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Abstract— Attacks from automated web clients are a
significant problem on the Internet. Web sites often
employ Turing tests known as CAPTCHAs to combat
automated agents. Unfortunately, such defenses require
frequent human user input, are becoming less effective as
computer vision techniques improve, and can be subverted
by adversaries willing to hire humans to solve challenges.

Several alternative defenses based upon cryptographic
methods rather than human input have been proposed
to achieve the same goals. Such “proof-of-work” tech-
niques prioritize clients based on their willingness to solve
computational challenges of client-specific difficulty set by
the server. Unfortunately, few proof-of-work schemes have
been deployed since they require wide-scale adoption of
special client software to operate properly.

To address these problems we presentmod kaPoW,
a novel system that has the efficiency andhuman-
transparency of proof-of-work schemes as well as the
software backwards-compatibilityof CAPTCHA schemes.
The system leverages common web technologies to deliver
a challenge, solve it, and submit the client response,
while providing accessibility for legacy clients. This paper
describes and evaluates a prototype of this system.

I. I NTRODUCTION

Attacks from automated web clients are a significant
problem on the Internet. Such attacks include comment
spam on web-based forums [1], ticket-purchasing ro-
bots [2], click-fraud robots, and denial-of-service attacks.
One way to combat this problem is the use of image-
based CAPTCHAs [3]. A CAPTCHA is an automated
Turing test typically consisting of skewed representations
of letters and numbers, which a user must correctly
interpret before they are given access.

There are several disadvantages of using CAPTCHAs.
One drawback is the user-interface problem they cre-
ate [4]; users with visual disabilities are unable to
access content legitimately while normal users find it
increasingly difficult to solve CAPTCHAs correctly as
the images have become less readable in order to thwart
sophisticated adversaries that have developed automated
solvers for simple CAPTCHAs [5]. Another drawback

is the static nature of the problems being given out.
CAPTCHAs are designed to produce an image that a user
can solve on the order of tens of seconds. Enterprising
adversaries have outsourced the solving of CAPTCHAs
with rates as low as $3 for every 1000 images solved [6].
From an economic standpoint, the inability to change the
“price” of access threatens the utility of the system [7].

An alternative to CAPTCHAs is the use of proof-of-
work (PoW) protocols. A proof-of-work scheme alters
the operation of a network protocol so that a client
must return their challenge along with a correct answer
before being granted service. The challenge acts as a
filter for clients based on their willingness to solve a
computational task of varying difficulty. The difficulty
is tailored to the individual client and is proportional to
its load on the server. There have been several proof-
of-work systems proposed in the literature [8], [9], [10],
[11], [12], [13]. While such systems are highly config-
urable in terms of workload, few have actually made
much progress towards being deployed. The biggest
problem with these schemes is that they require changes
to standard protocols and wide-scale adoption of special
client software in order to operate properly, denying all
clients who have not installed it.

To address this problem, this paper describes the
design, implementation, and evaluation of a novel web-
based proof-of-work system that provides the benefit
of configurable PoW protocols in a deployable manner.
Unlike CAPTCHAs, the system istransparent to its
users and supportsbackwards compatibilityfor legacy
clients. The basic approach only requires changes to web
servers and is similar to the URL rewriting approach em-
ployed by content-distribution networks such as Akamai.
In the approach, the web server dynamically rewrites
URL references by attaching a computational puzzle to
them. It also sends with these references, a small piece
of JavaScript code for solving the puzzle embedded in
the references. Valid URLs are dynamically calculated
by invoking the JavaScript solver.



URL w/ valid PoW

mo
d_

ka
Po

W

Clients

Web Server

URL w/ invalid PoW

Error Page

Content Solution
Scripts

Error
Page

Content

Fig. 1. The novel proof-of-work system, highlighting its additions
to typical web service.

II. SYSTEM DESIGN

A. Overview

The novel proof-of-work system we callmod kaPoW
is shown in Figure 1. The system protects web content
by embedding challenges (calledwork functions) and
solutions in Uniform Resource Locators (URLs) as new
query parameters. As webpages are served, the URLs
found in any Hyper-Text Markup Language (HTML)
tags are updated to include a proof-of-work challenge.

The system leverages the pervasiveness of JavaScript,
software present and enabled on upwards of 94% of
modern web browsers [14]. When a client’s browser
finds a PoW-protected link, it runs a server-provided
script to solve the challenge and append the solution to
the URL. As elaborated upon later, clients that do not
have JavaScript enabled are not necessarily prevented
from accessing the content.

Upon receiving a request, the server verifies that the
URL contains a valid challenge and correct solution
before servicing it. If either the challenge is stale or the
solution is incorrect, the system denies the request and
returns an error page containing a link to the resource
and a new challenge.

B. The Work Function

While this system could use any of several different
types of work functions, the prototype uses the compact
Targeted Hash-Reversal function [9] of the form:

H(Nc || Dc || A)≡ 0 mod Dc (1)

where H is a pre-image resistant hash function with
output uniformly-distributed,Nc is a client-specific nonce
generated by the web server,Dc is the client-specific
difficulty set by the web server, andA is the solution
that the client’s JavaScript solver must find. Since both
Nc and Dc are fixed by the issuer andH is pre-image
resistant, this work function requires the solver to try
various values forA until the equation is satisfied. This
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Fig. 2. Themod kaPoW Apache module showing the processing
of a URL and the corresponding content.

is expected to takeDc tries on average because the output
is uniformly-distributed.

This work function is a good candidate because it is
efficiently implementable. Specifically, using the SHA-1
hash function, it can be verified in a single hash, taking
1.09µs in software [8]. Further, the work function can
be expressed compactly; the issuer simply has to send
Dc and Nc, and a verifier only needs those parameters
and the solutionA to verify that Equation 1 is satisfied.

C. The Server Module

The bulk of the system lies within an Apache web-
server module shown in Figure 2. Apache provides
a rich interface for writing modules that range from
those that control how a client accesses a server (such
as mod rewrite ) to those that dynamically generate
content (such asmod include ). As a result, Apache
lends itself well to supporting a proof-of-work module1.
The module has two filters; anissuing filterthat embeds
proof-of-work challenges in outbound content and a
verifying filter that prioritizes inbound requests based on
having a valid challenge with a correct answer.

1) Server Configuration:To prioritize requests, the
server is configured with two virtual hosts. The default
low-priority virtual host does not support persistent
HTTP connections, and tears down any connection after
servicing a single request. Only a limited number of low-
priority clients are handled concurrently; all additional
low-priority clients are rejected with error code503:
Service Temporarily Unavailable .

A request demonstrating a correct answer to a valid
challenge is redirected to the high-priority virtual host,
which supports more concurrent clients and does not tear
down connections. However, once a high-priority client
sends an invalid request, the connection is redirected
back to the low-priority virtual host to be terminated.

1The Apache module naming-convention inspired the name
“mod kaPoW”.



2) Client-Specific Variables:During the course of
their operation, both filters refer to the client-specific
difficulty Dc and nonceNc.

To establishDc, the module uses a counting Bloom
filter [15], [16] to track the load imposed by individual
clients. The counting Bloom filter is an efficient data
structure that offers a tradeoff between size and the
probability of incorrectly assigning a high difficulty to a
client. It has no false negatives (i.e. a client known to be
malicious will never be issued a trivial work function),
and the probability of a false positive can be driven
arbitrarily low with additional memory. Given that the
Bloom filter usesk different hash functions to index into
an array ofn counters, the probability of misclassifying
a single client from an estimated population ofm clients

is approximately(1− e−
km
n )k. Using a value ofk that

minimizes that equation, the error is approximated by
0.6185

n
m . Thus to achieve a misclassification rate of less

than 0.1% of 20,000 clients, the Bloom filter requires
288,000 counters or a total of 1.2MB when using 32-bit
counters. The Bloom filter is updated in every 10 seconds
so that the difficulty is held constant long enough to give
clients a chance to respond but short enough so that
the difficulty can respond to sudden changes in load.
When the structure is updated, each counterc is updated
according to the following logic:

ct+1 =
{

ct + requestst −decay requestst ≤ decay
ct +1.01requestst−decay otherwise

(2)
which states that the difficulty decays linearly from one
time window to the next unless therequestsin the last
time periodt are greater than the rate ofdecay, in which
case those extra requests count exponentially towards
increasing the difficulty.

The client-specific nonceNc is created by concatenat-
ing the client’s identityIPc, the unmodifiedURL, and a
server nonceNs;

Nc = IPc || URL || Ns (3)

binding the nonce and entire work function, to the client
and specific content for a fixed window of time. When
the server nonce changes the existing client nonces
effectively expire, meaning solutions cannot be reused
indefinitely. The unpredictable server nonce prevents the
offline solving attacks that have been employed against
CAPTCHAs [6]. The server can update its nonce inde-
pendently from the Bloom filter, as frequently as needed
to keep client solutions fresh, however the prototype
updates the nonce and Bloom filter simultaneously.

<HTML>
<HEAD>
<SCRIPT TYPE='text/javascript' SRC='kaPoW.js'></SCRIPT>
<TITLE>Sample Content Page</TITLE>

</HEAD>
<BODY>

<H1>Sample Content Page</H1>
This webpage demonstrates an image and link protected by
proof-of-work.<BR><BR>
<IMG SRC='test.jpg?Dc=0' Nc=a53b6145 Dc=10> are solved when
the page is loaded to avoid delay.<BR>  In contrast,
<A HREF='/?Dc=0' Nc=52a6c561 Dc=10>
PoW-protected links</A> are solved only when the link is clicked. 

</BODY>
</HTML>

Fig. 3. The HTML markup of a sample document highlighting a
link to the solution script file and the work function variables that
were added.

<HTML>
<HEAD>

<SCRIPT TYPE='text/javascript' SRC='kaPoW.js'></SCRIPT>
<TITLE>Error: Invalid PoW</TITLE>

</HEAD>
<BODY ONLOAD='Solve(document.links[0]);

window.location.replace(document.links[0].href)'>
<H1>Invalid PoW</H1>
The requested URL did not have a valid proof-of-work attached.<BR>
If you are reading this page, it is likely that you do not have
JavaScript enabled.<BR><BR> If you would still like to try to
access the content, please click the following link:
<A HREF='http://maes.cs.pdx.edu/?Dc=0' Nc=52a6c561 Dc=10>
http://maes.cs.pdx.edu/</A><BR><BR><HR> 

</BODY>
</HTML>

Fig. 4. The HTML markup of an error page sent in response to
a URL that had an invalid or missing solution. The browser refresh
script is highlighted.

3) The Issuing Filter: The issuing filter scans and
parses HTML documents as they are served. It adds work
functions toall tags containing URLs, as well as the
instructions necessary for a client’s browser to solve the
functions as shown in Figure 3.

The issuing filter includes the solution instructions
for work functions through the addition of a link to a
JavaScript file (kaPoW.js) at the head of the document
so that it is retrieved first (unless already cached) and the
script may work as the remaining tags are incorporated
into the client’s in-memory Document Object Model
(DOM). Despite containing a URL, this tag does not
have a work function because clients need this resource
before they can possibly solve any work function.

The issuing filter incorporates work functions into tags
by adding the variablesNc and Dc as tag attributes. To
avoid accidentally triggering HTML escape sequences,
the values are transmitted in hexadecimal. It is important
to observe thatNc differs between tags because it is
calculated from the original unmodified URL of each
tag (recall Equation 3). The filter also appends a default
difficulty of “ Dc=0” to the actual URL so that clients
without JavaScript enabled can follow the link while at
the same time indicating to the server that they cannot
solve work functions.

Before sending the content, the issuing filter updates
the Bloom filter to count the request against that client.



4) The Verifying Filter: The verifying filter parses
request URLs and extracts any appended proof-of-work
variables. If the request URL contains the variablesNc

andDc, they are checked to be current and correct before
the module does any computationally expensive opera-
tions such as hashing. IfNc andDc are valid, the verifier
then proceeds to check thatA satisfies Equation 1. If
everything works out, the request is accepted by the high-
priority virtual host and the content is sent to the client.

There are three primary reasons why client’s request
might be rejected by the verifying filter; the URL has no
proof-of-work attached, the parameters are not current,
or the solution is not valid. The first two failures may
have occurred for a variety of legitimate reasons and are
not necessarily indicative of a malicious client.

If the request URL contains no PoW parameters, then
the client may have been linked to this resource from an
external server that has not yet adopted the system and
hence did not assign a work function. It is also possible
that the user arrived at this website by manually entering
the URL into the address bar – users are not expected
to know PoW parameters.

If the request URL contains PoW parameters, however
they are invalid, the client may have been directed to this
site from an external server that appended its own values
for Nc and Dc. Alternatively, the user may have taken
enough time reading the last webpage that the server
has updated it’s nonceNs, invalidating the client nonce
Nc as per Equation 3.

Regardless of the reason, once a request is denied, the
filter returns an error page to the client, such as the one in
Figure 4. The error contains some error text and a single
link to the requested content. After it has been processed
by the issuing filter, it has a work function embedded
into it. The key feature is highlighted; the error page
includes anOnLoad( ·) script that immediately solves
the work function and redirects the browser to use the
proper URL. The client’s web browser history omits the
error page, so a user can move through their browsing
history without ever seeing this page.

A notable exception is for clients that do not have
JavaScript enabled. Recall that the issuing filter embeds
“Dc=0” into all URLs within HTML tags. If a client’s
browser does not have JavaScript enabled, it will not
solve the work function and instead use the URL ver-
batim. When the verifying filter observes such a URL
with the variableDc set to zero, it will conclude that
the client cannot solve the work function and accept the
request on the low-priority virtual host.

D. The Client Solver

While the client end of the system can be computa-
tionally demanding, particularly for malicious clients, it
is functionally lightweight. The client’s browser executes
a few scripts contained in the JavaScript file (kaPoW.js)
linked at the head of the document.

The fundamental script is theSolve( ·) script which
is used to solve individual work functions that the
browser encounters. The script takes a tag with a URL
as input and extracts the attributesNc andDc. Provided
it can find those attributes, it systematically hashes them
with various values forA until Equation 1 is satisfied.
The script removes existing PoW variables embedded
in the URL (specifically the “Dc=0”) and then appends
the variablesNc, Dc, and A to the URL. The URL is
then updated in the in-memory DOM for use when the
browser needs to fetch that resource.

Another script runs as soon as the file is read and
hooks into the event triggered when tag elements are
added to the DOM. As content tags (such as<IMG>)
are added, this script callsSolve( ·) so that the URL
in the tag reflects valid work. As hyperlink tags (<A>)
are added, they have theirONCLICKattribute modified
to call Solve( ·) – work functions for hyperlinks are
only solved once the user chooses to follow the link.

III. E VALUATION

This section evaluates the system using experiments
running on a network of 1.8GHz dual processor Intel
Xeon machines with Gigabit Ethernet interfaces. The
experiments show that the system can efficiently defend
against flooding attacks using minimal overhead.

A. Thwarting Flooders

The network has six machines in total; 1 server
running Apache, 1 good client which requests a web
page once a second and then disconnects, and 4 flooding
adversaries that aim to deny the good client by con-
suming as many server resources as possible. While this
setup is far from the magnitude of a real botnet, the
server is configured to give adversaries an advantage
over the client. Specifically, the server is configured
to only accept 4 clients simultaneously and the high-
priority virtual host is configured to allow persistent
clients to remain connected as long as they continue to
send requests.

As shown in Figure 5(a), withoutmod kaPoW the
adversaries can occupy the server indefinitely while they
flood packets. The good client can never establish a
connection and get a request through.
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Fig. 5. mod kaPoW thwarting flooding adversaries.

Figure 5(b) shows the addition ofmod kaPoW, lim-
iting the reign of the flooders to a single time window.
When the module updates the Bloom Filter, the flooders’
requests drive their respective difficulties to 232 (requir-
ing roughly 1.3 hours to solve) preventing them from
sending valid requests in time, and restoring access for
the good client.

Figure 5(c) shows flooders that do not stop once
they are given a difficult work function. Instead, they
simply flood requests with invalid solutions. After the
initial flood, the adversary requests are rejected and their
connections are terminated upon each request, lowering
their throughput and allowing access for the good client.

While the system properly discards requests that are
part of a flood, they do consume substantial resources
on the web server as it must accept each connection,
and parse the request before rejecting it. Figure 5(d)
shows that using standardiptables matching rules, an
ingress filter can restrict each client to 5 TCP connections

per second. This reduces the magnitude of rejected
flooder requests. The drops induce TCP backoff, seen
in the jigsaw pattern of rejected requests.

These experiments demonstrate that even using a
relatively simple policy to adjust the client difficultyDc,
the system can prioritize clients to achieve separation
between determined adversaries and legitimate clients.

B. Overhead

It is important that the overhead imposed on the server
by the issuing and verifying filters is minimal. The
Apache Benchmark tool (ab) was used to measure the
time to process a individual web requests, rounding up
to the nearest millisecond.

The benchmark in Figure 6(a) shows the overhead
when processing files containing a variable number of
URLs. Overall, the graph shows that there is observ-
able overhead when processing large static pages stored
on the disk. The overhead is considerably less when
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Fig. 6. Request processing time with respect to the content length.

processing pages dynamically generated because those
pages are already chunked appropriately for the filter.
When requests are rejected for having an invalid solution,
the processing is independent of the file size because the
small error page is returned instead. The results indicate
that the overhead is negligible for pages containing
fewer than a couple hundred URLs, while the benefit of
rejecting invalid requests for large pages is substantial.

The benchmark in Figure 6(b) shows the overhead for
processing webpages of variable length containing no
URLs. The graph shows similar trends to the previous
benchmark, although the overhead here is less because
there are no calculations ofNc. The benefit of rejecting
invalid requests for large pages remains substantial.

IV. CONCLUSION

This paper presentedmod kaPoW, a novel system
that is transparentto end users like other proof-of-work
schemes but is alsobackwards compatiblefor legacy
clients like CAPTCHAs and doesn’t require special
client software. In the system, a web server dynamically
rewrites HTML tags containing URLs by attaching a
computational challenge to them. It also sends with the
work functions, a small JavaScript so that clients can
solve them. Subsequent client requests are prioritized by
having a valid solution.

The system binds work functions to the client, server,
requested content and time window through the secure
creation of the client nonceNc. The work function
difficulty Dc is tailored to each individual client. The
evaluation shows that using a simple policy, the difficulty
can be adjusted to fend off flooding adversaries. The
evaluation also demonstrated the low system overhead.
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