mod kaPoW: Protecting the Web with Transparent
Proof-of-Work

Ed Kaiser Wu-chang Feng
Portland State University Portland State University
edkaiser@cs.pdx.edu wuchang@cs.pdx.edu

Abstract— Attacks from automated web clients are a is the static nature of the problems being given out.
significant problem on the Internet. Web sites often CAPTCHAs are designed to produce an image that a user
employ Turing tests known as CAPTCHAs to combat can solve on the order of tens of seconds. Enterprising
automated agents. Unfortunately, such defenses require oqyersaries have outsourced the solving of CAPTCHAS
frequent human user input, are becoming less effective as with rates as low as $3 for every 1000 images solved [6].

computer vision techniques improve, and can be subverted = ic standpoint. the inability to ch th
by adversaries willing to hire humans to solve challenges. ' 0 an economic standpoint, the inability to change the

Several alterative defenses based upon cryptographic Price” of access threatens the utility of the system [7].
methods rather than human input have been proposed An alternative to CAPTCHAs is the use of proof-of-
to achieve the same goals. Such “proof-of-work™ tech- work (PoW) protocols. A proof-of-work scheme alters
niques pr?oritize clients based on theirvyilllingn.ess to solve the operation of a network protocol so that a client
computational challenges of client-specific difficulty set by must return their challenge along with a correct answer
the server. Unfortunately, few proof-of-work schemes have before being granted service. The challenge acts as a

been deployed since they require wide-scale adoption Off'l f i based heir wili |
special client software to operate properly. liter for clients based on their willingness to solve a

To address these problems we presenmodkaPoW, computational task of varying difficulty. The difficulty
a novel system that has the efficiency andhuman- is tailored to the individual client and is proportional to

transparency of proof-of-work schemes as well as the its load on the server. There have been several proof-
software backwards-compatibilitpf CAPTCHA schemes. of-work systems proposed in the literature [8], [9], [10],
The system leverages common web technologies to delivery1], [12], [13]. While such systems are highly config-
a challenge, solve it, and submit the client response, apie in terms of workload, few have actually made
\c/jvhne.prowdlng accessibility for legacy clle.nts. This paper much progress towards being deployed. The biggest
escribes and evaluates a prototype of this system. X . .
problem with these schemes is that they require changes
|. INTRODUCTION to standard protocols and wide-scale adoption of special
Attacks from automated web clients are a significagtient software in order to operate properly, denying all
problem on the Internet. Such attacks include comme#ients who have not installed it.
spam on web-based forums [1], ticket-purchasing ro-To address this problem, this paper describes the
bots [2], click-fraud robots, and denial-of-service attackdesign, implementation, and evaluation of a novel web-
One way to combat this problem is the use of imageéased proof-of-work system that provides the benefit
based CAPTCHAs [3]. A CAPTCHA is an automateaf configurable PoW protocols in a deployable manner.
Turing test typically consisting of skewed representatiotnlike CAPTCHAs, the system isransparentto its
of letters and numbers, which a user must correctlisers and supportsackwards compatibilityfor legacy
interpret before they are given access. clients. The basic approach only requires changes to web
There are several disadvantages of using CAPTCHA®rvers and is similar to the URL rewriting approach em-
One drawback is the user-interface problem they crployed by content-distribution networks such as Akamai.
ate [4]; users with visual disabilities are unable tth the approach, the web server dynamically rewrites
access content legitimately while normal users find WRL references by attaching a computational puzzle to
increasingly difficult to solve CAPTCHAs correctly aghem. It also sends with these references, a small piece
the images have become less readable in order to thwartlavaScript code for solving the puzzle embedded in
sophisticated adversaries that have developed automdtedreferences. Valid URLs are dynamically calculated
solvers for simple CAPTCHAs [5]. Another drawbaclby invoking the JavaScript solver.

@ R Verifying Filter
equest
@ \ Web Server URL
URL w/ valid PoW — High
@ % — Priority
Content o Solution Content
Clients .;g S Page
URL w/ invalid PoW 'tojl .
@ ________ & i:;; Issuing Filter Low
*r ~ Response @ Priority
@ W Content
Fig. 1. The novel proof-of-work system, highlighting its additionsg=ig. 2. Themod.kaPoW Apache module showing the processing
to typical web service. of a URL and the corresponding content.
Il. SYSTEM DESIGN is expected to takB tries on average because the output
A. Overview is uniformly-distributed.

This work function is a good candidate because it is

The novel proof-of-work system we cattod kaPoW . . .)
is shown in Figure 1. The system protects web conteﬁqluemly implementable. Specifically, using the SHA-1

by embedding challenges (calladork function and ash function, it can be verified in a single hash, taking

solutions in Uniform Resource Locators (URLS) as ne%;ogu s in software [8]. Further, the work function can

query parameters. As webpages are served, the U e expressed compactly; the issuer simply has to send

S o
} X ¢ and N;, and a verifier only needs those parameters
found iin any Hyper.Text Markup Language (HTML)and the solutiorA to verify that Equation 1 is satisfied.
tags are updated to include a proof-of-work challenge:
The system leverages the pervasiveness of JavaSciipt,The Server Module
software present and enabled on upwards of 94% of

modern web browsers [14]. When a client’s browser The bulk of the syste.m I|e_s within an Apache w_eb—
sderver module shown in Figure 2. Apache provides

finds a PoW-protected link, it runs a server-provided . . .
. : rich interface for writing modules that range from
script to solve the challenge and append the solutlont%]o

. ose that control how a client accesses a server (such
the URL. As elaborated upon later, clients that do ngt (

.) S mod_rewrite to those that dynamically generate
have JavaScript enabled are not necessarily preven?e({n) . y y 9
. content (such asnod.include). As a result, Apache
from accessing the content.

lends itself well to supporting a proof-of-work modtile

Upon receiving a request, the server verifies that t : s o n T
URL contains a valid challenge and correct solutiotr}ﬁe module has two fllters,. assuing filterthat embeds
roof-of-work challenges in outbound content and a

before servicing it. If either the challenge is stale or e

solution is incorrect, the system denies the request %Yq%f'fymg filterthat prioritizes inbound requests based on

. . aving a valid challenge with a correct answer.
returns an error page containing a link to the resource . . S
1) Server Configuration:To prioritize requests, the
and a new challenge.) . . .
server is configured with two virtual hosts. The default
B. The Work Function low-priority virtual host does not support persistent
While this system could use any of several differedi T TP connections, and tears down any connection after

types of work functions, the prototype uses the COmpa&qrvicing a single request. Only a limited number of low-

Targeted Hash-Reversal function [9] of the form: priorit;_/ c_Iients_ are handlgd concu_rrently; all additional
low-priority clients are rejected with error cods3:
H(Nc || D¢ || A) =0 mod D¢ (1) Service Temporarily Unavailable

. A request demonstrating a correct answer to a valid
where H is a pre-image resistant hash function with . . . T
. L . . e challenge is redirected to the high-priority virtual host,
output uniformly-distributedN\; is a client-specific nonce ", .
) which supports more concurrent clients and does not tear
generated by the web servdd. is the client-specific

difficulty set by the web server, andl is the solution down connections. However, once a high-priority client

- . . . ends an invalid request, the connection is redirected
that the client’s JavaScript solver must find. Since bo LT .
. . . . ack to the low-priority virtual host to be terminated.
Nc and D, are fixed by the issuer and is pre-image

resistant, this work function requires the solver to try 1the apache module naming-convention inspired the name
various values foA until the equation is satisfied. This*modkaPow.

<HTML>

2) Client-Specific Variables:During the course of

<SCRIPT TYPE='text/javascript' SRC='kaPoW.js'></SCRIPT>

their operation, both filters refer to the client-specific _ <mesampie content Pagec/zirie>

</HEAD>
<BODY>

difficulty D and nonceNc. <1lsanple Content Page</El>

This webpage demonstrates an image and link protected by

To establishD¢, the module uses a counting Bloom ereet-orverk. cerocero

 are solved when

filter [15], [16] to track the load imposed by individual il Deo. Neszasesel besto-
Poli-protected links are solved only when the link is clicked.

clients. The counting Bloom filter is an efficient data /=

</HTML>

structure that offers a tradeoff between size and the

n ; i ; e Fig. 3. The HTML markup of a sample document highlighting a
probability of incorrectly assigning a high difficulty to alink to the solution script file and the work function variables that

client. It has no false negatives (i.e. a client known to Rgyre added.

malicious will never be issued a trivial work function),

and the probability of a false positive can be driven _

arbitrarily low with additional memory. Given that the = ™S seeriewe/javascripnr sromapon. jors</scrrens

<TITLE>Error: Invalid PoW</TITLE>

Bloom filter use different hash functions to index into /==

<BODY ONLOAD='Solve (document.links[0]) ;

an array ofn counters, the probability of misclassifying .. sy tosation - replace (docunent. 1inks [01 . href) '~

The requested URL did not have a valid proof-of-work attached.

a Sing|e client from an estimated popu|ationmt|ients If you are reading this page, it is likely that you do not have

JavaScript enabled.

 If you would still like to try to
access the content, please click the following link:

. . km .
is apprOXImater(l_ e*?)k USlng a Value Ofk that

http://maes.cs.pdx.edu/

<HR>
</BODY>

minimizes that equation, the error is approximated by <oz
0.6185n. Thus to achieve a misclassification rate of le€dg. 4. The HTML markup of an error page sent in response to
than 0.1% of 20000 clients, the Bloom filter requiresa URL that had an invalid or missing solution. The browser refresh
: ’ . .. script is highlighted.
288000 counters or a total of.2ZMB when using 32-bit
counters. The Bloom filter is updated in every 10 seconds
so that the difficulty is held constant long enough to give)] o)
g) The lIssuing Filter: The issuing filter scans and

clients a chance to respond but short enough so tha
the difficulty can respond to sudden changes in loarses HTML documents as they are served. It adds work

When the structure is updated, each countisrupdated functions toall tags containing URLs, as well as the
according to the following logic: instructions necessary for a client’'s browser to solve the

functions as shown in Figure 3.

The issuing filter includes the solution instructions
for work functions through the addition of a link to a

] . i (2 JavaScript file KaPoW.j$ at the head of the document
which states that the difficulty decays linearly from Ong, . it is retrieved first (unless already cached) and the

time W'n_d?jtw to the nextrl]mlesr,]s theq;zstsn. thehl_af]t script may work as the remaining tags are incorporated
time periodt are greater than the rate @écay In Which .. the client's in-memory Document Object Model

case those extra requests count exponentially towaE%M). Despite containing a URL, this tag does not

Increasing the d|ff_|9u|ty. , have a work function because clients need this resource
The client-specific nonchl; is created by concatenaty ¢ o they can possibly solve any work function.
ing the client’s identitylP., the unmodifiedJRL, and a

server nonce\;

| c+requests—decay requests< decay
G1= 9 ¢ 4 1.01equests-decay gtherwise

The issuing filter incorporates work functions into tags
by adding the variablebl. and D as tag attributes. To
Ne=1Pc || URL || Ns (3) avoid accidentally triggering HTML escape sequences,

binding the nonce and entire work function, to the clietbe values are transmitted in hexadecimal. It is important
and specific content for a fixed window of time. Whef observe thai; differs between tags because it is
the server nonce changes the existing client noncglculated from the original unmodified URL of each
effectively expire, meaning solutions cannot be reus&%ﬂ_ (recall Equation 3). The filter also appends a_default
indefinitely. The unpredictable server nonce prevents tfifficulty of “Dc=0" to the actual URL so that clients
offline solving attacks that have been employed agairféthout JavaScript enabled can follow the link while at
CAPTCHAs [6]. The server can update its nonce ingthe same time |r_1d|cat|ng to the server that they cannot
pendently from the Bloom filter, as frequently as need&®!ve work functions.

to keep client solutions fresh, however the prototype Before sending the content, the issuing filter updates
updates the nonce and Bloom filter simultaneously. the Bloom filter to count the request against that client.

4) The Verifying Filter: The verifying filter parses D. The Client Solver

request URLs and extracts any appended proof-of-workyhile the client end of the system can be computa-
variables. If the request URL contains the varia&s tjonally demanding, particularly for malicious clients, it
andD, they are checked to be current and correct befaeernctionally lightweight. The client's browser executes
the module does any computationally expensive opetafew scripts contained in the JavaScript flk@PoW.j3
tions such as hashing. Nc andD. are valid, the verifier |iyked at the head of the document.
then proceeds to check that satisfies Equation 1. If The fundamental script is tHBolve() script which
everything works out, the request is accepted by the high- ysed to solve individual work functions that the
priority virtual host and the content is sent to the cliengowser encounters. The script takes a tag with a URL
There are three primary reasons why client's requesgs input and extracts the attributds and Dc. Provided
might be rejected by the verifying filter; the URL has n@ can find those attributes, it systematically hashes them
proof-of-work attached, the parameters are not curre@iith various values forA until Equation 1 is satisfied.
or the solution is not valid. The first two failures mayrhe script removes existing PoW variables embedded
have occurred for a variety of legitimate reasons and drethe URL (specifically the Dc=0") and then appends
not necessarily indicative of a malicious client. the variablesN;, D, and A to the URL. The URL is
If the request URL contains no PoW parameters, thémen updated in the in-memory DOM for use when the
the client may have been linked to this resource from @mowser needs to fetch that resource.
external server that has not yet adopted the system andnother script runs as soon as the file is read and
hence did not assign a work function. It is also possibl®oks into the event triggered when tag elements are
that the user arrived at this website by manually enteriaglded to the DOM. As content tags (such<dMG>)
the URL into the address bar — users are not expectw@ added, this script callSolve(-) so that the URL
to know PoW parameters. in the tag reflects valid work. As hyperlink tagsA>)

If the request URL contains PoW parameters, howevaie added, they have theNCLICKattribute modified
they are invalid, the client may have been directed to tH@ call Solve() — work functions for hyperlinks are
site from an external server that appended its own valu@dy solved once the user chooses to follow the link.
for N and Dc. Alternatively, the user may have taken 1. EVALUATION
enough time reading the last webpage that the serve

has updated it's noncls, invalidating the client nonce .
P S g running on a network of 1.8GHz dual processor Intel

N E i . . : . .
c 83 peél qua;uor? 3 i< denied Xeon machines with Gigabit Ethernet interfaces. The
Regardless of the reason, once a request is denie ’épﬁeriments show that the system can efficiently defend

filter returns an error page to the client, such as the Onedgainst flooding attacks using minimal overhead
Figure 4. The error contains some error text and a sing| '

link to the requested content. After it has been processidd Thwarting Flooders
by the issuing filter, it has a work function embedded The network has six machines in total; 1 server
into it. The key feature is highlighted; the error paggunning Apache, 1 good client which requests a web
includes anOnLoad(-) script that immediately solvespage once a second and then disconnects, and 4 flooding
the work function and redirects the browser to use thgjversaries that aim to deny the good client by con-
proper URL. The client's web browser history omits theuming as many server resources as possible. While this
error page, so a user can move through their browsiggtup is far from the magnitude of a real botnet, the
history without ever seeing this page. server is configured to give adversaries an advantage
A notable exception is for clients that do not havever the client. Specifically, the server is configured
JavaScript enabled. Recall that the issuing filter embedsonly accept 4 clients simultaneously and the high-
“Dc=0" into all URLs within HTML tags. If a client's priority virtual host is configured to allow persistent
browser does not have JavaScript enabled, it will nolients to remain connected as long as they continue to
solve the work function and instead use the URL vesend requests.
batim. When the verifying filter observes such a URL As shown in Figure 5(a), withoumod kaPoW the
with the variableD; set to zero, it will conclude that adversaries can occupy the server indefinitely while they
the client cannot solve the work function and accept tlilwod packets. The good client can never establish a
request on the low-priority virtual host. connection and get a request through.

[I'his section evaluates the system using experiments

11

NN T : T : T r GIdI" tI r — — 10
= Good clien 10000 L4 -
-- A ate adv i [[| == Good client |. 10
L - ggregate ersanies F| =— = Adversaries (aggregate) Prm e 10
—————————— T T T Y e e — = TN _~ e~ =~ A - — -
v L|-—-— Adversary difficult 1 —10°
2000] y y] i 10
1000 - — ="l s
L | E / I — 10
2 2 - | i N 4
L ! 1
g 1500 |- — é I l; 0 &
100 I 1.6 2
o o E l I 10 >
o - - S = - =
%) %) C] 5 3
g ki C | . 107 £
5 1000~ — o ! =
o & e I —10*
L . F |
C —10°
500 (— _| |
1e T 10°
F | 10
o — T I I | I &
o) 10 20 30 40 50 60 0 10 20 30 40 50 60"
Time (s) Time (s)
(a) Flooders vs. default server. (b) Solving Flooders vamod kaPoW server.
T T T T T T T T : T : — T T T T T T T : T ——
10000 || === Good client — = Good client
F| = =— Aggregate adversaries 3 10000 El — Aggregate adversaries E
F| -—-— Aggregate adversaries rejected . F| -—-— Aggregate adversaries rejected E
- = § f Y *
1000 ¢ / I .3 1000 | / 1 -
- - roo E - : - :
g " | ! 1 2 E | |]
100 e | l E 100 | ! =
g E I 3 s} E E
=% E 1 I 3 o E 1 | 3
N o i 7 %) E 7
g - | ! . g - [!]
g 10 | i 3 ,jgé_ 10 I ! -L\ -L\ L\ 'l\ L}
E | 3 E ot A
F I E E | L
r |] F Bor-ror.1.H
i L)] - L]
1l) - 1k . e e
= = E M- .1.1 .17
3 | 3 E | A
- 1 - - 1 | T R B B ey
i 7 i it b
. | . I . | N I . . | . I . I | | | [
50

o

10 20 30

Time (s)

40

[o)]
o

o
[
o

30
Time (s)

[o)]
o

(c) Flooders vsmod kaPoW server. (d) Flooders vsmod.kaPoW server withiptables filter.

Fig. 5. mod.kaPoW thwarting flooding adversaries.

Figure 5(b) shows the addition @fiod kaPoW, lim- per second. This reduces the magnitude of rejected
iting the reign of the flooders to a single time windowflooder requests. The drops induce TCP backoff, seen
When the module updates the Bloom Filter, the flooderisi the jigsaw pattern of rejected requests.
requests drive their respective difficulties t& Zrequir- These experiments demonstrate that even using a
ing roughly 1.3 hours to solve) preventing them fromelatively simple policy to adjust the client difficul®c,
sending valid requests in time, and restoring access fbe system can prioritize clients to achieve separation
the good client. between determined adversaries and legitimate clients.

Figure 5(c) shows flooders that do not stop once
they are given a difficult work function. Instead, thef?: Overhead
simply flood requests with invalid solutions. After the It is important that the overhead imposed on the server
initial flood, the adversary requests are rejected and thieyr the issuing and verifying filters is minimal. The
connections are terminated upon each request, lowerigache Benchmark toolap) was used to measure the
their throughput and allowing access for the good clientme to process a individual web requests, rounding up

While the system properly discards requests that drmethe nearest millisecond.
part of a flood, they do consume substantial resourcesThe benchmark in Figure 6(a) shows the overhead
on the web server as it must accept each connectiorhen processing files containing a variable number of
and parse the request before rejecting it. Figure 5(dRLs. Overall, the graph shows that there is observ-
shows that using standaifgtables ~ matching rules, an able overhead when processing large static pages stored
ingress filter can restrict each client to 5 TCP connections the disk. The overhead is considerably less when

10,000 ‘ ‘ ‘
- © ‘Embed PoWs in Dynamic Page
- # ‘Embed PoWs in Static Page A
- »- Baseline for Dynamic Page 2
- 4- Baseline for Static Page 2
1,000 —| - #- Reject & Send Error Page ,I‘
© . ’
£ 2 :
i= 100 "’ "
g’ [4 'l
® e A
3 .,
8 X ‘o A
8 s *
o ‘l’ o
10 !
2 B A
4 o e
p . .
& ,” & . x
K .”kl' . > -] ,I"
1 FPY el - & i &

100 1,000

URLs in Page (#)

10,000 100,000 1,000,000

(a) Processing time vs. URLs in the file.

10,000 I I I

1,000

Processing Time (ms)

‘Embed PoWs in Dynamic Page
‘Embed PoWs in Static Page

- Baseline for Dynamic Page

- Baseline for Static Page

- Reject & Send Error Page

o
" E 6 x o

H
3
N

& whd & i &
000 100,000

100 1,000,000

1,000 10,1
Page Size (Bytes)

(b) Processing time vs. file size.

Fig. 6. Request processing time with respect to the content length.

processing pages dynamically generated because those
pages are already chunked appropriately for the filter1

When requests are rejected for having an invalid solution,
the processing is independent of the file size because tf#% R. Stross, “Hannah Montana Tickets on Sale! Oops, They're

small error page is returned instead. The results indic
that the overhead is negligible for pages containin

B

fewer than a couple hundred URLs, while the benefit of

rejecting invalid requests for large pages is substantiall4]
The benchmark in Figure 6(b) shows the overhead f%]

processing webpages of variable length containing no

URLs. The graph shows similar trends to the previouf]
benchmark, although the overhead here is less beca

there are no calculations &f.. The benefit of rejecting
invalid requests for large pages remains substantial.

IV. CONCLUSION
This paper presentedhod kaPoW, a novel system

that istransparentto end users like other proof-of-work
schemes but is alsbackwards compatibldor legacy [10]
clients like CAPTCHAs and doesn’t require special

client software. In the system, a web server dynamical%/l]
rewrites HTML tags containing URLs by attaching a

computational challenge to them. It also sends with th€]
work functions, a small JavaScript so that clients ¢
solve them. Subsequent client requests are prioritized

having a valid solution.

The system binds work functions to the client, servet?]

REFERENCES

] “phpBB: Creating Communites Worldwide http://www.

phpbb.org

Gone,” New York TimesDecember 2007.

von Ahn, M. Blum, N. Hopper, and J. Langford,
“CAPTCHA: Using Hard Al Problems for Security,” ifPro-
ceedings of Eurocryp2003, pp. 294-311.

D. Kesmodel, “Codes on Sites 'Captcha’ Anger of Web Users,”
Wall Street JournglMay 2006.

S. Hocevar, “PWNrtcha,” http://[sam.zoy.org/

pwntcha .

“GetAFreelancer.com,” http://www.getafreelancer.

com.

L[?]e B. Laurie and R. Clayton, “Proof-of-Work’ Proves Not to

Work’,” in Workshop on Economics and Information Security
May 2004.

[8] W. Feng, E. Kaiser, W. Feng, and A. Luu, “The Design and

Implementation of Network Puzzles,” ilEEE INFOCOM

March 2005.

[9] W. Feng and E. Kaiser, “The Case for Public Work,”Giobal

] X. Wang and M. Reiter,
y

requested content and time window through the secure

creation of the client noncé\.. The work function [15]
difficulty D¢ is tailored to each individual client. The
evaluation shows that using a simple policy, the difficul

can be adjusted to fend off flooding adversaries. The
evaluation also demonstrated the low system overhead.

Internet May 2007.

C. Dwork and M. Naor, “Pricing via Processing or Combatting
Junk Mail,” in CRYPTQ August 1992.

T. Aura, P. Nikander, and J. Leiwo, “DoS-Resistant Authenti-
cation with Client Puzzles,” iWWorkshop on Security Protocols
April 2000.

D. Dean and A. Stubblefield, “Using Client Puzzles to Protect
TLS,” in USENIX Security Symposiuugust 2001.

“Mitigating Bandwidth-Exhaustion
Attacks Using Congestion Puzzles,” WCM CCS October
2004.

The Counter, “JavaScript Statistics for October 2007,” October
2007, http://www.thecounter.com/stats/2007/
October/javas.php

L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache:
a scalable wide-area web cache sharing protocolRCM
Transactions on Networkingol. 8, no. 3, June 2000.

] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and

G. Varghese, “An Improved Construction for Counting Bloom
Filters,” in ESA 2006 September 2006.

