa-
leaking-shadow-brokers-just-dumped-its-most-damaging-release-yet/.

[3] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. 51, 3, Article 50 (May 2018), 39 pages. https://doi.org/10.1145/3182657

[4] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Selje-
botn, and Kurt Smith. 2011. Cython: The Best of Both Worlds. Computing in Sci-
ence Engineering 13, 2 (2011), 31–39. https://doi.org/10.1109/MCSE.2010.118

[5] Tegawendé F. Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, and Lau-
rent Réveillère. 2013. Popularity, Interoperability, and Impact of Programming
Languages in 100,000 Open Source Projects. In 2013 IEEE 37th Annual Com-
puter Software and Applications Conference. 303–312. https://doi.org/10.1109/
COMPSAC.2013.55

[6] Bloomberg Technology. 2017. Equifax Suffered a Hack Almost Five Months
Earlier Than the Date It Disclosed. https://www.bloomberg.com/news/articles/
2017-09-18/equifax-is-said-to-suffer-a-hack-earlier-than-the-date-disclosed.

[7] Stefan Bucur, Johannes Kinder, and George Candea. 2014. Prototyping symbolic
execution engines for interpreted languages. In Proceedings of the 19th inter-
national conference on Architectural support for programming languages and
operating systems. 239–254.

[8] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted
and automatic generation of high-coverage tests for complex systems programs..
In OSDI, Vol. 8. 209–224.

[9] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and Jennifer Rex-
ford. 2012. A NICE Way to Test OpenFlow Applications. In 9th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 12). USENIX
Association, San Jose, CA, 127–140. https://www.usenix.org/conference/nsdi12/
technical-sessions/presentation/canini

[10] Bo Chen, Christopher Havlicek, Zhenkun Yang, Kai Cong, Raghudeep Kannavara,
and Fei Xie. 2018. CRETE: A Versatile Binary-Level Concolic Testing Framework.
In Fundamental Approaches to Software Engineering, Alessandra Russo and Andy
Schürr (Eds.). Springer International Publishing, Cham, 281–298.

[11] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
platform for in-vivo multi-path analysis of software systems. Acm Sigplan Notices
46, 3 (2011), 265–278.

[12] DARPAtv. 2017. DARPA’s Cyber Grand Challenge: Final Event Program. https:
//www.youtube.com/watch?v=n0kn4mDXY6I.

[13] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed
automated random testing. In Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation. 213–223.

[14] Patrice Godefroid, Michael Y Levin, and David Molnar. 2012. SAGE: whitebox
fuzzing for security testing. Commun. ACM 55, 3 (2012), 40–44.

[15] Hans Peter Luhn. 2021. Luhn algorithm. https://en.wikipedia.org/wiki/Luhn_
algorithm.

[16] Pei-Sheng Huang, Chung-Huang Yang, and Tae-Nam Ahn. 2009. Design and
implementation of a distributed early warning system combined with intrusion de-
tection system and honeypot. In Proceedings of the 2009 International Conference
on Hybrid Information Technology. 232–238.

[17] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar Celes. 2011.
Passing a Language through the Eye of a Needle. Commun. ACM 54, 7 (July
2011), 38–43. https://doi.org/10.1145/1965724.1965739

[18] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (July 1976), 385–394. https://doi.org/10.1145/360248.360252

[19] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012.
Efficient State Merging in Symbolic Execution. SIGPLAN Not. 47, 6 (June 2012),
193–204. https://doi.org/10.1145/2345156.2254088

[20] LabLua. 2021. Lua Reference Manuals. https://www.lua.org/manual/.
[21] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong

program analysis transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004. 75–86. https://doi.org/10.1109/CGO.2004.
1281665

[22] Gordon Lyon. 2021. Nmap: the Network Mapper. https://nmap.org/.
[23] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks. 2011.

Directed Symbolic Execution. In Static Analysis, Eran Yahav (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 95–111.

[24] Microsoft. 2021. CONPOT ICS/SCADA Honeypot. http://conpot.org/.
[25] Microsoft. 2021. KFsensor: Advanced Windows Honeypot System. http:

//www.keyfocus.net/kfsensor/.
[26] Piotr Olma and Gioacchino Mazzurco. 2021. NSE Script description. https:

//nmap.org/nsedoc/scripts/http-form-fuzzer.html.
[27] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. 2006. Argos: an emu-

lator for fingerprinting zero-day attacks for advertised honeypots with automatic
signature generation. ACM SIGOPS Operating Systems Review 40, 4 (2006),
15–27.

[28] Honeynet Project. 2001. Know Your Enemy: Revealing the Security Tools, Tactics,
and Motives of the Blackhat Community. Addison-Wesley Professional.

[29] Proofpoint. 2021. Proofpoint Emerging Threats Rules. https://rules.
emergingthreats.net/.

[30] Rasterbar Software. 2005. Luabind. http://www.rasterbar.com/products/luabind.
html.

[31] Martin Roesch et al. 1999. Snort: Lightweight intrusion detection for networks..
In LISA. 229–238.

[32] K Sasada. 2009. Ricsin: A System for ’Mix-in to Ruby’. IPSJ Transactions on
Programming 2, 2 (March 2009), 13–26.

[33] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,
and Dawn Song. 2010. A Symbolic Execution Framework for JavaScript. In 2010

http://angr.io/
https://arstechnica.com/information-technology/2017/04/nsa-leaking-shadow-brokers-just-dumped-its-most-damaging-release-yet/
https://arstechnica.com/information-technology/2017/04/nsa-leaking-shadow-brokers-just-dumped-its-most-damaging-release-yet/
https://doi.org/10.1145/3182657
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/COMPSAC.2013.55
https://doi.org/10.1109/COMPSAC.2013.55
https://www.bloomberg.com/news/articles/2017-09-18/equifax-is-said-to-suffer-a-hack-earlier-than-the-date-disclosed
https://www.bloomberg.com/news/articles/2017-09-18/equifax-is-said-to-suffer-a-hack-earlier-than-the-date-disclosed
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/canini
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/canini
https://www.youtube.com/watch?v=n0kn4mDXY6I
https://www.youtube.com/watch?v=n0kn4mDXY6I
https://en.wikipedia.org/wiki/Luhn_algorithm
https://en.wikipedia.org/wiki/Luhn_algorithm
https://doi.org/10.1145/1965724.1965739
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/2345156.2254088
https://www.lua.org/manual/
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://nmap.org/
http://conpot.org/
http://www.keyfocus.net/kfsensor/
http://www.keyfocus.net/kfsensor/
https://nmap.org/nsedoc/scripts/http-form-fuzzer.html
https://nmap.org/nsedoc/scripts/http-form-fuzzer.html
https://rules.emergingthreats.net/
https://rules.emergingthreats.net/
http://www.rasterbar.com/products/luabind.html
http://www.rasterbar.com/products/luabind.html

IEEE Symposium on Security and Privacy. 513–528.
[34] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You

Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic
Execution (but Might Have Been Afraid to Ask). In 2010 IEEE Symposium on
Security and Privacy. 317–331. https://doi.org/10.1109/SP.2010.26

[35] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing
engine for C. ACM SIGSOFT Software Engineering Notes 30, 5 (2005), 263–272.

[36] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SOK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In 2016 IEEE Symposium on Security and Privacy (SP).
138–157. https://doi.org/10.1109/SP.2016.17

[37] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.

2008. BitBlaze: A new approach to computer security via binary analysis. In
International Conference on Information Systems Security. Springer, 1–25.

[38] Matt Staats and Corina Pundefinedsundefinedreanu. 2010. Parallel Symbolic
Execution for Structural Test Generation. In Proceedings of the 19th Inter-
national Symposium on Software Testing and Analysis (Trento, Italy) (ISSTA

’10). Association for Computing Machinery, New York, NY, USA, 183–194.
https://doi.org/10.1145/1831708.1831732

[39] Trail of Bits. 2017. Manticore: Dynamic Binary Analysis Tool. http://github.com/
trailofbits/manticore.

[40] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. Snoeren, G. Voelker, and
S. Savage. 2005. Scalability, Fidelity, and Containment in the Potemkin Virtual
Honeyfarm. In ACM SOSP. 148–162.

[41] Chris Wanstrath. 2009. Mustache Processor. https://mustache.github.io/.

https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1145/1831708.1831732
http://github.com/trailofbits/manticore
http://github.com/trailofbits/manticore
https://mustache.github.io/

	Abstract
	1 Introduction
	2 Background
	2.1 Embedded Scripting and Nmap
	2.2 Symbolic Execution
	2.3 Concolic Execution
	2.4 Concolic Execution with CRETE

	3 Our Approach
	3.1 Overview
	3.2 Concolic Execution Stage
	3.3 Defending Stage

	4 Implementation
	4.1 Concolic Script Execution
	4.2 Lua Interpreter Instrumentation
	4.3 Snort response

	5 Preliminary Evaluation
	5.1 Experimental Setup for NSE Scripts
	5.2 Control Interface Evaluation
	5.3 NSE Script Evaluation

	6 Related Work
	7 Conclusions
	8 Acknowledgement
	References

