
Reducing Malicious Traffic With IP Puzzles
Ed Kaiser, Wu-chang Feng, Wu-chi Feng, Antoine Luu

Future Work
Reputation-Based Networking

• Keep interaction history about clients
• Determine their reputability
• Use IP Puzzles to punish clients who are bad
• Share knowledge with other IP Puzzle firewalls

Publicly Auditable Puzzles
• Puzzle answers can be independently verified by
intermediate IP Puzzle routers
• Answers can indicate amount of work done

Puzzles With Useful Answers
• Puzzle algorithms where the answers provide

useful computation for the puzzle issuer
• Puzzle answer must be easily verifiable

IXP Implementation

Motivation

Question: What can be done?
Answer: Make clients accountable for their behavior

by using a mechanism for punishing them if
they behave badly.

Client puzzles offer an ideal punishment mechanism:
• Easy to assign punishment
• Can make punishment arbitrarily difficult
• False positives degrade but do not deny service

Other work secures individual protocol vulnerabilities,
however the most effective solution should protect all
network traffic; thus it must be placed in the IP layer.

Our approach:

IP layer client puzzles

Arrgh! There is so much bad traffic on the internet!
• DoS attacks
• Worms

• Port scans
• Hacking

• Spam e-mail
• Game cheaters

Challenges
Flexible Deployment

• Puzzle issuers at arbitrary network locations

Minimal Overhead
• Puzzles can be generated at line speed
• Constant state at the puzzle issuer
• Minimal packet expansion

Tamper Resistance
• Replay attacks
• Spoofing attacks
• Work ahead attacks

Support for Real Time Apps
• Online games
• Streaming media

Puzzle Protocol
IssuerClient

Client Cookie

Client
Nonce
Cache

Issuer
Nonce
Cache

Client Cookie, Server Cookie, F, Puzzle

Client Cookie, Server Cookie, Answer

Hash Message Authentication Code (HMAC)h()
Puzzle Expiry TimeTSe

Puzzle Maturity TimeTSm

Flow IdentifierF
Issuer NonceNs

Issuer Logical TimestampTSs

Client NonceNc

Client Logical TimestampTSc

Puzzle AnswerAnswer
Difficulty, Puzzle ParametersPuzzle
TSs, TSm, TSe, h(F, TSc, Nc, TSs, Ns, TSm, TSe)Server Cookie
TSc, NcClient Cookie
DescriptionProtocol Field

iptables Implementation

InternetInternet

Need
Puzzle?

Valid
Answer?

Issue
ICMP Puzzle

Puzzle Firewall

Drop
Packet

Cache
Packet

Add
Cookie to IP

Header

Solve
Puzzle

Retransmit
Packet

Puzzle Proxy

Add
Answer to
IP Header

First
Packet
on Flow

Following
Packets
on Flow Yes

No

Yes

No

Protocol Extensions

ICMP
Puzzle:

Type = 38 Code Checksum

Issuer Timestamp
Expiry Time

Maturity Time

Client IP
Server IP

Server PortClient Port

Protocol

PuzzleType Length Control
Client NonceClient Timestamp

Hash of Parameters and Secrets

Puzzle Parameters (variable length)
Puzzle Difficulty

IP Options
Answer: Issuer Timestamp

Type = 26 Length Control
Client NonceClient Timestamp

Puzzle Answer (variable length)
Hash of Parameters and Secrets

IP Options
Cookie:

Control
Client NonceClient Timestamp

Type = 25 Length

Expiry Time
Maturity Time

Tracing ssh

Trace:

First
Packet

FirewallProxy

(dragon) (monkey)

1

2

3 5Next
Packet

tcpdump: listening on eth0
20:54:05.570461 dragon.32803 > monkey.22: S
20:54:05.570644 monkey > dragon: icmp: type-#38
20:54:05.570679 dragon.32803 > monkey.22: S
20:54:05.570826 monkey.22 > dragon.32803: S
20:54:05.570853 dragon.32803 > monkey.22: .
20:54:05.572148 monkey.22 > dragon.32803: P
20:54:05.572190 dragon.32803 > monkey.22: .
20:54:05.572317 dragon.32803 > monkey.22: P
20:54:05.572445 monkey.22 > dragon.32803: .
...

1
2
3

5

7 8

7
8

Performance
Constant State at Issuer
Fast Issuer

• creation: 2 random numbers and 2 hashes
• verification: 1 hash

Minimal Overhead
• puzzle is 51 bytes; answer is 26 bytes

Fine Grain Difficulty Control
• can linearly increment puzzle difficulty

Experimental Throughput
• 1.8GHz Intel Xeon machines on Gigabit switch

Issuer: validate and create puzzles at 182K packets/s
Client: solve min-difficulty puzzles at 130K packets/s

http://www.cse.ogi.edu/sysl/
Funded by:

OGI SCHOOL OF SCIENCE & ENGINEERING

OREGON HEALTH & SCIENCE UNIVERSITY

Puzzle Algorithm
Hint-Based Hash-Reversal
Requires:

• Keyed HMAC; h()
• high entropy random number generator; rand()

Creating the Puzzle:
1) Answer rand()
2) Hint Answer – (rand() mod Difficulty)
3) Puzzle Hash h(Answer)
4) discard the Answer

Solving the Puzzle:
1) Search Value Hint
2) if h(Search Value) = Puzzle Hash

Answer Search Value
3) Search Value Search Value + 1
4) go to step 2

AnswerHint0 2n

Difficulty

Slowing Port Scans

Adjusting the difficulty of IP Puzzles can force port scans
to take a selectively long time to complete.

