kaPoW Webmail: Effective Disincentives Against Spam

Wu-chang Feng

Ed Kaiser

Portland State University Portland State University

wuchang@cs.pdx.edu

ABSTRACT

Webmail spam poses a significant threat to major web-
mail providers such as Google GMail, Yahoo! Mail, and
Microsoft Live Mail, as well as to individual companies
and universities that provide web-based interfaces to their
email. Whether spammers create new accounts or hijack
existing accounts to send spam, the transmission of spam
drives up server operating costs as well as the human
costs required to identify and disable spamming accounts.
This paper presents kaPoW Webmail, a system for
slowing down and disincentivizing webmail spammers
using transparent, web-based proof-of-work (also known
as client puzzles). The approach requires that clients must
solve a computational puzzle for each email sent. The
system employs a novel puzzle algorithm that efficiently
generates and verifies fine-grained computational puzzles
that have deterministic solution-times. Unlike prior proof-
of-work systems, kaPoW Webmail also adaptively issues
puzzles of varying difficulties based on a comprehensive
set of client-specific and content-specific measurements.
The evaluation shows that this system thwarts spammers
while preserving service to legitimate webmail clients.

Keywords: Webmail, Spam, Proof-of-Work

1. INTRODUCTION

As sender reputation systems for email transmission
continue to improve, spammers are increasingly turning
towards web-based email to continue their operations. As
aresult, in 2008, the amount of webmail spam approached
close to 5% of all spam sent [18]. To execute attacks us-
ing webmail services, spammers attempt to automate the
creation of new accounts at free webmail sites such as
Google GMail, Yahoo! Mail, and Microsoft’s Live Mail
or they perform reputation hijacking by obtaining the lo-
gin credentials for existing legitimate webmail accounts
via methods such as spear phishing [6].

CEAS 2010 - Seventh Annual Collaboration, Electronic messaging, Anti-
abuse and Spam Conference, July 13-14, 2010, Redmond, Washington, US.

edkaiser@cs.pdx.edu

Aside from disabling webmail accounts that send spam,
most webmail services combat spam transmission through
the use of CAPTCHAs [41]: automated Turing tests that
typically consist of skewed representations of letters and
numbers. A user must correctly interpret the characters
before being granted service. Unfortunately, there are sev-
eral problems with using CAPTCHAs. The tests create a
terrible user interface experience especially to users that
are visually impaired [22]. Another problem is the cost
to employ humans to solve them is fixed and small [14],
making them unsuitable for protecting valuable resources
[23, 37]. Finally, increasingly more sophisticated optical
character recognition algorithms are becoming available
making it hard to generate CAPTCHAs that are easy for
humans yet difficult for computers to solve [7, 17, 29].

The proof-of-work (or “client puzzles”) approach pro-
vides a complementary alternative to CAPTCHAs. The
approach forces clients to solve computational puzzles
of client-specific difficulty before granting them service,
acting as a filter for users based on their willingness to
commit their own resources. Proof-of-work does not im-
pose user interface problems and is based on cryptographic
primitives that are provably hard to bypass. In addition,
the difficulty of the puzzle is adaptable on a per-user or
per-request basis. A number of proof-of-work systems
have been proposed to protect network protocols [11, 12,
13, 27, 43], transport protocols [8, 19, 42], authentication
protocols [2], web protocols [20], and email [3, 10, 44].
Unfortunately, while the promise of proof-of-work has
been touted for over a decade, proposed proof-of-work
approaches have met resistance to deployment because
they suffer from the following shortcomings:

o Hash-based puzzles: Most proof-of-work systems are
based on puzzles that require a client to reverse a
weakened cryptographic hash function. While hash-
based puzzles are very efficient to implement, they
have several drawbacks. Specifically, such puzzles
are easily parallelizable across multiple machines
and have probabilistic solution-times that are not
predictable. In addition, the difficulty settings on
many hash-based puzzles [8, 19, 27, 42, 44] are
coarse, making it hard to control the amount of work
assigned to a client.



o Simplistic difficulty setting: Proof-of-work systems
that do not differentiate adversaries from legitimate
clients are easily defeated [23]. Most proof-of-work
systems set the difficulty using a single metric such
as the load on the system [8, 19, 27], the request
rate of the client [12, 13, 20], the demand for the
service [42, 43], or the content of the request [44].
Without sufficient defense-in-depth, it is unlikely
such systems will deter all automated adversaries.

o Client software modifications: Most proof-of-work
systems require adoption of special client software
to receive proof-of-work challenges and solve them
on behalf of the client. An exception is [20] which
requires no software modifications to the client.

This paper presents kaPoW Webmail, a prototype web-
mail service that protects itself from sending spam using
proof-of-work. In order to address the above limitations,
kaPoW Webmail uses a more-efficient construction of the
time-lock algorithm [32] to issue non-parallelizable, fine-
grained puzzles that have deterministic solution-times. In
addition, the system uses a comprehensive set of metrics
for determining puzzle difficulties that provide significant
disincentives for spammers. Finally, the system is imple-
mented using standard web scripting environments allow-
ing it to be deployed without modifications to either the
client or server software.

2. PROOF-OF-WORK

Proof-of-work or client puzzle systems consist of three
distinct parts. The issuer generates and delivers a puzzle
to the client on behalf of the server. The solver generates
solutions to puzzles received by the client. The verifier
denies or accepts solutions sent to the server based on
their freshness and validity. In the proof-of-work model,
all clients are considered adversaries, but of varied mali-
ciousness. Based on their current and past behavior, they
are then issued puzzles of appropriate difficulty. The puz-
zle difficulty is expressed in terms of units of work, which
are uniform-length computations such as the execution
of a hash function. A proof-of-work scheme alters the
operation of a network protocol so that a client must re-
turn their puzzle along with a correct answer before being
granted service. If the server receives a request without a
valid puzzle or an incorrect answer, the request is ignored
and a valid puzzle is sent to the client. The puzzle given
to the client has a difficulty setting that determines how
much computation it must perform before generating an
answer. After receiving and solving the puzzle, the client
attaches both the puzzle and answer when resending the
request. The server, upon receiving the answer, verifies
its correctness before allowing the client access.

3. KAPOW
3.1 Modified Time-Lock Puzzle Algorithm

One of the key components of a proof-of-work sys-
tem is the algorithm that issues and verifies the puzzles.
Specifically, this algorithm must meet the following char-
acteristics to be useful:

o Fast generation and verification: Issuing the puzzle
and verifying the correctness of subsequent answers
must add minimal computation and memory over-
head to the system in order to prevent the proof-of-
work mechanism from becoming a target for attack.

e Non-parallelizable: The puzzle must be not be paral-
lelizable, that is, it should not be possible to break
up the work into smaller components that can be
solved across many machines simultaneously.

e Deterministic run-time: The amount of computation
aclient is required to consume should be predictable
and deterministic in order to ensure consistent client
execution.

e Fine granularity: The puzzle must support difficul-
ties that can be finely controlled in order to match
the amount of work a client performs with the level
of protection a server might require.

While kaPoW can support several puzzle algorithms,
in order to address the above characteristics, its default
puzzle algorithm is based on a novel construction of time-
lock puzzles [32]. Time-lock puzzles are based on re-
peated squaring, a sequential process that forces the client
to compute in a tight loop for an amount of time that
is precisely controlled by the issuer. Time-lock puzzles
are an attractive alternative to hash-based puzzles in that
they are non-parallelizable and have deterministic run-
times. However, the cost of generating time-lock puzzles
is prohibitively expensive for use in high-speed network
protocols and services [13]. Specifically, the issuer gen-
erates p and ¢, two large prime numbers as well as a
difficulty ¢ that determines the amount of work a client
must perform. It then calculates the modulus n = p x g,
randomly selects a number a, and sends the client a, 7,
and n. The client must then return an answer A such that
A =da% mod n. The server can check that A is correct by
performing a short-cut computation ¢ = (p—1) x (g—1),
r=2"mod ¢, and A’ = a” mod n. If A matches A’, then the
client has performed the computation accurately.

Unfortunately, the generation of the two large prime
numbers p and ¢ (akin to those in the generation of an
RSA key pair) takes on the order of tens of millisec-
onds on modern processors making time-lock puzzles un-
suitable for high-speed networks and applications. Fur-
thermore, the time-lock algorithm requires the issuer to



| PUZZLE TYPE |

ISSUING METHOD

| VERIFICATION METHOD |

Time-Lock [32] RSA key generation | modular exponentiation
Hash-Reversal [19] cryptographic hash cryptographic hash
Hint-Based Hash-Reversal [13] | cryptographic hash cryptographic hash
Targeted Hash-Reversal [12] minimal cryptographic hash
kaPoW Modified Time-Lock cryptographic hash | modular exponentiation

Table 1: Puzzle algorithm characteristics for server.

| PUZZLE TYPE

| NON-PARALLELIZABLE | DETERMINISTIC | WORST-CASE GRANULARITY |

Time-Lock [32] Yes
Hash-Reversal [19] No
Hint-Based Hash-Reversal [13] No
Targeted Hash-Reversal [12] No
kaPoW Modified Time-Lock Yes

Yes 1 modular squaring
No 2"~1 cryptographic hashes
No 1 cryptographic hash
No 1 cryptographic hash
Yes 1 modular squaring

Table 2: Puzzle algorithm characteristics for client.

keep track of the puzzle parameters (a,t,n) issued to each
client. To address these problems, kaPoW modifies the
time-lock puzzle generation component so that a single
pair of prime numbers can be used to generate multiple
client puzzles in a consistent fashion. This allows the sys-
tem to operate with constant state and amortize the cost
of generating the prime numbers across many issued puz-
zles.

kaPoW modifies time-lock puzzles by setting ¢ based
on the maliciousness of the client and by modifying the
generation of a. Instead of selecting a randomly, kaPoW
generates a as a cryptographic hash of client characteris-
tics f.() and a periodically updated random server nonce
K (e.g. a=SHA1(K]||f:()) ) where f.() can consist of any
number of client parameters including the URL being re-
quested, the IP address of the client, and the difficulty of
the puzzle given to the client. Rather than incur the over-
head of generating large prime numbers for each puzzle,
anew puzzle can be issued by performing a single crypto-
graphic hash. In addition, the verifier only needs to keep
track of K, p, and ¢ in order to properly validate subse-
quent puzzle answers from the client since it is able to
regenerate ¢ and f,() from the client’s request.

Note that the cryptographic strength of kaPoW’s mod-
ified time-lock algorithm is configurable to match their
use in this context. Because the cryptographic mechanism
is expected to be broken on the order of several seconds
to minutes and because the keys themselves can be eas-
ily regenerated during operation, it is possible and desir-
able to use “weak” cryptographic keys for efficiency. The
two main parameters that drive the modified algorithm
are the size of the prime numbers used to generate subse-
quent time-lock puzzles and the frequency in which those
keys are regenerated. The size of the prime numbers de-
termines the scheme’s resistance to a brute-force attack
that seeks to factor n into the prime numbers p and gq.

Currently, keys below 300 bits can be factored by a sin-
gle computer on the order of several hours while 512-bit
keys can be factored on the order of several months [5].
Key regeneration must be done periodically to address
brute force cracking, but also to address the fact that mul-
tiple puzzles are issued from a single pair of prime num-
bers. A well-known attack against this revolves around
the birthday paradox in which among a set of random
people, some pair of them will share identical birthdays
with increasing probability as the number of people in
the set grows. In the modified time-lock algorithm, the
squaring is done with the same modulus across all of the
puzzles. Thus, if two puzzles happen to share an inter-
mediate result that is the same in their computation, the
computation can be shortcut via the giant-step, baby-step
algorithm [33]. Note that the smaller the modulus (i.e. the
key size) is, the more quickly the key must be regenerated
before enough intermediate results are stored to create ef-
fective shortcuts using giant-step, baby-step. As a result,
care must be taken to refresh the modulus used to gener-
ate the time-lock puzzles before such an attack is feasible.

Table 1 and Table 2 summarize the characteristics of
a range of puzzle algorithms in the literature. As Table 1
shows, for puzzle issuing, hash-reversal puzzles have a
significant advantage over unmodified time-lock puzzles
in their issuing overheads (cryptographic hash versus RSA
key generation). However, with the modified time-lock
algorithm, this advantage is erased. As Table 2 shows,
hash-reversal puzzles have a significant disadvantage com-
pared to time-lock puzzles in that their solution times
are probabilistic and their work can be parallelized easily
across multiple machines. Thus, kaPoW’s modified time-
lock algorithm provides the efficiency at the issuer and
verifier that hash-reversal puzzles provide while support-
ing the deterministic run-times and non-parallelizability
of time-lock puzzles at the solver.



3.2 Comprehensive Disincentives

Besides a robust puzzle algorithm, another key compo-
nent to a proof-of-work system is a robust means for con-
figuring the difficulty of the puzzle issued to each client.
This difficulty algorithm must be based on a compre-
hensive set of measures to single out and disincentivize
all types of misbehavior from adversaries. Unfortunately,
current proof-of-work systems take a simplistic approach
for setting the difficulties of the puzzles they issue, mak-
ing them ineffective.

One policy used by many proof-of-work systems is
to have the server issue puzzles with uniform difficulty
across all clients whenever it becomes overloaded [2, 8,
19]. Another policy used is a market-based one where
clients “bid” on the service by solving computational chal-
lenges that are based on how much they value the ser-
vice [3, 42]. The service then processes requests in a pri-
ority order based on the amount of work committed by
each client. Unfortunately, policies that treat clients uni-
formly have been shown to be ineffective [23]. Such sys-
tems unfairly penalize legitimate clients while having min-
imal impact on adversaries that control a significant amount
of resources such as a botnet.

More sophisticated proof-of-work systems tailor the
difficulties of puzzles to individual clients to incentivize
good behavior. For example, in [20], a counting Bloom
filter is used to track the usage of individual clients over
time. When the server is overloaded, harder puzzles are
delivered to clients that have sent a large number of re-
quests to the server recently. In [44], the mail server deter-
mines the difficulty of the puzzle based on how “spammy”
the message a client is attempting to send appears. Un-
fortunately, both systems provide disincentives only for
specific misbehavior and are vulnerable to alternative at-
tacks. Specifically, the request-based approach does not
provide disincentives to an adversary posting web com-
ment spam at a reasonable rate while the content-based
approach does not provide disincentives against an ad-
versary attempting to take down the service with a flood
of requests. To address the shortcomings of previous ap-
proaches, kaPoW provides a comprehensive framework
that adaptively delivers puzzles with difficulties that are
based on a range of characteristics about the client and
the request. These characteristics include:

TIME-BASED COMPONENTS. Spammers typically send
messages non-stop throughout the day. Thus, the time
elapsed since an account’s last message was sent, the time
of day the message is sent [31], and the difference in time
the message is sent and the typical time of day the ac-
count’s owner sends messages can be used to indicate
anomalous behavior and to issue more difficult puzzles.
Another useful time-based component is the time elapsed

since the creation of the user’s account on a webmail
service. Spammers often create thousands of e-mail ad-
dresses on free web-based e-mail services using auto-
mated bots. There is then a small window of time for
spammers to use the account before a complaint is even-
tually received and the account is terminated. Thus, it has
been shown previously that the optimal strategy for spam-
mers to use these accounts is to send as much as possi-
ble as quickly as possible [16]. Using puzzles to slow the
sending of email on a newly created account forces the
spammer to create many more accounts to send the same
amount of messages, thus increasing the spammers’ cost.
Accounts that are older and established are less likely to
be sources of spam and can receive progressively easier
puzzles compared to newly created accounts.

USAGE-BASED COMPONENTS. Denial-of-service and
spam attacks on webmail are volume operations. Thus,
using past and current usage of a client to drive puzzle
difficulties can help disincentivize misbehavior. Specifi-
cally, difficulties can be based on the total number of mes-
sages a client has sent in the past, the number of messages
a client has sent in the past that have not been classified
as spam, the number of messages a client has sent in the
past that have been classified as spam, and the total num-
ber of recipients the message will be sent to. In addition,
as with prior proof-of-work systems, the current load on
the webmail system can also be used to drive puzzle dif-
ficulties in order to give the server an ability to throttle
clients when overloaded.

LOCATION-BASED COMPONENTS. The geographic loca-
tion of a client obtained via geographic databases [24]
can often be used to determine whether or not the source
is sending spam or not. For example, some spam is sent
with specific geographic patterns [25] while spam sent
from accounts that have been spear phished will often
originate from machines that have different geographic
locations than the victim’s typical location. Furthermore,
for webmail services that serve local communities such
as a university’s student population [28], the geographic
distance the client is from the server can roughly differ-
entiate legitimate versus adversarial behavior.

REPUTATION-BASED COMPONENTS. One of the reasons
spammers have turned to webmail is the widespread use
of blocklists on mail servers. Since the IP addresses of
many compromised machines are well-known, mail servers
can be easily configured to block mail from them. In order
to leverage this protection, network services can query a
number of distributed IP address blocklists to determine
the reputation of a client based on its address [9, 30, 35,
36]. Specifically, the presence of a client machine in any
of these databases can be used to substantially increase
the difficulty of the puzzle the client must solve before



allowing access to a service.

CONTENT-BASED COMPONENTS. Prior work on stopping
webmail spam has applied a Bayesian filter to the content
of a message to generate a score that is used to configure
the difficulty of a puzzle [44]. While this has been shown
to be effective, another content-based check that can be
used to identify spam is to see if the URLs embedded in
messages are part of spam campaigns. Spam campaigns
often point users to the same ephemeral web sites. As a
result, several distributed blocklists have been developed
to collect such URLs in a database that can be queried
in real-time [38, 40]. By querying such sources and au-
tomatically increasing the difficulty of puzzles given to
clients attempting to send messages with such URLs em-
bedded, one can thwart the ability of spammers to sustain
spam campaigns.

SOCIAL NETWORK BASED COMPONENTS. Most spam is
sent using email addresses that the recipient has never
communicated with in the past or e-mail addresses that
are not within the recipients social network [15]. Using
social network connectivity and prior communication his-
tory to determine puzzle difficulty can reduce unneces-
sary computation for legitimate webmail clients.

4. EVALUATION

4.1 Prototype

To demonstrate our approaches for generating time-
lock puzzles and for setting puzzle difficulties, we im-
plemented a prototype that is publicly accessible !. The
prototype implementation is a web-based email transmis-
sion service written completely in PHP that delivers a
JavaScript solver to the client for solving the modified
time-lock puzzles. The solver is only 9KB and can be
cached at the client since all puzzle parameters are sim-
ply passed as arguments to the solver via standard HTML
tags. The system does not require modifications to either
the web server or the web client software. kaPoW lever-
ages OpenSSL [26] at the server to efficiently generate
the modulus used in the modified time-lock algorithm and
employs a geographic database when the location com-
ponent is enabled [24]. By default, the prototype system
runs a user’s message through SpamAssassin [34], checks
the URLs and domain names within the message against
two blacklists [1, 40], checks the user’s IP address against
three blacklists (Spamhaus [36], SpamCop [35], Project
HoneyPot [30]) and computes the geographic distance
the user’s IP address is away from the server’s. Based
on these checks, an overall score is generated to deter-
mine puzzle difficulty. Since the kaPoW prototype does

http://kapow.cs.pdx.edu/mail.

KEY S1ZE | MEAN TIME TO ISSUE
(bits) (seconds)
400 0.165
600 0.471
800 1.13
1,000 2.04
1,200 3.90
1,400 6.10
1,600 9.88
1,800 15.3
2,000 20.6

Table 3: Issuing overhead (modulus generation) for the
modified time-lock construction averaged over 1,000 trials.

not provide the complete functionality that an email ser-
vice provider would, it emulates the rest of the compo-
nents described previously. For simplicity, the age of the
account, the recent message volume of the account, and
whether the recipient has emailed the sender before are
emulated as an aggregate measure that modifies the dif-
ficulty up or down. Figure 1 shows a screenshot of the
kaPoW Webmail prototype.

4.2 Server Performance

One of the key components of kaPoW’s webmail sys-
tem is the modified time-lock algorithm that issues mul-
tiple puzzles using a single modulus n. The modulus is
computed via the generation of two large prime numbers.
Table 3 shows the baseline performance of the computa-
tional cost involved in generating this modulus as a func-
tion of the size of the modulus. The measurements were
conducted on an Intel Core 2 Quad system (Q6600/2.4GHz)
using OpenSSL 0.9.8 on Fedora Linux and the table lists
the average generation time across 1,000 trials. As the ta-
ble shows, the minimum cost for generating a new modu-
lus is on the order of hundreds of milliseconds. Thus, for
high-performance web applications, it prohibitively ex-
pensive to generate a new modulus for each puzzle issued
to a client. The table also shows that the cost for generat-
ing a reasonably-sized modulus is several seconds. This
indicates that it is feasible to periodically refresh the mod-
ulus to avoid giant-step, baby-step attacks that can short-
cut the time-lock computation [33].

The modified time-lock algorithm amortizes the over-
head of generating two large prime numbers by issuing
multiple time-lock puzzles using a single modulus. This
is done by generating the puzzle parameter a as a cryp-
tographic hash of a periodically updated random server
nonce K and client parameters such as the URL being re-
quested, the client’s IP address, and the difficulty of the
puzzle issued. Creation of a new puzzle is thus limited
by the speed the cryptographic hash can be done in PHP.
For the prototype system, the standard SHA1() function



Poll webnail - Mozill

| kaPoll webmail — N a Firefox
ile Edit View History EBookmarks Tools

kaPoW webmail

VIAGRA VIAGRA VIAGRA

Help

Distance from .
Portland, OR: 0 miles

YourIP: | 131.252.220.66

Your Name : | Spammer |

To: |wuchang@cs.pdx.edu |

Subject : | Buy Viagra! |

Body: [VIAGRA VIAGRA VIAGRA

Good sender: Cold account, Few messages sent recently, Recipient has
e-mailed sender before.

Suspicious @ New account, Many messages sent recently, Recipient has not

sender: e-mailed sender before.
Preview Submit

Done

S

Figure 1: Screenshot of kaPoW Webmail prototype.

KEY SIZE | MEAN TIME TO VERIFY
(bits) (milliseconds)
400 0.184
600 0.580
800 1.16
1,000 1.99
1,200 2.35
1,400 2.98
1,600 4.01
1,800 4.76
2,000 5.66

Table 4: Verification overhead in PHP: Calculating
r = 2! mod ¢ and A’ = a” mod n averaged over 10,000 trials.

is used to generate a. Using the same machine as above,
the overhead of issuing modified time-lock puzzles was
measured over 1 million trials and the mean execution
time for this operation was 5.32us. Thus, issuing a modi-
fied time-lock puzzle is many orders of magnitude faster
than using the unmodified time-lock puzzle algorithm.
The final piece of the modified time-lock algorithm is
the verification of answers. The verification procedure is
the same as the original time-lock algorithm with one
addition. The verifier must validate that the parameter a
matches the client’s request by recalculating the SHA1()
function on K and the client parameters. The main over-
head in verification is performing the shortcut computa-
tion by calculating r = 2" mod ¢ and A’ = a" mod n. Ta-

KEY SIZE | UNIT OF WORK

(bits) (milliseconds)
400 10.4
600 11.8
800 15.0
1,000 21.6
1,200 22.6
1,400 25.4
1,600 27.2
1,800 28.6
2,000 30.6

Table 5: Unit work effort (modular squaring) in client puz-
zle solution averaged over 5,000 trials.

ble 4 shows the overhead in performing the verification
step across a range of key sizes. As the figure shows, the
overhead in verifying a client’s answer is only a handful
of milliseconds across all key sizes.

4.3 Client Performance

The client solver is written in JavaScript and leverages
a Big Integer Library [4] to perform the modular squaring
with arbitrarily large integers. The key component for the
solver is the amount of time a client consumes to perform
an operation. Table 5 shows the average time a modular
squaring operation takes on our test machine using Fire-
fox 3.6.2 with TraceMonkey (the JavaScript just-in-time
compiler) enabled. The measurements are taken across a



range of modulus sizes and the average is taken across
5,000 squarings. As the table shows, each operation con-
sumes tens of milliseconds.

4.4 Difficulty Setting

kaPoW applies a defense-in-depth approach against the
problem of webmail spam. Rather than use a single de-
tector such as the content of the message or the recent re-
quest rate of the client, it uses a comprehensive set of met-
rics for determining the difficulty of puzzles that clients
must solve. This is important for properly identifying and
penalizing misbehavior while allowing legitimate use to
go through. Our approach for setting difficulties is to ap-
ply individual tests against the message being sent and the
client sending it. These tests are aggregated into a single
score that is then used to generate the difficulty.

It is an open question how to set the difficulties ap-
propriately. However, the benefits of our approach can
be demonstrated even with the simplest of algorithms.
Consider the scenario of a webmail interface for a univer-
sity [28]. Such systems are under constant threat of spear
phishing attacks where adversaries obtain legitimate ac-
count credentials and use them to send large amounts of
spam via bots. To address these attacks, the algorithm we
consider uses a scoring algorithm across all components:
time, usage, location, reputation, content, and social net-
work characteristics. For each component, we use a bi-
nary test to indicate whether the activity is suspicious or
not. The individual tests we use for each component are:

e Time (S;): Does the current time of day fall within an
8-hour window during the day that users typically
send email?

e Usage (S,): Has the user account sent a message within
the last 5 minutes?

e Location (S;): Is the geographic location of the IP
address of the client within 500 miles of the institu-
tion?

e Reputation (S,): Does the IP address of the client ap-
pear on any blacklists?

e Content (S;): Does SpamAssassin consider the mes-
sage spam?

e Social network (Sg): Does the recipient of the message
appear in the user account’s address book?

Using these metrics, the algorithm generates an overall
score by summing the individual tests up resulting in a
score from 0 to 6:

score =8; + S, + 81+ S+ Sc + S5

From this score, the difficulty of the modified time-
lock puzzle issued to a client is set as:

t =20 x score®

Thus, the range of ¢ goes from 0 to 933,120 which cor-
responds to client solution times of 0 seconds to 18,662
seconds as measured on our test system. Given this, we
then simulate a range of bots attempting to send as much
spam as possible through the webmail interface using the
compromised account. We assume that bots send mes-
sages that are classified correctly by SpamAssassin with
80% success (i.e. S, = 1 for 80% of the messages). They
also send messages to recipients that are not in the user’s
address book (S; = 1). The experiment also simulates a
legitimate user attempting to send a message that is not
classified as spam (S, = 0), to someone in his/her social
network (Ss; = 0), during regular hours (S, = 0), at a local
location (S; = 0), on a machine whose IP address does not
appear on a blacklist (S, = 0). With this setup, the only
potential penalty against the legitimate user is the usage
component S, as the adversary has hijacked the account
and has been sending messages throughout the day on it.

Table 6 shows the average number of messages dif-
ferent bots are able to send using the hijacked account
over an entire day across 1,000 simulations. The table
also lists the average delay the bot experiences in send-
ing each message due to solving the modified time-lock
puzzle. As the table shows, bots that are local and have
IP addresses with good reputations are able to send the
most messages through the service. However, since they
are sending messages that are likely to be classified as
spam, to recipients that are not in the user’s social net-
work, at a rate that will trigger the usage component, and
during times of day that are abnormal, they are eventually
given puzzles with significantly higher difficulty and are
forced to slow down. For bots that are not local or that
have IP addresses that appear on blacklists, the penalty is
even steeper and they send substantially fewer messages.
Finally, the table lists the average delay the legitimate
user experiences when attempting to send a message. As
the table shows, while the adversary is impacted signifi-
cantly, the legitimate user experiences a nominal delay in
sending a message.

S. CONCLUSION

Current proof-of-work systems have several limitations
in their use of hash-based puzzles and simplistic diffi-
culty settings. kaPoW webmail addresses these limita-
tions through a novel and efficient construction of time-
lock puzzles and the use of a comprehensive set of met-
rics to drive puzzle difficulties. While our initial proto-
type system and difficulty algorithms show promise, it is
an open question whether such a system can effectively
turn back webmail spam. As part of future work, we plan
to rigorously evaluate a wider range of difficulty algo-
rithms across a wider range of adversaries. We also plan



Bor TYPE AVERAGE MESSAGES SENT | AVERAGE PER-MESSAGE | AVERAGE MESSAGE DELAY
BY BOT IN ONE DAY DELAY FOR BOT (S) FOR LEGITIMATE CLIENT (S)

Local Bot with

Good Reputation 159.7 £ 5.6 540.4 +£24.1 0.400 4 0.000

(Sl = 09 Sr = O)

Local Bot with

Bad Reputation 303 +22 2,860 + 47.9 0.116 + 0.040

(5;=0,5=1)

Remote Bot with

Good Reputation 304+23 2,851 £47.6 0.104 + 0.041

$;=1,5=0)

Remote Bot with

Bad Reputation 84+12 10,309 + 83.8 0.000 & 0.000

S =LS=1)

Table 6: Performance of difficulty algorithm across several bots.

on applying our approach to popular open-source web-
mail packages in order to validate its utility in a real de-
ployment [39]. Finally, similar to our previous work ap-
plying proof-of-work against web-based denial-of-service
attacks [12, 20] and ticket purchasing robots [21], we plan
to apply our approach to additional applications such as
multi-factor web authentication and web comment spam.

6. REFERENCES

[1] AnonWhois.org. The Anonymous Whois List.
http://anonwhois.org.

[2] T. Aura, P. Nikander, and J. Leiwo. DoS-Resistant
Authentication with Client Puzzles. In Workshop on
Security Protocols, April 2000.

[3] A. Back. Hashcash: A Denial of Service
Counter-Measure. Technical report, Cypherspace,
August 2002. http://www.hashcash.org/
papers/hashcash.pdf.

[4] L. Baird. Big Integer Library v. 5.1.
http://www.leemon.comn.

[5] D. Boneh. Twenty Years of Attacks on the RSA
Cryptosystem. Notices of the American Mathematical
Society, 46(2), 1999.

[6] Cisco Systems. Cisco Annual Security Report,
December 2008. http://newsroom.cisco.
com/dl1ls/2008/prod_121508.html.

[7] D. Danchev. Gmail, Yahoo and Hotmail’s
CAPTCHA Broken by Spammers, July 2008.
ZDNet News.

[8] D. Dean and A. Stubblefield. Using Client Puzzles
to Protect TLS. In USENIX Security Symposium,
August 2001.

[9] DShield.org. Distributed Intrusion Detection
System. http://www.dshield.org.

[10] C. Dwork and M. Naor. Pricing via Processing or
Combatting Junk Mail. In CRYPTO, August 1992.

[11] W. Feng. The Case for TCP/IP Puzzles. In ACM
SIGCOMM Workshop on Future Directions in Network
Architecture (FDNA), August 2003.

[12] W. Feng and E. Kaiser. The Case for Public Work.
In IEEE Global Internet Symposium, May 2007.

[13] W. Feng, E. Kaiser, W. Feng, and A. Luu. The
Design and Implementation of Network Puzzles. In
IEEE INFOCOM, March 2005.

[14] GetAFreelancer.com. Captcha Entry Projects.
http://www.getafreelancer.com/
projects/by-tag/captcha-entry.html.

[15] J. Golbeck and J. Hendler. Reputation Network
Analysis for Email Filtering. In CEAS, July 2004.

[16] J. Goodman and R. Rounthwaite. Stopping
Outgoing Spam. In ACM Conference on Electronic
Commerce, May 2004.

[17] S. Hocevar. PWNtcha - Captcha Decoder.
http://sam.zoy.org/pwntcha.

[18] IronPort Systems. IronPort Research Discovers
Links Between Malware Originators and Illegal
Online Pharmaceutical Supply Chain, June 2008.
http://www.ironport.com/company/
ironport_pr_2008-06-11.html.

[19] A. Juels and J. Brainard. Client Puzzles: A
Cryptographic Defense Against Connection
Depletion. In NDSS, February 1999.

[20] E. Kaiser and W. Feng. mod_kaPoW: Protecting
the Web with Transparent Proof-of-Work. In IEEE
Global Internet Symposium, April 2008.

[21] E. Kaiser and W. Feng. Helping TicketMaster:
Changing the Economics of Ticket Robots with
Geographic Proof-of-Work. In IEEE Global Internet
Symposium, March 2010.

[22] D. Kesmodel. Codes on Sites *Captcha’ Anger of
Web Users, May 2006. Wall Street Journal.

[23] B. Laurie and R. Clayton. ‘Proof-of-Work’ Proves



Not to Work’. In Workshop on Economics and
Information Security, May 2004.

[24] MaxMind, Inc. Geolocation and Online Fraud
Prevention from MaxMind.
http://www.maxmind.com.

[25] MessageLabs. MessageLabs Intelligence Report:
May 2009. http://www.messagelabs.com/
intelligence.aspx.

[26] OpenSSL Project. OpenSSL: The Open Source
Toolkit for SSL/TLS.
http://www.openssl.org.

[27] B. Parno, D. Wendlandt, E. Shi, A. Perrig,

B. Maggs, and Y. Hu. Portcullis: Protecting
Connection Setup from Denial-of-Capability
Attacks. In ACM SIGCOMM, August 2007.

[28] Portland State University. Portland State University
Webmail. http://webmail.pdx.edu.

[29] S. Prasad. Google’s CAPTCHA Busted in Recent
Spammer Tactics, February 2008.
http://securitylabs.websense.com/
content/Blogs/2919.aspx.

[30] Project Honey Pot. Http:BL. http:
//www.projecthoneypot.org/httpbl.php.

[31] R. Malmgren and J. Hofman and L. Amaral and D.
Watts. Characterizing Individual Communication
Patterns. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, July 2009.

[32] R. Rivest, A. Shamir, and D. Wagner. Time-lock
puzzles and timed-release Crypto. Technical report,
MIT, March 1996. MIT/LCS/TR-684.

[33] D. Shanks. Class Number, A Theory of
Factorization and Genera. In Symposia in Pure
Mathematics, 1971.

[34] SpamAssassin. The Apache SpamAssassin Project.
http://spamassassin.apache.org.

[35] spamcop.net. SpamCop.
http://www.spamcop.net/.

[36] Spamhaus Project Ltd. Spamhaus Project.
http://spamhaus.org/.

[37] R. Stross. Hannah Montana Tickets on Sale! Oops,
They’re Gone, December 2007. New York Times.

[38] SURBL Community. SURBL.
http://www.surbl.org.

[39] The Horde Project. The Horde Project.
http://www.horde.org.

[40] URIBL. Realtime URI Blacklist.
http://www.uribl.comn.

[41] L. von Ahn, M. Blum, N. Hopper, and J. Langford.
CAPTCHA: Using Hard Al Problems for Security.
In CRYPTO, August 2003.

[42] X. Wang and M. Reiter. Defending Against
Denial-of-Service Attacks with Puzzle Auctions. In
IEEE Symposium on Security and Privacy (S&P), May
2003.

[43] X. Wang and M. Reiter. Mitigating
Bandwidth-Exhaustion Attacks Using Congestion
Puzzles. In ACM CCS, October 2004.

[44] Z. Zhong, K. Huang, and K. Li. Throttling
Outgoing SPAM for Webmail Services. In CEAS,
July 2005.



