The Case for Network Witnesses

Wu-chang Feng
Portland State University

Abstract—Network abuse is prevalent in today’s Internet.
To combat abuse, this paper examines a general approach
for constructing network protocols based on the use of “net-
work witnesses”: tamper-resistant, trusted third parties
that reside at network protocol end-points. By providing
authentic measurements of network use and by ensuring
the correct usage of network protocols, we show how
network witnesses can enable fundamentally new protocol
designs that can protect networks against malicious use.

I. INTRODUCTION

The original Internet protocols assumed cooperative
entities were running them. As a result, many proto-
cols did not adequately consider malicious users which
has lead to widespread abuse. Although a number of
mechanisms have been deployed to address individual
problems, network abuse ranging from botnets sending
spam to hackers performing scans is still prevalent. In
this paper, we explore a general approach for com-
bating the problem of network abuse by constructing
network protocols around “network witnesses”. Network
witnesses are tamper-resistant, trusted third parties that
reside at network protocol end-points and can be used
to help ensure the correct usage of network protocols
by those endpoints. Network witnesses enable funda-
mentally new protocol designs that can protect networks
against malicious use. Towards this end, we examine
how future networks might change if a network witness
were made mandatory for participants.

II. SYSTEM MODEL

The crux of the approach is the network witness: a
trusted third party entity comprised of tamper-resistant
hardware and software that resides on the platform at
network end-points. In order for a platform component
to fulfill the role of a network witness, certain criteria
must be met. We assume network witnesses provide:

o Reliable introspection: The network witness must
be capable of reliably measuring the state of the
host system including its network usage.

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-0627752 and by the generous dona-
tions of Intel Corporation. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation or Intel.

Travis Schluessler
Intel Corporation

o Attestation: The network witness must be able to
report its measurements in an authenticated manner
to other witnesses in the network.

e Isolation: The network witness must be isolated
from the host processor to ensure that actions taken
by the host do not influence the witness. This is
required to prevent an attacker in possession of the
system from circumventing or disabling the network
witness through software.

o Trusted execution: The network witness must only
execute code that is cryptographically signed by
a trusted third party such as the IETF or the
manufacturer of the hardware.

o Tamper-resistance: The network witness cannot be
tampered with by a network-based adversary or the
platform owner. In reality, a tamper-proof platform
is unattainable, hence, this requirement translates
into a cost of circumvention requirement, that is,
the cost of tampering with the network witness must
exceed the value of the services it protects.

Network witnesses represent an extension of what has
been deployed by industry. Specifically, one candidate
witness is the Manageability Engine (ME) component of
Intel’s Active Management Technology [1]. The ME is a
hardware component that currently resides in the chipset
on many Intel motherboards providing manageability
services to IT administrators. Its capabilities go further
than simple manageability though. The ME can be used
to report authentic integrity checks on the running state
of the operating system and applications in a tamper-
resistant manner [2]. The ME also has the capability to
monitor network traffic going to and from the host and
can filter traffic known to be malicious [3]. Figure 1
shows a conceptual picture of AMT in its current form.
As the figure shows, the ME sits along the path between
the host and the network interface and has direct access
to the memory image of the target host. As a result of
this placement, it can perform automatic worm contain-
ment as well as network access control based on the
software state of the host. Specifically, AMT can use
heuristics to detect the scanning behavior of worms that
are attempting to propagate from the host. To implement
network access control based on the host’s security state,
AMT can be used in conjunction with Cisco’s Network
Admission Control (NAC) to create “virtual enterprise

Software
application

Software ‘ Software

Intel® AMT application || application

i i Network
Operating system driver |

I

T fitters

| H
Sensors

Nonvolatile |
storage

Management engine

g TLS Encryption (% TCP/IP iR SR IE

API I

Ethernet
controller

Fig. 1. Architecture of Intel’s Active Management Technology (AMT)

networks” [4]. Based on AMT measurements of host
integrity, network traffic from compromised hosts can
be isolated and quarantined automatically.

III. PROTOCOL ATTESTATION AND VALIDATION

Network witnesses can simplify the design of network
protocols and algorithms much like trusted third parties
can greatly simplify complex security protocols. One
straight-forward use for network witnesses is to have
them authentically attest to “ground truth” measurements
on the host in order to provide situational awareness in
the network. In the solution described previously using
Intel’s AMT and Cisco’s NAC [4], the Manageability
Engine measures the “security posture” of the untrusted
software running on the host it resides on. This security
posture includes the patch-level of the applications and
operating system and the presence of anti-virus agents.
This attested posture is then sent into the network where
network routers implementing Cisco’s NAC decide what
network resources to allow the host to access. The
attestation can be done using methods such as TCG’s
TNC [5]. In that model the network witness would be
an Integrity Measurement Collector, and the decision
point in the network would be an Integrity Measurement
Verifier. If the posture reported by the witness is poor
(e.g., the host is not running anti-virus programs), then
its traffic is automatically isolated onto a virtual network
that keeps it from communicating with the rest of the
hosts on the enterprise network. In order to ensure proper
operation, the network mutually authenticates itself with
the AMTs on all of the attached hosts. While the market
success of this product demonstrates the strength of the
idea, the notion of using attested host measurements
in designing robust networks of the future represents
a significant and fundamental advance that requires a
more extensive look. In the future, actions taken by
network witness enabled systems could be verified by
network infrastructure, such as in the NAC scenario,
or by other network endpoints participating in a joint
networked application.

A. Attesting human input

Perhaps the most important problem in networks today
is automated attack. Such attacks include automated web
account signup, comment and e-mail spam, denial of
service attacks, ticket purchasing robots, click fraud, and
bots in on-line games [6], [7], [8]. Several kludges exist
to tackle automation. One is to just tell the bot to go away
and trust that it will (i.e., the use of robots.txt to keep
search engines from indexing certain web sites). This
is easily circumvented. Another is to use CAPTCHAs
to try and prove the presence of human on the other
end. This makes networked applications much harder to
use and is becoming less tenable as improved decoding
algorithms have been developed [9].

A more elegant approach for doing so is to have the
network witness attest to the fact that a human is present
by measuring pieces of the system that are the result
of physical events (i.e., keyboard and mouse events).
Such a facility is the basis of an extension to Intel’s
AMT [10] where the Manageability Engine attests that
the events coming from keyboard and mice on the USB
bus matches those the software sees. While the system
focuses on detecting automation in on-line games, it
clearly has relevance to a range of other networked
applications that could benefit from knowledge of human
use.

For example, attested measurements of keyboard and
mouse events could clearly aid the e-mail spam problem.
A client SMTP server could have the sending host attest
to whether the keyboard and mouse was used in the last
minute upon receiving an e-mail from it. Combined with
content-based analysis, if the e-mail looks like spam
and the sender’s keyboard and mouse has been idle,
the SMTP server would have a more accurate indicator
that the source is spamming. Comment spam in blogs
could be treated the same way with web servers asking
network witnesses at clients to attest to keyboard and
mouse activity before accepting comments.

B. Attesting prior actions

While attesting human use mitigates the ability for
hackers to remotely launch automated attacks, it would
still be possible to launch one when the user of the
compromised machine is actively using the keyboard or
mouse. To address this, another useful attestation would
be for the network witness at the client to attest to
selected prior network history. For example, in the case
of spam, the witness could attest to the number of e-mail
messages sent by its host in the last hour. Combined with
attestation of human input, attesting e-mail transmission
history can provide a significant improvement in today’s
handling of e-mail.

In general, there are many attacks in networks today
that could benefit if attested prior history were attached.

Problem

Problem description

[Witness measurement

Scanning Adversary performs a brute-force scan on random loca- | Witness measures and attests TCP/IP fan-out and work-
tions to find vulnerable hosts weight statistics of host for easy detection [11]

Flooding Adversary floods packets into network core forcing core | Witness attaches bandwidth usage information to traffic
routers to keep track of per-flow state in order to rate-limit | allowing core routers to obtain a trusted measure of per-
effectively flow consumption without keeping per-flow state.

Colluding Sybil attack used to inflate reputations or to bypass | Witness attests the number of unique IDs being used by host
incentive-driven protocols [12] to trackers.

Spoofing Adversary spoofs packets from IP addresses it does not | Witness measures and attests the number of source IP
own on the witness’ host addresses being used by its host to indicate abuse to others.

TABLE I
PROBLEMS MITIGATED USING ATTESTED CLIENT MEASUREMENTS FROM NETWORK WITNESSES.

For example, Sybil attacks that create multiple bogus
identities, on-line poll rigging that consist of clicking
a voting link multiple times, and network scanning
attacks that probe target networks over time could all be
thwarted if the network witness at the host were forced
to attest to prior network history. Note that currently, the
way to address this problem is to force services in the
network to track the history of individual clients. This is
problematic since doing so can result in a significant
amount of state that must be kept. Thus, the use of
network witnesses puts the onus on the client to attest to
its relevant history when interacting with the network.
To mitigate the problem of Sybils, the witness could
attest to the number of identities the end host has
created on a particular site before being allowed to create
additional ones. To mitigate duplicate votes in polls, the
witness would attest that a particular voting link has not
been visited in the past. Finally, to help intrusion de-
tection systems identify stealthy port scans, the witness
could attest to the number of unanswered connection
attempts it has seen the host send to a target network over
time. By shifting the burden of responsibility in tracking
history from the services to the clients, a number of other
attacks can be mitigated. Table I summarizes situations
where attested measurements performed by a network
witness could be used to aid network management.

C. Attestation-assisted congestion control

In the network core, in order to perform resource
allocation in the presence of a greedy adversary, routers
are often forced to keep state on the bandwidth us-
age history of active flows. This can be prohibitively
expensive given the sheer number of flows that need
to be tracked. Rather than have the network or target
destination keep this information on a per-flow basis,
one could instead rely on a network witness to track
bandwidth usage history and to attest to its value by
periodically attaching it in an authenticated manner to
packets it sends in the network. For example, consider
the Core-Stateless Fair-Queuing scheme in which edge
routers label flows based on their bandwidth usage and
core routers prioritize packets based on the labels [13].

In this scheme, the edge router is forced to keep per-
flow state of all flows it sends into the core of the
network and label each flow accordingly while the core
network routers are effectively stateless: providing strict
priority ordering based on the labels. With a network
witness built into the architecture, network queuing and
scheduling algorithms could instead rely on witnesses at
the end host to attach such state in an authentic fashion.
In the CSFQ case, the network witness at the end host
would be entrusted to directly label packets with their
appropriate values.

D. Validating protocol use

One way to exploit protocols is to use them in
unintended ways. For example, a typical TCP session
starts with a 3-way handshake using TCP SYN packets.
An adversary wishing to avoid detection may bypass
this mechanism by constructing fake TCP segments
for connections it has not set up a priori and use the
responses to determine if a service is running on a
particular port [16]. One way to use a network wit-
ness running on an end host is to either report such
inconsistencies or to automatically drop segments that
are violating protocol rules. In the case of bogus TCP
segments, it can ensure that each TCP segment it sources
is consistent with and can be associated with a valid
TCP session running on the host. Another interesting
application of the network witness is in the detection of
IP spoofing attempts. The witness could either enforce
that a client only sends IP packets with a source address
previously acquired via DHCP or that a client only
use IP addresses that correspond to those the witness
has previously seen the client receive packets using.
Finally, a network witness could also be used to ensure
proper behavior in application protocols. Consider the
ratio cheating exploit in BitTorrent [17]. As part of the
BitTorrent protocol, trackers depend on clients reporting
their true upload and download statistics in order to
build proper incentives for sharing. Savvy programmers
have exploited this vulnerability by developing software
that falsifies these reports to the tracker. In the network
witness approach, one could instead use the witness to

Exploit Exploit description

Witness validation action

gerprint a remote operating system based on its response

Fragroute Adversary intentionally fragments segments in order to | Witness at adversary disallows fragmentation unless link
evade or disable security mechanisms [14] MTU requires it.
Xmas scan Adversary sets invalid combinations of TCP flags to fin- | Witness at adversary drops invalid or malformed TCP seg-

ments

RST spoofing
down a connection between two other hosts

Adversary forges a TCP RST segment in order to tear

Witness at adversary drops TCP segments not part of a valid
local TCP connection

Optimistic

ACKs [15] quickly ramp up the connection’s rate

Adversary acknowledges data it has not received to

Witness at adversary drops TCP segments that violate TCP
state machine

DNS poisoning

DNS requests

Adversary spoofs DNS replies to victim in response to its

Witness at adversary drops DNS replies that were not
preceded by a valid request to itself

TABLE II
EXPLOITS MITIGATED BY HAVING NETWORK WITNESSES ENFORCE PROTOCOL RULES.

validate the ratios being reported or to measure and
report ratios directly in order to prevent cheating in the
system. Table II lists some other ways that witnesses
could be used to enforce proper protocol usage.

IV. EXPLORING NEW PROTOCOLS

While measuring and validating existing protocols
are useful applications of network witnesses, ultimately
one would like to construct new protocols that can
fundamentally change how networks operate. Towards
this end, we examine potential new protocols based on
network witnesses that could be used in a clean-slate
network design.

A. Public work

Over the last two decades, a large amount of research
has been devoted to solving the problem of unwanted
traffic. One approach for combating this problem is to
use proof-of-work or client puzzles. With client puzzles,
a client is forced to solve a computational puzzle before
being given access to a resource. While many schemes
currently exist for doing so [18], [19], [20], [21], most
face a fundamental problem in that the issuer and the
verifier of puzzles must reside at the service being
protected. Such a design still allows unwanted traffic to
reach most of the way to the destination.

One approach for solving this problem is the use
of publicly verifiable proof-of-work or “public work”
functions [22], [23]. In such schemes, as part of ad-
vertising its location, a service also supplies a work
function that the client must solve in order to reach
the service. While the work function is easy to generate
and verify, it requires resources from the client in order
to calculate a correct answer. The key to the function
is that it is publicly verifiable. That is, any network
device that has recorded the previous advertisement can
verify whether the subsequent requests are wanted by the
service and can then drop them long before they reach
their destination. In our architecture, this verification
can occur at the client itself using the network witness
at the end-host. The witness can record advertisements
from services that the client requests and validate that

subsequent requests have valid solutions before being
allowed into the network, allowing unwanted traffic to
be dropped at the client.

B. Scheduled transmissions

While public work provides an analog knob to dial
back unwanted traffic, another compelling way to stop
unwanted traffic is to have destinations send a binary
“cease and desist” order to particular clients which would
then be enforced by the network witness. A web server
under sustained attack from a botnet could advertise to
each network witness running on known botnet machines
a signal that indicates it no longer wants to hear from
them until a particular time in the future. The witness
would then enforce this by dropping the host’s commu-
nication with the target destination until the advertised
time.

C. Data exfiltration

One of the key problems in industry is that of data
exfiltration: the unauthorized leaking of sensitive data.
The ability to send a machine a piece of data and ensure
that it never leaves that host is an extremely important
one to most enterprises and sensitive government agen-
cies. A network witness provides a logical place for
preventing data exfiltration. As part of a protocol for
transferring sensitive data, it could receive sensitive data
and its exfiltration requirements, monitor system activity
to track how the data is accessed, and shut down any
attempts at exporting such data over the network.

D. Execute-once protocols

In the previous section, an on-line polling example
is augmented with attested measurements in order to
detect multiple votes from the same system. Going a
step further, one interesting use of the network witness
is to implement “execute-once” protocols. Consider the
case of an electronic voting protocol that self-destructs
upon its first successful execution. Such a property could
effectively be implemented using a network witness that
would detect and deny all traffic generated by a protocol
after its first use.

Graphics & Memory
Controller Hub

/O Controller Hub LAN Controller
EE— Wired Wireless
Filters
Out-of- Qut-of-
Sensors Band Band
MAC Gigabit
802.11
Flash Ethernet

Fig. 2. Functional location of one instance of Intel AMT’s Manage-
ability Engine (ME)

V. EXPLORING LIMITS

It is important to understand the limits of the attes-
tation approach and the consequences that such limits
have on the ability to support the end scenarios described
earlier.

A. Limits on threat models

The placement of the network witness within the host
completely changes the threat model that can be miti-
gated. Figure 2 shows where the Manageability Engine
of Intel’s AMT platform currently sits in one generation
of the PC architecture. As a result of its placement in
the memory controller, it can measure the contents of
memory, all network traffic going to and from the host,
and all I/O going to and from peripherals. Consider the
threat model addressed with this architecture in attempt-
ing to detect automation cheats in a game client [10].
In this case, the Manageability Engine monitors the
electrical signals over the USB bus and ensures the
keyboard and mouse input that is driving application
behavior was, in fact, a result of what it measured over
the USB bus (i.e., that no keystrokes were fabricated
in software by the device driver or operating system).
While such an approach is useful in identifying botnet
and spam activity where the exploits are software-only, it
can be problematic when the end user is the adversary.
Specifically, for on-line games, the cheater can move
the automation out of the target host’s software stack
and onto the other side of the I/O bus by building a
USB device that generates the desired electronic signals
across the bus to pull off the automation attack. Consider
how the threat model would change if a data authenticity
capability were placed in the keyboard/mouse itself (i.e.,
secure peripherals). Using this approach of peripherals
authenticating the physical motion of the device, even
if the end user was the adversary, he/she would then be
forced to physically move the peripheral with a robot to
pull off the automation attack undetected.

Another limiting aspect of the witness approach is
its placement at network endpoints. As a result of this,
adversaries in the network can selectively drop attesta-
tions or use a reflector attack to force a flood of attested

measurements into the network to disrupt the system. For
the approach to work, it is important that such attacks
on witnesses be effectively mitigated.

B. Limits on accuracy

While treating network witnesses as an omniscient
entity on the client is convenient for research purposes,
in practice, existing solutions have physical limitations
that prevent certain types of measurement. For example,
although Intel’s Manageability Engine sits off of the
front-side bus of the main CPU, it cannot measure all
memory transactions going through the FSB since the
ME runs at a fraction of the speed to keep costs low. This
is a key limitation in its current use, since it is unable
to reliably measure what is effectively a moving target
(i.e., the memory image of the running applications and
operating systems).

It is essential that the witness can guarantee that its
attested measurements are correct since an adversary will
always identify and exploit any limits on a system to
his/her benefit. For example, consider an attack where
an adversary floods the network witness with events it
must measure and attempts to slip a request through
undetected. Being able to understand how attested mea-
surements might degrade under such attack is important
in determining the quality and correctness of what is
being attested. For the approach to work, the witness
must not provide an incorrect attestation otherwise all
protocols built around such attestations are then rendered
useless.

C. Limits on storing attested data

Another important limit is the amount of attested data
a network witness can and is willing to store. Attesting to
every packet that has ever been sent by the end system
is prohibitively expensive for the witness to do, as is
keeping attested measurements an indefinite period of
time. Protocols based on an attestation approach must
explicitly account for situations where the end client is
unable to attest to the desired measurement. Towards this
end, we will consider how one might manage attested
data and how to build protocols to limit the amount
of attested measurements are performed and kept. For
example, with a voting protocol, one might attest to a
particular event occurring over a specific window (i.e.,
ensuring that the presidential “voting” URL is only
visited once every four years).

D. Limits from the user

Because users must be able to control what is going
on with their data, it is important that what network
witnesses measure is transparent and configurable to
them. Specifically, to ensure privacy protection, users
must have the ability to configure what they are willing

to attest to and to “opt-out” of protocols that require
attestation of information they do not want to divulge.
For example, not many users would be willing to partic-
ipate in a protocol that requires the attestation of every
keystroke made by the user. However, some users may
be willing to have the witness attest to the whether or
not their keyboard has been used in the last hour if this
meant reducing their level of spam. Key to the witness
approach is the trade-off between a user’s privacy and
the level of detail given in attested measurements.

E. Limits on deployment

Legacy systems that do not possess the network wit-
ness capabilities pose an issue that may limit the motiva-
tion for deployment of systems with network witnesses
enabled. This issue can be mitigated by vendors (ISPs,
networked application service providers, etc) providing
incentives to users who enable network witnesses on
their systems. For example, since an ISP benefits from
its subscribers verifiably adhering to network protocol
standards, it could give users a reward such as a band-
width increase or an extra email account for enabling
witnesses. Another example incentive would be a web
portal that does away with CAPTCHA tests for users
that are willing to use the witness to attest that their
keyboard/mouse are active.

FE. Limits on extensibility

As shown in Figure 2, current hardware-isolated exe-
cution environments that fit the network witness profile
sit off-chip and can only measure a range of buses
attached to the main CPU. As a result, exploits involving
internal hardware CPU registers, such as overwriting the
interrupt descriptor table register or structured exception
handling registers escape the purview of these hardware
components. Any attestation approach must be able
to support future measurement capabilities that can be
added. For example, if a witness could eventually be
implemented within the CPU, then the network protocols
must eventually be able to take advantage of increased
visibility into CPU state.

VI. SUMMARY

The preceding analysis shows that a hardware compo-
nent possessing the properties of reliable introspection,
isolation, tamper resistance, and the ability to only
execute signed code can provide a fundamental new
building block in the design of secure network protocols.
A network witness possessing these characteristics could
be used to attest to the correct use of existing protocols
by attesting to human input, attesting to prior platform
actions, assisting with congestion control, and validating
protocol use. Additionally, the presence of a network
witness in all network endpoints could allow for the

development of new, more secure network protocols
based on public work, transmission scheduling, and one-
time execution. The use of a network witness for these
purposes should be explored in more detail to fully
evaluate its effectiveness in these roles.

REFERENCES

[1] Intel, “Intel Active Management Technology,” http://www.intel.
com/technology/platform-technology/intel-amt/.

[2] J. Evers, “Taking on Rootkits with Hardware,” December
2005, http://news.cnet.com/Taking-on-rootkits- with-hardware/
2008-1029_3-5992309.html.

[3] “Intel System Defense Technology,” http://www.intel.com/cd/ids/
developer/asmo-na/eng/320960.htm.

[4] D. DeLiberato, H. Khosravi, D. Valdez, and L. Webb, “Intel
and Cisco Collaborate to Improve Enterprise Security,” Technol-
ogy@Intel Magazine, September 2005.

[5] Trusted Computing Group, “Trusted Network Connect,” http:
/Iwww.trustedcomputinggroup.org.

[6] “DDoS on Blue Security Blog Knocks Typepad, LiveJournal
Offline,” May 2006, http://news.netcraft.com/archives/2006/05/
03/ddos_on_blue_security_blog_knocks_typepad_livejournal_
offline.html.

[71 B. Brenner, “Gmail CAPTCHA Cracking Leads to Spam Surge,”
March 2008, http://searchsecurity.techtarget.com/news/article/0,
289142,sid14_gcil304779,00.html.

[8] G. Hoglund and G. McGraw, Exploiting Online Games: Cheating
Massively Distributed Systems, Addison-Wesley, 2007.

[9] “PWNitcha - captcha decoder,” http://sam.zoy.org/pwntcha.

[10] T. Schluessler, E. Johnson, and S. Goglin, “Is a Bot at the
Controls - Detecting Input Data Attacks,” in NetGames, October
2007

[11] J. Binkley and S. Singh, “An Algorithm for Anomaly-based
Botnet Detection,” in USENIX Conference on Steps to Reducing
Unwanted Traffic on the Internet, July 2006.

[12] B. Cohen, “BitTorrent,” http://www.bitconjurer.org/BitTorrent.

[13] I Stoica, S. Shenker, and H. Zhang, “Core-Stateless Fair Queue-
ing: A Scalable Architecture to Approximate Fair Bandwidth
Allocations in High Speed Networks,” in ACM SIGCOMM,
September 1998.

[14] “fragroute,” http://www.monkey.org/~dugsong/fragroute.

[15] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “TCP
Congestion Control with a Misbehaving Receiver,” ACM SIG-
COMM CCR, vol. 29, no. 5, April 1999.

[16] Fyodor, “Remote os detection via tcp/ip stack fingerprinting,”
http://www.insecure.org/nmap/, 1998.

[17] “How to Cheat BitTorrent Ratio by
http://www.raymond.cc/blog/archives/2006/07/27/
how-to-cheat-bittorrent-ratio-by-spoofing/.

[18] C. Dwork and M. Naor, “Pricing via Processing or Combatting
Junk Mail,” in CRYPTO, August 1992.

[19] A. Juels and J. Brainard, “Client Puzzles: A Cryptographic
Defense Against Connection Depletion,” in NDSS, February
1999.

[20] X. Wang and M. Reiter, “Defending Against Denial-of-Service
Attacks with Puzzle Auctions,” in IEEE Symposium on Security
and Privacy (S&P), May 2003.

[21] W. Feng, “The Case for TCP/IP Puzzles,” in ACM SIGCOMM
Workshop on Future Directions in Network Architecture (FDNA),
August 2003.

[22] W. Feng and E. Kaiser, “The Case for Public Work,” in IEEE
Global Internet Symposium, May 2007.

[23] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and
Y. Hu, “Portcullis: Protecting Connection Setup from Denial-
of-Capability Attacks,” in ACM SIGCOMM, August 2007.

Spoofing,”

